
ISP Self-Operated BGP Anomaly Detection Based
on Weakly Supervised Learning

Yutao Donga,b, Qing Lib∗, Richard O. Sinnottc, Yong Jianga,b ,Shutao Xiaa,b
a Tsinghua Shenzhen International Graduate School, Tsinghua University

b Peng Cheng Laboratory (PCL), c University of Melbourne
dyt20@mails.tsinghua.edu.cn, liq@pcl.ac.cn, rsinnott@unimelb.edu.au, {jiangy, xiast}@sz.tsinghua.edu.cn

Abstract—The Border Gateway Protocol (BGP) is arguably
the most important and irreplaceable protocol in the network.
However, the lack of routing authentication and validation
makes it vulnerable to attacks, including routing leaks, route
hijacking, prefix hijacking, etc. Therefore, in this paper we
propose a generalized framework for ISP self-operated BGP
anomaly detection based on weakly supervised learning. To tackle
the problem of insufficient data in BGP anomaly detection, we
propose an approach to learn from the other anomaly detection
systems through knowledge distillation. To reduce the impact
of inaccurate supervision, we design a self-attention-based Long
Short-Term Memory (LSTM) model to self-adaptively mine the
differences between BGP anomaly categories, including both
feature and time dimensions. Finally, we implement a system and
demonstrate the performance through a set of comprehensive
experiments. Compared with the state-of-the-art schemes, our
scheme has better generalization on various anomaly types.

Index Terms—BGP, Anomaly Detection, Self-operated, Weakly
Supervised Learning

I. INTRODUCTION

The Border Gateway Protocol (BGP) lacks routing au-
thentication and validation, which makes the Internet more
susceptible to malicious users and misconfigurations, such as
prefix hijacking [1], routing leaks [2]–[4], breakouts [5]–[7]
and route hijacking [8]. These attacks may cause significant
economic loss, potential leak of user privacy and the inevitable
interruption of large-scale networks, impacting thousands of
users and organisations. For example, on August 31, 2020,
CenturyLink’s mis-configuration of BGP caused a 3.5% drop
in global Internet traffic, which is one of the largest Internet
outages in history [9]. In fact, an ever-increasing number of
BGP anomalies and vulnerabilities have been discovered in the
Internet [10]. Therefore, it is significantly important to provide
an efficient scheme to identify these abnormal events.

The existing schemes on BGP security can be divided
into security protocol protection and anomaly detection. The
security protocol protection aims to prevent the anomalies by
various routing authentication technologies (e.g., RPKI [11]
and S-BGP [12]). Nevertheless, these methods can not work
until most Autonomous Systems (ASes) have deployed them.
Unfortunately, due to issues such as upgrade costs, it is too
difficult to change the Internet, especially when a single AS
deployment cannot take effect [13]. Thus, Internet Service
Providers (ISPs) prefer to use anomaly detection to defend

against BGP anomalies. Meanwhile, the anomaly detection
schemes can be further divided into two sub-categories: rule-
based approaches (e.g. PHAS [14], [15], [16], ARTEMIS [17])
and machine learning based approaches (e.g., Random Forest
[18]–[20], SVM [21], MLP [22] and LSTM [23]–[25]). Gener-
ally, the rule-based approaches can only detect prefix hijacking
and one-hop route hijacking. These approaches cannot detect
new anomalies nor more sophisticated hijacking (e.g., more
than one hop hijacking, route leaks) due to the inflexibility of
rules. In contrast, the machine learning-based approaches will
get much better generalization performance on sophisticated
hijacking. However, the existing learning-based approaches
can only analyze and verify large-scale abnormal events, such
as worm attacks and breakout incidents. These approaches
which lack sufficient data for training cannot work on other
smaller effect events, like route hijacking attacks.

In addition, most ISPs rely on third parties [5], [8], [26]
to check whether their network is under attack [13], because
no approach can handle all the anomalies. However, relying
on third parties causes some issues. Firstly, once the net-
work configuration is changed locally, they need to update
the third-party anomaly detection systems in time. Secondly,
an anomaly detection system is designed for some specific
anomalies and cannot work effectively on the other anomalies,
so none of the systems can detect all the anomalies. Therefore,
the ISPs have to reach agreements with multiple third-party
anomaly detection systems to detect all the anomalies. As
such, the ISPs cannot react quickly enough to detect anomalies
and avoid large-scale BGP oscillation.

As a result, we aim to design an anomaly detection system
for an AS to identify all BGP anomalies without the cooper-
ation of other ASes. The goal is to quickly detect the BGP
anomalies then alleviate the negative impact. To achieve this
objective, there are two main challenges to be addressed:

1) Since BGP abnormal events are difficult to collect and to
verify due to the complicated commercial concerns, it is
inevitable to learn by inaccurate supervision. Therefore,
the first challenge is to build a sizable comprehensive
weak anomaly dataset.

2) The given labels are not always verified ground truth
[27] and the classes are imbalanced. Hence, the second
challenge is to train efficient anomaly detection models
from potentially inaccurate and imbalanced data.978-1-6654-4131-5/21/$31.00 ©2021 IEEE

In order to solve these challenges, we propose a general
framework for BGP anomaly detection based on weakly su-
pervised learning, which adapts to all BGP anomalies without
manual intervention. Specifically, we put forward a knowledge
distillation of anomaly detection systems to construct a suffi-
cient dataset and use the de-noise model as a detection model.
Thus, our work can be divided into two parts.
• Knowledge distillation of anomaly detection systems:

We use the existing anomaly detection systems as a
teacher system to construct sufficient anomaly events
composed of thousands of actual events. To verify the
usability of inaccurate data, we perform data analysis on
massive BGP anomaly events, based on which we are able
to confirm that different anomalies can be distinguished
by characteristics of the data.

• De-noise model: To reduce the impact of inaccuracies,
we use the LSTM model based on the self-attention
mechanism as a student model. The self-attention method
is used to mine the importance of time steps, while the
LSTM mechanism is to find the importance of features.
By using both methods we can minimize the impact
of data noise. In addition, we design a dynamic stride
sampling method to deal with the imbalance problem.

We implement a prototype of the distillation method using
multiple anomaly detection systems such as [5] and [8]. The
dataset and prototype have been published on GitHub1. The
experiment results show that our scheme can identify all
types of anomalies and achieve similar performance to the
original specific anomaly detection system. We also use a
public well-known anomaly dataset such as [28] to test our
trained model. The results show that our weakly supervised
model can detect anomalies immediately with no false alarms
when anomalies occur. We also transfer and apply our pre-
trained model to this well-known public dataset. Compared
with previous work, our method significantly improves the
recall rate by 20.71% and F1 by 10%. Thus we can confirm
the feasibility of our framework and usability of inaccurate
data. We also confirm that we can successfully detect all well-
known anomalies in real-time and identify different anomaly
categories of relationships when massive events occur.

