
RPO: Receiver-driven Transport Protocol Using
Opportunistic Transmission in Data Center

Jinbin Hu∗, Jiawei Huang∗, Zhaoyi Li∗, Yijun Li∗, Wenchao Jiang§, Kai Chen†, Jianxin Wang∗, Tian He‡
∗Central South University, Changsha, China. Email: jinbinhu@126.com,{jiaweihuang,lizhaoyi,yijunli,jxwang}@csu.edu.cn

§Singapore University of Technology and Design, Singapore. Email: wenchao jiang@sutd.edu.sg
†Hong Kong University of Science and Technology, Hong Kong, China. Email: kaichen@cse.ust.hk

‡University of Minnesota, Minneapolis, MN, USA. Email: tianhe@umn.edu

Abstract—Modern datacenter applications bring fundamental
challenges to transport protocols as they simultaneously require
low latency and high throughput. Recent receiver-driven trans-
port protocols transmit only one data packet once receiving
each grant or credit packet from the receiver to achieve ultra-
low queueing delay and zero packet loss. However, the round-
trip time variation and the highly dynamic background traf-
fic significantly deteriorate the performance of receiver-driven
transport protocols, resulting in under-utilized bandwidth. This
paper designs a simple yet effective solution called RPO that
retains the advantages of receiver-driven transmission while
efficiently utilizing the available bandwidth. Specifically, RPO
rationally uses low-priority opportunistic packets to ensure high
network utilization without increasing the queueing delay of high-
priority normal packets. In addition, since RPO only uses Explicit
Congestion Notification (ECN) marking function and priority
queues, RPO is ready to deploy on switches. We implement RPO
in Linux hosts with DPDK. Our small-scale testbed experiments
and large-scale simulations show that RPO significantly improves
the network utilization by up to 35% under high workload over
the state-of-the-art receiver-driven transmission schemes, without
introducing additional queueing delay.

Index Terms—Data center, Receiver-driven, Utilization

I. INTRODUCTION

Diverse cloud-based applications such as web search, social

networking, data mining and on-line retails coexist in data

centers [1]–[6]. Recently, to achieve ultra-low queueing delay

and zero packet loss, receiver-driven transport protocols such

as Homa [7], NDP [8], ExpressPass [9], pHost [10] and

AMRT [11] are proposed to transmit new data packets only in

response to grant packets from the receiver. Therefore, these

proactive congestion control solutions effectively avoid queue

buildup and packet loss, significantly improving the latency

performance of delay-sensitive applications.

However, the variations of round-trip times (RTTs) and

the highly dynamic background traffic significantly deteriorate

the performance of receiver-driven transport protocols with

the following two fundamental problems. (1) When multiple

receiver-driven flows with different RTTs share the bottleneck

link, limited by the conservativeness of the receiver-driven

transmission mechanism, even if the flows with enlarged RTT

release the bandwidth, the other flows are unable to seize the

available bandwidth, further reducing the link utilization. (2)

Due to the dynamic ON/OFF nature of data center traffic [14]–

[17], the receiver-driven transport protocols cannot fill up the

available bandwidth when the background flows are in their

OFF periods, leading to low link utilization.
To improve link utilization, the recent proposed overcom-

mitment mechanism in Homa [7] allows multiple senders

to concurrently transmit data to a single receiver. However,

such overcommitment does not directly address the above

problems because that, when some flows experience OFF

periods or enlarged RTTs, the other flows cannot proactively

seize the free bandwidth. What’s worse, as we show in

our evaluation (Section VIII-B), the overcommitment solution

potentially introduces queueing delay under highly dynamic

traffic scenarios, causing degradation of delay performance.
In this paper, we propose a simple yet effective approach

called RPO that retains the advantages of receiver-driven

transmission while efficiently obtaining high link utilization.

Specifically, RPO utilizes opportunistic packets to fill up the

spare bandwidth left by the receiver-driven transmission. The

opportunistic packets are data packet deliberately marked as

low priority in the transmission buffer. They are triggered

simultaneously with normal data packets, i.e., the high priority

packets, by the same native grants in the receiver-driven trans-

mission. At the switch, the high-priority normal packets and

the low-priority opportunistic packets are fed into respective

priority queues. Due to the low priority, the opportunistic

packets will not block the transmission of normal packets, but

only seize the spare bandwidth left by the normal packets.
In addition, RPO controls the queueing delay and traffic

overhead of opportunistic packets under fully utilized link. It is

achieved through the Explicit Congestion Notification (ECN)

marking function commonly available in commodity switches.

Specifically, when the queueing length of opportunistic packets

in the low priority queue at switch is larger than a threshold,

the ECN flags of the normal packets are set within the switch.

A grant packet with the ECN-Echo flag set will no longer

trigger the opportunistic packet to avoid queue buildup and

unnecessary traffic overhead. With all these innovations, RPO

simultaneously achieves high link utilization and low latency

performance.
In summary, our major contributions are:

• We conduct an extensive testbed-based study to analyze

two key issues that lead to low link utilization under

receiver-driven transmission: 1) when multiple flows with978-1-6654-4131-5/21/$31.00 ©2021 IEEE

different RTTs share the bottleneck link, the spare band-

width released by the flows with enlarged RTT cannot

be utilized by the other flows, 2) the highly dynamic

background traffic with ON/OFF nature leads to spare

bandwidth on shared bottleneck. For example, as shown

in Section VIII-A, pHost, ExpressPass, Homa, NDP and

Aeolus (integrated with Homa by default) only obtain

56%, 63%, 65%, 67% and 69% link utilization under the

dynamic data mining workload, respectively.

• We propose a receiver-driven transport protocol RPO,

which uses low-priority opportunistic packets to fill up

the spare bandwidth to improve link utilization without

increasing the queueing delay for high-priority normal

packets. RPO can be easily deployed on switches using

the built-in ECN function and priority queues.

• By using both 10Gbps small-scale testbed experiments

and 40Gbps large-scale simulations, we demonstrate

that RPO remarkably outperforms the state-of-the-art

receiver-driven transmission schemes. RPO yields up

to 35%, 21%, 17%, 12% and 10% network utilization

improvement over pHost, ExpressPass, Homa, NDP and

Aeolus, respectively. Meanwhile, RPO does not increase

the queueing delay of normal packets and reduces the av-

erage flow completion time (AFCT) by 23%-52% under

heavy workload.

The rest of the paper is organized as following. In Section

II and III, we respectively describe our design motivation and

overview. In Section IV and V, we give the design details

and model analysis of RPO, respectively. We discuss the

implementation in Section VI. In Section VII and VIII, we

show the testbed experimental and NS2 simulation results,

respectively. In Section IX, we present the related work and

then conclude the paper in Section X.

II. BACKGROUND AND MOTIVATION

A. Receiver-driven transmission

In receiver-driven transmission, bottleneck link capacities

are proactively allocated by the receivers, which use grant

or credit packets to trigger new data packets. Under pHost

[10], Homa [7] and NDP [8], the sender starts new flows at

line rate. After that, whenever a data packet arrives at the

receiver, a corresponding grant packet is delivered back to the

sender to trigger one new data packet. Moreover, Homa [7]

uses in-network priority queues [18] to ensure low latency for

short messages. When the switch queue length exceeds eight

packets, NDP trims the payloads of packets and forwards the

packet headers with high priority. ExpressPass [9] allocates

bandwidth by shaping the flow of credit packets at switches

to effectively achieve zero data loss and low delay. To avoid

serious network congestion due to blind transmission or extra

waiting delay for credits in the first RTT, Aeolus [12], [13] is

integrated into the above receiver-driven schemes to let new

flows only utilize the spare bandwidth instead of aggressive

transmission.

B. Impact of RTT Variation

In data centers, traffic changes so quickly that congestion

can rapidly arise and dissipate, leading to great RTT variations

during transmission [14], [20]. Meanwhile, modern data cen-

ters deploy the multi-rooted tree topology with multiple paths

and bottlenecks [21], [22]. Consider a many-to-one scenario

in which multiple flows from different paths with various

congestion states and finally compete for a single bottleneck,

the flows with increased RTT incur spare bandwidth of the

bottleneck link. However, the other flows cannot grab the

available bandwidth under the receiver-driven transmission.

f

f

 f

(a) Multi-bottleneck topology

t t
f f

f f

(b) Bandwidth waste

f1 f2 f3

Th
ro

ug
hp

ut
 (G

bp
s

0
2
4
6
8

10

Time (s)
0 0.1 0.2 0.3 0.4 0.5 0.6

(c) Throughput loss

Fig. 1: Under-utilized link due to RTT variation

We use a simple typical example to show the impact of RTT

variation. Without loss of generality, in Fig. 1 (a) and (b), we

demonstrate the impact on two pHost flows f1 and f2 sharing

the 1st bottleneck link (from the right) with the capacity of

2 packets. Two packets from f1 and f2 can fully utilize the

1st bottleneck bandwidth in t1 period, and each arrival packet

generates a grant packet to drive a new data in the next time

period t2. Unfortunately, when f3 starts at the high rate, half

of the spare bandwidth at the 1st bottleneck is not utilized in

t2 period due to the enlarged RTT of f2.