The remainder of this paper is organized as follows. We first
introduce related works (§ II) and present a comprehensive
attack taxonomy (§ III). After that, we design the general
framework in § IV, and introduce our dataset in § V. Then
we prove the usability of our (weak) data and analyze our
dataset in § VI. At last, we evaluate our method by testing the
data collected from teacher systems and well-known anomalies
(§ VII).

II. RELATED WORKS

The anomaly detection is applied to actively or passively
detect BGP hijacking events then mitigate or inform target
maintainers of AS. The vast majority of operators prefer to

1https://github.com/universetao/A-General-Framework-BGP-Anomaly-
Detection.

use passive anomaly detection systems, since they occupy the
least amount of network bandwidth resources and are able to
monitor anomalies more readily [13].

Among passive detection methods, control plane detection
platforms are mostly used, including BGPmon [26], RIPE
RIS [29] and RouteViews [30]. Furthermore, there are many
ways to use these control platforms to achieve detection. For
example, in ARTEMIS [17], the authors originally introduce
to use real-time BGP updating information from BGP control
platforms in order to achieve real-time detection. However,
they typically use fixed rules which are not adaptive to new
anomalies, e.g., route leakage attacks or more than two hops
hijacking. Testart et al. [18] use historical information from
the control platform and the operator’s mailing list to analyze
the characteristics of serial hijackers and compare it with
the legal AS from the Mutually Agreed Norms for Routing
Security (MANRS) Association. Then the authors use random
forest to capture the difference between serial hijackers and
legitimate AS. However, their method is unable to capture
the route hijacking and hence it can be easily bypassed by
a sophisticated hijacker to avoid detection. Moreover, it fails
to achieve real-time anomaly detection. Lu et al. [19] use
BGPstream [5] as event data sets, which provide a method
to get more data. However, their method requires one day
of BGP characteristic information as input, which causes
large detection delays. Furthermore, the approach does not
implement route hijacking detection. Cho et al. [20] depend
on AS hegemony [31] metric to detect the route hijacking.
However, their method requires 15 minutes delays for getting
AS hegemony scores from Internet Health Report (IHR) API
[32]. Cheng et al. [23] use long short-term memory (LSTM)
models [25] to identify worm attacks such as Nimda and Code
Red II. However, the worm attacks are indirect attack [33]
and they only use BGP volume features, making it impossible
to capture other anomalies that have a small impact on the
network (e.g., route hijacking). In their following work [24],
they use a wavelet model combined with LSTM to realize
anomaly detection and achieve better performance on route
leakage. Nevertheless, they still do not provide a general
framework or offer sufficient dataset to solve other anomalies.

In addition, [21] and [34] both use Support Vector Machine
(SVM) to realize a framework for anomaly detection. How-
ever, in [21], the authors only consider the AS-volume feature,
which is only suitable for worm attacks and interruptions.
Their framework is unsuitable for prefix hijacks, fake route,
or Defcon attacks. In contrast, [34] use more features and
filter the features. Nevertheless, their model does not consider
the relationship between abnormal timings, so it could not
detect small influence attacks (e.g., routing hijacking). They
only analyze and verify in a small number of interruptions
and worm events. Therefore, both of these tasks are lack of
adaptation capabilities to deal with new abnormal events.

In recent years, [28], [35], [36] all propose new detection
models. In [28], the authors adopt different graph features
to detect BGP anomalies, but their method causes a great
increase in complexity in feature extraction with little benefit.

192.1.0.0/20
victim

192.1.0.0/20
AS-PATH: 2 1

192.1.0.0/20
AS-PATH:1

AS4

AS3

AS2

AS1

AS5

stream

stream stream

192.1.0.0/20
AS-PATH: 4 3 2 1

192.1.0.0/20
AS-PATH: 3 2 1

stream

normal traffic normal update

Fig. 1. Legitimate route. The paths announced by each AS are trustworthy
and reliable

In [35], the authors use clustering techniques to raise alarms,
but they do not provide experimental results. [36] put forward
an autoencoder to support unsupervised learning, but they also
indicate that their method performs poorly in route hijacking,
because the hijacking event routes are similar to normal routes.

In conclusion, neither supervised nor unsupervised learning
has been shown to successfully support BGP anomaly detec-
tion due to the high cost of data-labeling and the challenges
of highly dynamic networks. In this paper, we propose us-
ing weakly supervised learning for BGP anomaly detection.
Leveraging a self-adaptive weakly supervised learning model
with a large and comprehensive real abnormal events data
set, we provide a general framework that is able to detect
all anomalies.

III. BGP COMMON ATTACK TAXONOMY

BGP does not consider the authentication of autonomous
systems in its design [37]. It assumes that announcements
advertised by each autonomous system are trustworthy and
reliable, and can be forwarded by peers. This design causes
a series of BGP abnormalities, making the network prone to
abnormal situations such as route leakage and hijacking. In
addition, hijacking can be divided into prefix hijacking and
routing hijacking. Based on the legitimate routes shown in
Fig.1, we provide definitions and examples in the following
subsections.

A. Prefix Hijacking

Prefix hijacking can be divided into two main categories:
regular prefix hijacking and sub (more specific) prefix hijack-
ing.

Regular prefix hijacking. As shown in Fig.2, the hijacker
forges the target AS1’s prefix in the Network Layer Reacha-
bility Information (NLRI). In this case, data from AS3 & AS4
to AS1 will be rerouted and stolen by AS5.

Sub-prefix hijacking. As shown in Fig.3, the hijacker not
only forges the prefix in the NLRI announcement, but also

192.1.0.0/20
victim

192.1.0.0/20
AS-PATH: 2 1

192.1.0.0/20
AS-PATH:1

AS4

AS3

AS2

AS1

AS5

stream

stream stream

192.1.0.0/20
AS-PATH: 5

Prefix AS-Path

192.1.0.0/20 3,2,1

192.1.0.0/20 5

192.1.0.0/20
AS-PATH: 4 5

stream

Prefix AS-Path

192.1.0.0/20 2,1

192.1.0.0/20 4,5

hijacked traffic

normal traffic normal update

forged update

Fig. 2. Regular prefix hijacking. AS1 has the 192.1.0.0/20 address range.
Hijacker AS5 illegally announces a route with the 192.1.0.0/20 address.
According to the BGP shortest path principle, data from AS3 & AS4 to
192.1.0.0/20 is redirected to AS5

192.1.0.0/20
victim

192.1.0.0/24
AS-PATH: 3,4,5

192.1.0.0/20
AS-PATH:1

AS4

AS3

AS2

AS1

AS5

stream

stream stream

192.1.0.0/24
AS-PATH: 5

Prefix AS-Path

192.1.0.0/20 3,2,1

192.1.0.0/24 5

192.1.0.0/24
AS-PATH: 4 5

stream

Prefix AS-Path

192.1.0.0/20 2,1

192.1.0.0/24 4,5

Prefix AS-Path

192.1.0.0/20 1

192.1.0.0/24 3,4,5

hijacked traffic

normal traffic normal update

forged update

Fig. 3. Sub-prefix hijacking. AS5 declares a longer prefix than AS1.
According to the longest match principle, all data flows to hijacker AS5.

makes the prefix longer than the target AS prefix, which causes
the data to be rerouted to hijacker AS5.

Regular prefix hijacking generally attracts traffic near the
hijacker according to the nearest principle. Moreover, sub-
prefix hijacking will typically hijack more traffic because of
the longest match principle.

B. Route Leakage

Route leakage is one of the most common BGP abnormal
events. It may cause multiple types of issues, ranging from
economic loss to network interruption. The definition of route
leakage is that AS propagates a Provider’s or Peer’s route to
another Provider or Peer. Based on the routing policy priority,
the provider may choose a customer’s route rather than the
peer’s or provider’s route so that the network’s routing will
change drastically.

192.1.0.0/20
victim

192.1.0.0/20
AS-PATH:2 1

192.1.0.0/20
AS-PATH:1

AS4

AS3

AS2

AS1

AS5

stream

stream stream

192.1.0.0/20
AS-PATH: 5 1

Prefix AS-Path

192.1.0.0/20 3,2,1

192.1.0.0/20 5 1

192.1.0.0/20
AS-PATH:3 2 1

hijacked traffic

normal traffic normal update

forged update

Fig. 4. Fake route attack. A hijacker forges a shorter route 5,1, which hijacks
AS4’s traffic.

192.1.0.0/20
victim

192.1.0.0/20
AS-PATH: 2 1

192.1.0.0/20
AS-PATH:1

AS4

AS3

AS2

AS1

AS5

stream

stream stream

192.1.0.0/24
AS-PATH: 5 6 1

Prefix AS-Path

192.1.0.0/20 3,2,1

192.1.0.0/24 5 6 1

192.1.0.0/20
AS-PATH: 3 2 1

AS6 streamstream

192.1.0.0/20
AS-PATH:1

192.1.0.0/20
AS-PATH: 6 1

hijacked traffic

normal traffic normal update

forged update

Fig. 5. Defcon attack. A hijacker forges a more specific prefix so that it can
be used for MITM attacks.

C. Route Hijacking

In this attack scenario, the hijacker only needs to advertise
a fake AS-PATH to the target AS. Suppose the fake path is
shorter than the path from the compromised AS to the target
AS. This will cause Man in the Middle (MITM) attack ac-
cording to the AS-PATH shortest path priority principle. This
attack is more difficult to detect because it avoids detection of
multi-origin conflicts of origin prefixes (MOAS). According to
the path authenticity, route hijacking can be divided into fake
route (Fig.4) and Defcon attack (Fig.5). Compared with fake
route, Defcon attack has a real path but forges a sub-prefix to
realize MITM attacks. Moreover, Defcon is more challenging
to detect because the path is reachable.

IV. METHOD

As shown in Fig.6, we propose a self-adaptive general
framework based on weakly supervised learning. This is
divided into the following modules: a knowledge collection
module, a feature extraction module and an adaptive anomaly
detection module. All the modules can be self-operated in ISP.

Fig. 6. A self-adaptive framework based on adaptive distillation learning using
a knowledge collection module, a feature extraction module and an adaptive
anomaly detection module.

The first module is designed to extract knowledge. It obtains
event information from the well-known anomaly detection
systems such as [5] and [8] and then obtains original BGP
UPDATE messages from the RIPE RIS database. The second
module is the feature extraction module that extracts features
from the original BGP UPDATE messages. The last module is
the adaptive anomaly detection module, which uses the LSTM
model based on a self-attention mechanism. The self-attention
mechanism is used to explore the internal relationships of
abnormal event time series. In addition, the hidden layer of
LSTM adaptively assigns weights to features, thereby support-
ing the selection of features. These modules are described in
detail in the following subsections.

A. Knowledge Collection Module

The knowledge collection module collects abnormal events
by accessing well-known anomaly detection systems. It can be
inaccurate data where the given labels are not always based
on the ground truth. Nevertheless, the data follows the central
limit theorem, which is proved in section VI. Moreover, the
different distribution between anomalies can be learned by
our tailored weakly supervised learning model. Each abnormal
event includes the corresponding information in the following
Table I. Note that not all the events have these two attributes:
event end time and hijacker AS. For example, when a prefix
hijacking happens, the anomaly may last for a long time, so
there would be no end time attribute. In most cases, there is
no specific hijacker AS for the breakout event.

Then, according to the list of abnormal events, we use the
pybgpstream python API [38] to obtain original BGP UPDATE
packets from the control platform RIPE RIS. After this module
finish, we input original BGP UPDATE packets as a traffic to
the next module.

B. Feature Extraction Module

In this module, we extract features from the original BGP
traffic data. We define the BGP traffic data as a time sequence
given as Sn = (x1, x2, x3, ..., xn), collected in n time points
with the interval based on per minute. Each xt represents m-
dimension features in the tth time interval given as xt =

TABLE I
EVENT ATTRIBUTE

Event Attribute Necessity

Abnormal event type ?
Victim AS ?
Event start time ?
Event end time
Hijacker AS

(f1, f2, f3, ..., fm). In the following subsections, we further
demonstrate how we handle this timing data and features.

1) Sliding Window: We adopt a sliding time window to
capture time dimension changes with size defined as w. It is
difficult to find dynamic changes in the sequence without a
sliding window. For example, abnormal events often exhibit
a large number of withdrawal announcements in the first few
minutes and a large number of NLRI announcements in the
next few minutes. Therefore, it is necessary to use a sliding
time window to mine abnormal feature changes and time
relationships. Thus, the data at the jth time can be expressed
as Xj = (xj−w+1, xj−w+2, ..., xj).

2) Feature Set: As shown in the table II, we divide the
features into four categories: prefix features, peer features, AS-
volume features and AS-PATH features. We discuss these in
the following subsections.

Prefix Features: The features f1−4 characterize prefix
hijacking events. f4 can also identify MITM attacks.

Peer Features: Features f5−7 are related to the number of
peers. f5 and f7 describe the target AS notification range and
f6 reflects MITM attacks.

AS Volume Features: Features f8−13 are volume-type fea-
tures. To further distinguish route engineering from hijacking,
we separate announcements into MOAS announcements and
other normal announcements.

AS-PATH Features: We can estimate the scope of the
target AS update by measuring the AS-PATH length in a given
period. The AS-PATH feature is mainly used to describe the
route changes. We use the edit distance algorithm to estimate
the path difference. The edit distance algorithm is given in
Formula 1.

d(i, j) =

d(i− 1, j − 1), i = j

min(d(i− 1, j − 1), d(i− 1, j), d(i, j − 1)) + 1, i 6= j

(1)

where d(i, j) represents the least times changed from AS-
PATH l1 (length i) to AS-PATH l2 (length j). When i = j,
d(i, j) obviously equals the previous d(i−1, j−1). In contrast,
d(i− 1, j− 1) + 1 means that the i-th hop changes to the j-th
hop. d(i − 1, j) + 1 means that the l2 sequence adds a route
at j. d(i, j − 1) + 1 means that the l2 sequence has one less
route to j. The algorithm complexity is O(l1l2).

However, knowing only the edit distance but not whether
the path length increases or decreases makes it challenging to
distinguish hijacking incident from the network engineering
migration. Therefore, we record the increase and decrease

TABLE II
ALL FEATURE SET

ID type Name Description

1

Prefix

MOAS prefix The number of prefix’s origin
conflicting with other AS

2 MOAS Number of AS that conflict
with the target AS

3 new MOAS Number of new prefixes
announced by other AS

4 new prefix Number of new sub-prefixes
belong to target AS

5
Peer

peer num Number of peers
6 peer increase Number of new peers
7 MPL Maximum path

8

AS

MOAS Ann Number of announcements

Volume

from origin conflict AS
9 Own Ann Number of announcements

from target AS
10 Dup ann Duplicate announcements

with same AS-PATH
11 Unique WD The unique number of

withdrawn prefixes
12 Withdraw Number of withdrawals
13 Diff Ann Number of new paths announced

after withdrawing an old path

14 AS-Path PLit AS-PATH length set
15 Diffjt AS-PATH edit distance set
16 Feature Set Ann longerlt AS-PATH length increase set
17 Ann shorterkt AS-PATH length decrease set

18

Sum

pl sum Sum of the all path lengths
19 sum diff Sum of edit distances
20 sum ann longer Sum of the distances increases
21 sum ann shorter Sum of the distance decrease

22

Average

avg pl Average length of AS-PATH
23 avg diff Average edit distance
24 avg longer Average increase distance
25 avg shorter Average decrease distance

for each path update. We define the Features sets f14−17 as
follows:

PLit, Diffjt, Ann longerlt, Ann shorterkt, (2)

where these feature denote the number of BGP announcements
with path length i, edit distance number j, path increase num-
ber l and path decrease number k at the tth time, respectively.

Each feature in f18−21 is used to describe the network’s
global situation of target AS based on the sum of AS-PATH
features. For example, when a breakout occurs, the sum of the
path increases will be unusually large. In addition, features
f22−25 are based on f18−21 divided by the number of peers.
This is used to obtain each peer’s degree of change.

C. Adaptive Anomaly Detection Module

As shown in Fig.7, the model consists of a Batch Nor-
malization layer (BN) [39], an LSTM model [25], a self-
attention layer [40] and a fully connected layer. We use the
processed BGP traffic Xj = (xj−w+1, xj−w+2, ..., xj) as in-
put. First, the BN layer normalizes the Xj to BN(Xj). Then,
we send BN(Xj) into the LSTM and output representation
sequences X ′j = (x′j−w+1, x

′
j−w+2, ..., x

′
j). Then, we put the

Fig. 7. Adaptive anomaly detection model. In the LSTM model, xt represents
the input set at the tth time. Ct is the cell state at the tth time, and
Ht is the state of the output at the tth time. σ represents the neural
network layer with sigmoid activation function, and tanh represents the tanh
activation function. ⊕and⊗ represent the pointwise operator of adding and
multiplication respectively.

representation sequences X ′j into the self-attention to mine
the importance distribution ω = (ωj−w+1, ωj−w+2, ..., ωj)
from the global perspective and multiply X ′j by ω. Finally we
send these redistributed representation sequences into the fully
connected layer and the Softmax layer to get the probability
of each anomaly.

We design the function of the adaptive LSTM to transfer
the information extracted from each timestamp to the next
timestamp and identify the anomaly at the last timestamp. In
the LSTM model, the cell state is throughout of the entire
sliding time window. Simultaneously, through logical gates,
the new input xt is selectively added to the cell state, and
the past information is selectively removed. Based on these
methods, we can capture long-term information from the
entire time window. The LSTM’s neural network layer can
adaptively compute the importance of each feature. The self-
attention mechanism generates a series of weights and then
uses these weights to multiply the input parameters. It then
uses backpropagation of loss to realize the redistribution of the
input parameters. The advantage of self-attention is to observe
the importance of each timestamp information from a global
perspective, then to weight the input to the output.

V. DATASET

A. Data Collection

Weak dataset collection: We use the most famous BGP
anomaly detection systems (e.g., BGPStream [5] and BG-
PObservatory [8]) as the teacher model for abnormal events.

TABLE III
EVENT COLLECTION SOURCES

BGPStream BGP Hijacking Observatory MANRS

Prefix Hijack
√

(535)
√

×
Route Leak

√
(290) × ×

Breakout
√

(1090) × ×
Fake Route ×

√
(532) ×

Defcon ×
√

(638) ×
Normal × ×

√
(21)

TABLE IV
WELL-KNOWN ANOMALIES

Anomalies Anomaly Start Date Duration(min)

TTNet(AS 9121) Dec 24,2004(9:20 UTC) 627
IndoSat(AS 4761) April 2,2014(18:25 UTC) 150

TM(AS 4788) June 12,2015(8:43 UTC) 182
AWS(AS 200759) April 22, 2016(17:10 UTC) 115

In addition, we use ASes of the MANRS initiative [41] as
the teacher model for normal events, because these ASes
deploy the RPKI and can be trust relatively. After the data
preprocessing in § V.B, we collect 3085 abnormal events,
which are split into 81% for training data, 9% for evaluation
data and 10% for testing data. The given labels are not always
ground truth in the events though. The detection range of each
anomaly detection system and each event number are shown
in Table III. For training and testing on the weak dataset,
each abnormal event acquires 20 minutes before and after the
anomaly for an abnormal data set. At the same time, we obtain
20 representative ASes from MANRS as providers of normal
data and collect 1440 minutes of data for each AS.

Ground truth dataset collection: In order to explain the
impact of inaccurate data on the model, we use well-known
anomalies [24] to test our trained model. This uses inaccurate
testing data for evaluation. The dataset contains four well-
known BGP events shown in Table IV. These include data
from Turkish Telecom (TTnet) [3], Indosat (Indonesia) [42],
Telecom Malaysia (TM) [2], and the attack on Amazon Web
Services (AWS) [4]. We use pybgpstream [38] to extract
historical BGP UPDATE packets from the RIPE RIS [29]
where each case contains 720 minutes of data before and 720
minutes after the event occurrence. Furthermore, we label the
data based on the duration of the anomaly.

B. Data Pre-processing

Drop duplicate events and low coverage events: Since the
teacher anomaly detection systems may report the duplicate
events within a period, which may hide the true event start
time. Hence, we drop the duplicate events with an interval of
15 minutes and only keep the first event. In addition, our BGP
data is collected from RIPE RIS collectors, which may exist
some regions with poor coverage. Thus, we drop events whose
f7 sum is less than 5 in the entire collection period.

Dataset de-noising: To prevent features from changing
drastically during initialization, we use the first 100 minutes

MOAS_prefix MOAS new_MOAS new_prefix
Prefix Feature Set

100
101
102
103
104

Nu
m

be
r

Legitimate Event

MOAS_prefix MOAS new_MOAS new_prefix
Prefix Feature Set

100
101
102
103
104

Nu
m

be
r

Prefix Hijacking Event

Fig. 8. Comparing prefix hijacking events with normal events on prefix feature
sets. From left to right, f1−3 significantly distinguish prefix hijacking events
from normal events, whereas f4 is used to characterize route hijacking (e.g.,
Defcon). Note that the Y-axis is based on a log scale.

as an initialization phase. Then we discard it from the training
data.

dynamic stride sampling method: To address class imbal-
ances, we design a sampling method that uses different stride
sizes for normal data and abnormal data in the training phase.
Based on the following formula 3 and 4, we can get the size
of the data set.

Di =
Ei −Wc

sc
+ 1 (3)

Tc =

Nc∑
n=1

Dn (4)

where Di represents the data size provided by an event i, Ei

represents the time in minutes of the event i. Wc represents
each category’s sliding window size, and sc defines each
category’s stride. Nc represents the event number of each
category, and Tc defines the total data size of each category.

Data Pre-processing for analysis: To facilitate the analysis
of the features’ distribution, we use the sum of the features
based on 15 minutes before and after the anomaly as a single
sample, i.e., a total of 30 minutes for each anomaly. For normal
events, we use a 30 minute sliding window to generate normal
event sets.

VI. DATA ANALYSIS

In this section, we show the usability of our weak dataset
and analyze it. The results demonstrate that different anomaly
categories are indeed separable, and the dataset satisfies the
central limit theorem.

A. Prefix Features Data Analysis

As shown in Fig.8, we observe that prefix hijacking is
significantly different from normal events in the prefix feature
set. As expected in § IV, f1−3 can identify prefix hijacking
well, while f4 is used to distinguish routing hijacking (e.g.,
Defcon). In detail, only a few normal events’ f1−3 are more
than 1, but most of prefix hijacking events’ f1−3 exceed 1000.

MOAS_Ann Own_Ann Dup_Ann Unique_WD Withdraw Diff_Ann
AS Volume Feature Set

100
101
102
103
104
105
106

Nu
m

be
r

Legitimate Event

MOAS_Ann Own_Ann Dup_Ann Unique_WD Withdraw Diff_Ann
AS Volume Feature Set

100
101
102
103
104
105
106

Nu
m

be
r

Breakout Event

Fig. 9. Comparing breakout events with normal events based on AS volume
sets. From left to right, breakout anomalies are 1000 times higher than
ordinary events based on f9−13. f8 is used to characterize prefix hijacking.
Note that the Y-axis is based on a log scale.

B. AS Volume Features Data Analysis

As shown in Fig.9, we see that the AS volume f9−13
distinguish breakout events from normal events. In particular,
breakout anomalies are 1000 times higher than normal events
based on these features, and breakout anomalies have no small
values. The reason is that when a breakout event occurs, there
will be a large number of unreachable routes, resulting in a
large number of routing updates and withdrawals. In addition,
f8 is used to identify prefix hijacking events.

C. AS-PATH Features Data Analysis

We show the distribution of path feature sets based on differ-
ent anomalies. Fig.10 (a) shows the 90th quantile distribution
of the path length. We observe that different anomalies have
their own pattern on the update path range, and normal events
have little change. In detail, breakout and route leakage events
cause a massive change on the AS-Path, whereas Defcon
hijacking has a medium influence on AS-Path. Additionally,
prefix hijacking and fake route hijacking have less change on
AS-Path. For those shown in Fig.10 (b) (c) (d), we can also
easily distinguish them from normal events.

We also find an interesting phenomenon. The AS-Path
features all have a heavy tail, and the total proportion of the
tail is less than 1% of the sum of the respective path features.
This shows an apparent abnormal behavior when the features’
values are too large, so the information in the heavy tail needs
to be maintained. Specifically, we find that the heavy tail part
of the path length is greater than 21, and the heavy tail part of
the edit distance is greater than 14, whilst the heavy tail part
of the increase and decrease distance are both greater than
11. Hence, we divide features sets f14−17 into two groups
according to these thresholds shown in Table V. This approach
has the advantage that the features are greatly reduced while
the data information captured by the features are maintained.

VII. EXPERIMENTAL RESULTS

In this section, we first conduct hyperparameter selection
experiments, and then we show the interpretability of our

0
200
400
600
800
1000
1200
1400
1600

1 6 11 16 21 26 31 36 53 58

N
um

be
r o

f p
at

hs
 (9

0t
h)

Path length

Normal Prefix Hijack

Route Leak Breakout

Fake Route Defcon

(a) 90th quantile distribution plot of
path length

0

500

1000

1500

2000

1 6 11 16 21 26 31 54

N
um

be
r o

f p
at

hs
 (9

0t
h)

Edit distance size

Normal Prefix_Hijack

Route_Leak Breakout

Fake_route Defcon

(b) 90th quantile distribution plot of
edit distance

0
200
400
600
800
1000
1200
1400
1600
1800
2000

0 5 10 15 20 25 30 49

N
um

be
r o

f p
at

hs
 (9

0t
h)

Path increase size

Normal Prefix_Hijack

Route_Leak Breakout

Fake_route Defcon

(c) 90th quantile distribution plot of
increase path length

0
100
200
300
400
500
600
700
800
900
1000

1 6 11 16 21 26 31 50

N
um

be
r o

f p
at

hs
 (9

0t
h)

Path decrease size

Normal Prefix Hijack

Route Leak Breakout

Fake route Defcon

(d) 90th quantile distribution plot of
decrease path length

Fig. 10. Heavy tail distribution of path features, where each proportion of
heavy tail is less than 1% sum of the respective path feature. In addition,
compared with normal events, the anomalies all exhibit an abnormal behavior

TABLE V
AS PATH ADDING FEATURE

ID Name Description

26 PL1−21 AS-PATH length of 1-21
27 Diff1−14 Edit distance 1-14
28 Ann longer0−11 Path increases by 0-11 number of paths
29 Ann shorter0−11 Path decreases by 0-11 number of paths
30 PL sumabove The sum of AS-PATH length over 21
31 Diff sumabove The sum of edit distances over 14
32 Longer sumabove The sum of increase distances over 11
33 shorter sumabove The sum of decrease distances over 11

model. We then evaluate our method by testing the data
collected from the teacher anomaly detection and other well-
known anomalies. The results confirm the feasibility of our
weak supervision-based approach.

A. Evaluation Metrics

We divide the anomaly detection into multiple binary clas-
sification problems, where a positive sample denotes anomaly.
Then we use standard metrics [43] for binary classification,
which include Anomaly’s Precision (PR), Recall (RC), F-
measure (F1), and these macro metric (e.g., PR-macro, F1-
macro). Macro is a metric that appropriately represents unbal-
anced classes.

B. Hyperparameter Selection

The sliding time window has a trade-off between length and
performance. If the sliding time window is too large or too
small, it will affect the model’s recognition of the time series.
Therefore, we conduct experiments on the sliding window size
for each anomaly category.

The results are shown in Fig.11 (a). We find that all
anomalies reach the highest performance at 20-30, because

15 20 25 30 350.4

0.5

0.6

0.7

0.8

0.9

1.0

F1
-m

ac
ro

Prefix Hijack
Route Leak
Breakout

Fake Route
Defcon

(a) Sliding Window Size

64 128 256 5120.4

0.5

0.6

0.7

0.8

0.9

1.0

F1
-m

ac
ro

Prefix Hijack (30)
Route Leak (20)
Breakout (20)
Fake Route (30)
Defcon (30)

(b) LSTM Hidden Size

Fig. 11. The F1 with different hyperparameters.

these sliding window sizes are neither too small to capture
the time series changes nor too large to weaken the difference
between abnormal and normal features. Breakout and route
leak anomalies reach the highest performance and remain
stable since we have a sliding time window of 20. Defcon
reaches the highest performance at 25, whereas the prefix
hijack and fake route reach the highest performance at 30.
In addition, we observe that the fake route drops sharply in
time windows of 35. This is because the fake route attack
has a small impact area, and if the sliding time window size
increases, the abnormal data tends to be more similar to normal
routing changes. We find that route hijacking requires a greater
sliding window size to identify anomalies and hence they are
more challenging to recognize.

Then we show the influence of different LSTM hidden
sizes on the recognition of anomalies. Note that in Fig.11
(b), comparing route hijacking with route leakage or breakout
anomalies, we can find that changing hidden size has less
impact on the route leakage or breakout anomalies, whereas
hidden size changes will lead to larger performance changes
for route hijacking models. Moreover, for breakout and route
leaks, 64 hidden sizes are enough to achieve a good detection
result. However, for route hijacking, we need a larger hidden
size to detect anomalies. Besides, we find a drop in the fake
route model with 256 hidden sizes. The reason is possibly the
over-fitting caused by the high epoch, and the fake route model
is more sensitive to variation of hidden sizes. Therefore, we
suggest setting 128 hidden sizes with a lower epoch.

C. Interpretability Analysis of Self Attention

By visualizing each anomaly category’s self-attention
weight, we can find that the attention model has a different
emphasis based on different types of anomalies. As shown
in Fig.12, for prefix hijacking, the weights increase with the
time series, which is more reasonable than the traditional
model using the same weights for all timestamps. In contrast,
the detection model of route leak pays more attention to the
historical information, because the changes in routing policy
are more difficult to be detected. In addition, the large-scale
events (e.g., breakout) will cause a large number of messages
to be unreachable, which can have a huge impact on the
network. Thus, the attention model needs to focus more on the
features of the most recent timestamp. However, for typical
path hijacking (e.g., fake route and Defcon), unlike prefix
hijacking and breakout, path hijacking is difficult to detect

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0.00

0.02

0.04

0.06

0.08

0.10

0.12

W
ei

gh
ts

Prefix Hijack
Route Leak
Breakout
Fake Route
Defcon

Fig. 12. Attention weights of each event.

because of a smaller scope of influence. Hence, the model
needs to pay more attention to the past information too.

D. Comparison of Different Models and Feature Sets

Baseline model parameters setting: For all model training
and testing, we use a sliding window size of 30. For Random
Forest and SVM models, we reshape two-dimensions (sliding
window size, feature size) into one dimension. We use grid
search and k-fold cross-validation for the baseline models to
select the best parameters and confirm that all baseline models
achieve their best performance. All experimental results in this
subsection are shown in Table VI.

Adaptive Feature Selection: The related frameworks only
use part of our features (e.g., prefix features, AS volume type
with peer features or AS volumes only) to identify anomalies,
hence we combine them and set them as baseline features
(BL). According to the experiments, if we only use baseline
features, the Random Forest model’s performance will drop
significantly. Compared with Random Forest, SVM’s robust-
ness is slightly better. In other words, except for breakout or
route leak attacks, SVM on the other attacks’ F1-macro only
decrease by 3-12%. The results also show that the baseline fea-
ture sets are suitable for large-scale anomalies such as breakout
attacks. Therefore, we need to add more path-related features
to capture other small-scale anomalies. We also observe that
the baseline features are equivalent to selected features from
all features (All) for breakout anomaly events, which improves
the SVM model’s detection in breakout events. Hence, it is
worth noting that our model achieves the best results with all
features, implying that the model has the ability to mine the
importance of features.

Abnormal Adaptability: Compared with baseline models
under all feature sets, the self-attention LSTM model has better
generality and adaptability to detect various abnormal types,
and it obtains the highest precision and F1 values for most
abnormalities. Furthermore, our work significantly increases
the average of the F1 macro, i.e., it has a high recall and
accuracy rate. As for the Random Forest model, due to its own
feature filtering capability, it obtains the highest F1-macro for
route leaks, but it does not consider changes in timing. Hence,
compared to our model, the performance of Random forest on
other anomalies is far behind. As for the SVM model, its PR-
macro is similar to our model, but it is far inferior to the
F1-marco, i.e., the recall rate is weaker.

TABLE VI
PERFORMANCE OF EACH MODEL AND FEATURE SET

metric Random Forest SVM Ours
All BL All BL All

Prefix Hijack PR-macro 65 64 89 89 89
F1-macro 63 61 82 74 86

Route Leak PR-macro 97 58 98 94 97
F1-macro 96 55 95 96 93

Breakout PR-macro 91 82 98 100 100
F1-macro 91 78 95 100 100

Fake Route PR-macro 73 64 88 85 84
F1-macro 74 61 73 64 82

Defcon PR-macro 80 70 94 93 94
F1-macro 82 67 87 84 92

Average F1-macro 81.2 64.8 86.4 83.6 90.6

Comprehensive and Self-operated: In this experiment, we
successfully distill the knowledge from the anomaly detection
system and achieve better performance through our frame-
work. Moreover, our model has more comprehensive anomaly
detective ability than any detection system and can be self-
operated in target AS.

E. Testing on Public Well-known Anomalies

To better show that the models trained on the weak dataset
have better generalization performance, we use a well-known
anomaly dataset [28] to test the trained model.

Immediate and zero false alarm: As shown in Fig.13,
we visualize the recognition of events with different anomaly
models. Our experiments show that anomalies can be identified
immediately. We also find that after an anomaly occurs,
rerouting in the network will continue for a period of time.
Therefore, it is safe to assume that only the warning generated
before an anomaly occurs is a false alarm. It is also worth
noting that our false alarm rate is 0. In contrast to our model,
only adopting the LSTM model will cause a delay for about
four minutes in detecting the AS4788 anomaly. We believe this
is caused by the lack of attention mechanism, which learns the
importance of time steps and helps our detect model become
more quickly and effectively.

Different abnormal categories’ relationship: For the
TTNet (AS9121) and IndoSat (AS4761) events, we can ob-
serve that the interruptions caused by route leaks can be
accurately identified. We can also find that the routing will
be re-routed immediately after the interruption with a large
number of new routing paths, which are identified as routing
hijacking by our model. Besides, for TM (AS 4788) and AWS
(AS 200759), although routing leaks occur, they do not lead to
network interruptions, indicating that these two networks are
more robust to the anomalies. We discover the relationship
between abnormal categories when massive abnormal events
occur through such analyses. Meanwhile, this highlights the
generalization of our method on other datasets.

F. Transfer Learning on Well-known Anomalies

In order to achieve better performance, we combine the
existing ground truth dataset. We use the models learning from

AS200759 AS9121 AS4761 AS4788

Warning

Normal

Anomaly Ground Truth
Route Leak
Prefix Hijack
Fake Route
Defcon
Breakout

Fig. 13. Anomaly detection based on well-known anomalies. Each segment
of the X-axis represents an abnormal event. Above the Normal line is the
ground truth, and below the Normal line is the prediction alert of our model.
We use different categories of models to detect these events, to observing the
network’s continuous impact and to show the relationship between abnormal
categories when massive abnormal events occur.

the weak dataset as a pre-trained base model, and transfer our
models to well-known anomalies. We transfer the pre-trained
models to a small sample of abnormal data for fine-tuning,
in which the last layer and backbone network have different
small learning rates. Furthermore, we use the models as an
ensemble model to detect anomalies. Thus, the model can
adapt to different sizes of AS by setting voting thresholds.

Similar to [28], we split the re-trained data into training
and testing dataset for different incident combinations shown
in Table VII. This operation allows the models to infer their
performance on the testing dataset that does not influence the
training dataset itself.

Our baseline model is the state-of-the-art BGP detection
model MLGF [28]. MLGF uses graph features with the SVM.
The graph features are derived from the AS topology, which
include node centrality [44], clique theory [45], clustering
coefficient [46] and eccentricity [47].

We hereby compare our ensemble model with the MLRF
model, which only trains on ground truth data. As shown in
Table VIII, our method has a significant improvement both in
RC and F1 metrics. Specifically, our model improves the recall
by 20% when the PR is only reduced by 1.34%. Furthermore,
our method can detect anomalies more rapidly, because our

TABLE VII
OUR CLASSIFIER SET-UP

Scheme Training TestTTNet IndoSat TM AWS

Scheme A ×
√ √ √

TTNet(AS 9121)
Scheme B

√
×

√ √
IndoSat(AS 4761)

Scheme C
√ √

×
√

TM(AS 4788)
Scheme D

√ √ √
× AWS(AS 200759)

TABLE VIII
PERFORMANCE OF TRANSFER LEARNING MODELS

Scheme MLGF Ours
PR RC F1 PR RC F1

Scheme A 89 82 85 87 100 93
Scheme B 97 93 95 87 100 93
Scheme C 100 76 86 100 87 93
Scheme D 93 58 72 100 86 93

Average 94.75 77.25 84.5 93.5 93.25 93

Comparison ↓1.34% ↑20.71% ↑10.06%

method is based on a one-minute time bin, whereas their
method is based on five-minutes. It is also noteworthy that
the high recall rate is very important since when the anomaly
is ignored, which may cause irreparable economic loss or
safety problems to the enterprise/country. In addition, our
ensemble model has a good generalization performance and
can be transferred to various AS as an early warning system.
Specifically, when an anomaly occurs, different measures can
be adopted according to the strength of the alarm confidence.
For example, in the case of a strong confidence alarm, the
spread of abnormal BGP updates can be directly prevented.
For weak-confidence alarms, we can implement Route Flap
Dampening or limit the rate of update or use human/expert
review.

The results show that our weak dataset solves the problem
of insufficient BGP data and can bring more priori knowledge.
Besides, the pre-trained model can also be transferred to other
ground truth datasets to achieve better performance.

VIII. CONCLUSION

With the emergence of more BGP anomalies, neither super-
vised learning nor unsupervised learning can implement BGP
anomaly detection due to the high cost of the data-labeling
processes and the dynamic nature of the network. Therefore,
in our work, we propose a weakly supervised learning-based
framework to deal with anomalies. We distill the knowledge
from BGP from third-party systems. We then use the weak
dataset to train a self-attention LSTM model, which can tackle
data noise. Furthermore, we transfer the pre-trained models to
the target AS dataset for further fine-tuning. As far as we are
aware, this is the first work that uses weak supervision for BGP
anomaly detection. The proposed framework is self-operated
and can avoid cumbersome update operations on third-party
anomaly detection systems. We test the framework on well-
known anomalies and achieve high performance.

ACKNOWLEDGMENT

This work is supported in part by the National Key
Research and Development Program of China under Grant
2018YFB1800204, National Natural Science Foundation of
China under grant No. 61972189 and the Shenzhen Key
Lab of Software Defined Networking under grant No.
ZDSYS20140509172959989.

REFERENCES

[1] K. on Security, “Notorious ’hijack factory’ shunned from web,”
https://krebsonsecurity.com/tag/bitcanal/.

[2] A. Toonk, “Massive route leak causes internet slowdown,” Technical
Report, 2015.

[3] A. C. Popescu, B. J. Premore, and T. Underwood, “Anatomy of a leak:
As9121,” Technical Report, 2005.

[4] A. Toonk, “Large hijack affects reachability of high traffic destinations,”
Technical Report, 2016.

[5] “BGPStream,” https://www.bgpstream.com.
[6] M. Chen, M. Xu, Q. Li, and Y. Yang, “Measurement of large-scale

BGP events: Definition, detection, and analysis,” Computer Networks,
vol. 110, pp. 31–45, 2016.

[7] M. Chen, M. Xu, Y. Yang, and Q. Li, “A measurement study on
the distribution disparity of BGP instabilities,” in 2016 IEEE 41st
Conference on Local Computer Networks (LCN), 2016, pp. 19–27.

[8] “BGP observatory,” https://dev.hicube.caida.org/feeds/hijacks/.
[9] M. Prince, “August 30th 2020: Analysis of centurylink/level(3) out-

age,” https://blog.cloudflare.com/analysis-of-todays-centurylink-level-3-
outage/.

[10] H. Birge-Lee, L. Wang, J. Rexford, and P. Mittal, “SICO: Surgical inter-
ception attacks by manipulating BGP communities,” in Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2019, pp. 431–448.

[11] R. Bush and R. Austein, “The resource public key infrastructure (RPKI)
to router protocol,” 2013.

[12] S. Kent, C. Lynn, and K. Seo, “Secure border gateway protocol (S-
BGP),” IEEE Journal on Selected areas in Communications, vol. 18,
no. 4, pp. 582–592, 2000.

[13] P. Sermpezis, V. Kotronis, A. Dainotti, and X. Dimitropoulos, “A survey
among network operators on BGP prefix hijacking,” ACM SIGCOMM
Computer Communication Review, vol. 48, no. 1, pp. 64–69, 2018.

[14] M. Lad, D. Massey, D. Pei, Y. Wu, B. Zhang, and L. Zhang, “PHAS: A
prefix hijack alert system.” in Proceedings of the 2006 USENIX Security
symposium. USENIX, 2006, pp. 1–3.

[15] C. Zheng, L. Ji, D. Pei, J. Wang, and P. Francis, “A light-weight
distributed scheme for detecting ip prefix hijacks in real-time,” ACM
SIGCOMM Computer Communication Review, vol. 37, no. 4, pp. 277–
288, 2007.

[16] Z. Zhang, Y. Zhang, Y. C. Hu, Z. M. Mao, and R. Bush, “ISPY:
Detecting ip prefix hijacking on my own,” in Proceedings of the 2008
ACM SIGCOMM conference on Data communication. ACM, 2008, pp.
327–338.

[17] P. Sermpezis, V. Kotronis, P. Gigis, X. Dimitropoulos, D. Cicalese,
A. King, and A. Dainotti, “ARTEMIS: Neutralizing bgp hijacking within
a minute,” IEEE/ACM Transactions on Networking, vol. 26, no. 6, pp.
2471–2486, 2018.

[18] C. Testart, P. Richter, A. King, A. Dainotti, and D. Clark, “Profiling BGP
serial hijackers: Capturing persistent misbehavior in the global touting
table,” in Proceedings of the Internet Measurement Conference, 2019,
pp. 420–434.

[19] Y. Lu, “Research and implementation of BGP abnormal event detection
based on machine learning,” Master’s thesis, Beijing University of Posts
and Telecommunications, 2018.

[20] S. Cho, R. Fontugne, K. Cho, A. Dainotti, and P. Gill, “BGP hijacking
classification,” in 2019 Network Traffic Measurement and Analysis
Conference (TMA). IEEE, 2019, pp. 25–32.

[21] J. Li, D. Dou, Z. Wu, S. Kim, and V. Agarwal, “An internet routing
forensics framework for discovering rules of abnormal BGP events,”
ACM SIGCOMM Computer Communication Review, vol. 35, no. 5, pp.
55–66, 2005.

[22] M. Karimi, A. Jahanshahi, A. Mazloumi, and H. Z. Sabzi, “Border gate-
way protocol anomaly detection using neural network,” in Proceedings
of 2019 IEEE International Conference on Big Data. IEEE, 2019, pp.
6092–6094.

[23] M. Cheng, Q. Xu, J. Lv, W. Liu, Q. Li, and J. Wang, “MS-LSTM: A
multi-scale LSTM model for BGP anomaly detection,” in Proceedings
of the 2016 IEEE 24th International Conference on Network Protocols.
IEEE, 2016, pp. 1–6.

[24] M. Cheng, Q. Li, J. Lv, W. Liu, and J. Wang, “Multi-scale LSTM
model for BGP anomaly classification,” IEEE Transactions on Services
Computing, 2018.

[25] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[26] “BGPmon(colorado State University,” http://www.bgpmon.io/.
[27] Z.-H. Zhou, “A brief introduction to weakly supervised learning,”

National Science Review, vol. 5, no. 1, pp. 44–53, 2017.
[28] O. R. Sanchez, S. Ferlin, C. Pelsser, and R. Bush, “Comparing machine

learning algorithms for BGP anomaly detection using graph features,” in
Proceedings of the 3rd ACM CoNEXT Workshop on Big DAta. ACM,
2019, pp. 35–41.

[29] “RIPE network coordination center (NCC). routing information ser-
vice (RIS),” http://www.ripe.net/data-tools/stats/ris/routing-information-
service/.

[30] “The Route Views Project,” http://www.routeviews.org/.
[31] R. Fontugne, A. Shah, and E. Aben, “The (thin) bridges of as con-

nectivity: Measuring dependency using as hegemony,” in International
Conference on Passive and Active Network Measurement. Springer,
2018, pp. 216–227.

[32] I. R. Lab, “Internet health report,” https://ihr.iijlab.net/.
[33] B. Al-Musawi, P. Branch, and G. Armitage, “BGP anomaly detection

techniques: A survey,” IEEE Communications Surveys & Tutorials,
vol. 19, no. 1, pp. 377–396, 2016.

[34] A. Allahdadi, R. Morla, and R. Prior, “A framework for BGP abnormal
events detection,” arXiv preprint arXiv:1708.03453, pp. 1–8, 2017.

[35] A. Putina, S. Barth, A. Bifet, D. Pletcher, C. Precup, P. Nivaggioli,
and D. Rossi, “Unsupervised real-time detection of BGP anomalies
leveraging high-rate and fine-grained telemetry data,” in Proceedings of
the 2018 IEEE INFOCOM Conference on Computer Communications
Workshops. IEEE, 2018, pp. 1–2.

[36] K. McGlynn, H. Acharya, and M. Kwon, “Detecting BGP route anoma-
lies with deep learning,” in Proceedings of 2019 IEEE INFOCOM
Conference on Computer Communications Workshops. IEEE, 2019,
pp. 1039–1040.

[37] R. Lychev, M. Schapira, and S. Goldberg, “Rethinking security for
internet routing,” Commun. ACM, vol. 59, no. 10, p. 48–57, 2016.

[38] C. Orsini, A. King, D. Giordano, V. Giotsas, and A. Dainotti, “BGP-
Stream: A software framework for live and historical BGP data analysis,”
in Proceedings of the 2016 Internet Measurement Conference. ACM,
2016, pp. 429–444.

[39] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International
conference on machine learning. PMLR, 2015, pp. 448–456.

[40] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” in Proceedings of the 2015
International Conference on Learning Representations, 2015, pp. 1–15.

[41] “Mutually agreed norms for routing security(MANRS),”
https://www.manrs.org/.

[42] M. Cosovic, S. Obradovic, and E. Junuz, “Deep learning for detection
of BGP anomalies,” in Proceedings of International Work-Conference
on Time Series Analysis. Springer, 2017, pp. 95–113.

[43] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[44] D. F. Rueda, E. Calle, and J. L. Marzo, “Robustness comparison of
15 real telecommunication networks: Structural and centrality measure-
ments,” Journal of Network and Systems Management, vol. 25, no. 2,
pp. 269–289, 2017.

[45] J. Orlin, “Contentment in graph theory: covering graphs with cliques,”
in Indagationes Mathematicae. Elsevier, 1977, pp. 406–424.

[46] J. Saramäki, M. Kivelä, J.-P. Onnela, K. Kaski, and J. Kertesz, “Gener-
alizations of the clustering coefficient to weighted complex networks,”
Physical Review E, vol. 75, no. 2, p. 027105, 2007.

[47] J. M. Hernández and P. Van Mieghem, “Classification of graph metrics,”
Delft University of Technology: Mekelweg, The Netherlands, pp. 1–20,
2011.