We further conduct a testbed experiment to investigate the

impact of RTT variation, which is implemented by using Intel

DPDK [19]. In the testbed, each server (Dell PRECISION

TOWER 5820 desktop) is equipped with 10 cores Intel Xeon

W-2255 CPU, 64GB memory, Intel 10GbE 2P X520 Net-

work Interface Cards (NICs) and Ubuntu18.04 (Linux version

4.15.0-1090). Two servers with two Intel 10GbE 2P X520

NICs work as the four-port DPDK switches. We set the

buffer size to 8 packets. The round-trip propagation time is

50μs. As shown in Fig. 1 (c), at the beginning, f1 and f2
share bottleneck link fairly without queue buildup until 0.1ms.

During the periods [0.1s, 0.35s], f2 experiences congestion

due to by-passing flows in other bottlenecks, resulting in

increased RTT. Then the link utilization of bottleneck shared

by f1 and f2 is reduced by around 20%. The test results of

Homa and NDP under the same scenario are shown in Fig. 12

in Section VII.

C. Impact of ON/OFF Traffic

Dynamic traffic will also cause throughput loss under the

receiver-driven mechanism. In data centers, the highly dy-

namic traffic exhibits ON/OFF characteristic in nature [14],

[15], [16]. For example, the update flows periodically copy

fresh data to adjust the control state of workers [1]. According

to the observation in [14], more than 50% flows come and go,

lasting less than 0.1s. Unfortunately, under the receiver-driven

transmission style, when some flows change from ON mode

to OFF mode, the other flows sharing the same bottleneck link

will not increase their sending rates. Thus, the spare bandwidth

left by flows in OFF mode cannot be filled up by other flows

in ON mode, resulting in under-utilized bandwidth.

We use another typical example to illustrate the impact of

ON/OFF traffic. In Fig. 2 (a), two pHost flows f1and f2 share

a bottleneck link with respective senders and receivers in the

dumbbell topology. As shown in Fig. 2 (b), f1 exhibits the

ON/OFF pattern and f2 is always in ON mode. In t1 period,

the bottleneck link with its capacity of 2 packets is fully

utilized. However, when f1 changes from ON mode to OFF

mode in t2 period, f2 alone cannot make the bottleneck to be

saturated, resulting in 50% reduction of bottleneck utilization,

illustrated by the half-filled tube in Fig. 2 (b). In this scenario,

ExpressPass also suffers from low link utilization because

the credit packets to f1’s sender cannot trigger new packet

when f1 enters the OFF period. Therefore, the link bandwidth

allocated to f1 is wasted.

 f

 f

(a) Dumbbell topology

t t
f f

f f

f

(b) Bandwidth waste

f1 (ON/OFF) f2 (ON)

Th
ro

ug
hp

ut
 (G

bp
s

0
2
4
6
8

10

Time (s)
0 0.1 0.2 0.3 0.4 0.5 0.6

(c) Throughput loss

Fig. 2: Under-utilized link due to ON/OFF traffic

We also conduct testbed experiment to analyze the under-

utilized link problem due to ON/OFF traffic pattern. The

experimental settings are the same as that in the RTT variation

test. As shown in Fig. 2 (c), f1 and f2 start at 0s and 0.05s,

respectively. The bottleneck utilization is greatly reduced when

f1 switches from ON mode to OFF mode at 0.18s and 0.46s,

respectively. The test result demonstrates that the conserva-

tiveness of receiver-driven transport protocol easily leads to

under-utilization under ON/OFF traffic pattern.

Moreover, we conduct large-scale NS2 simulation tests un-

der different realistic workloads. The test results indicate that

the receiver-driven transmission schemes suffer from reduced

link utilization due to the impact of ON/OFF traffic and

RTT variation. For example, under the data mining workload,

pHost, ExpressPass, Homa, NDP and Aeolus only obtain 56%,

63%, 65%, 67% and 69% link utilization, respectively. The

corresponding test results are shown in Section VIII-A.

D. Summary

The main challenge of proactive receiver-driven transmis-

sion is to achieve ultra-low latency and high link utilization

simultaneously. To guarantee ultra-low queueing delay, the

receiver-driven transport protocols enforce proactive conges-

tion control, under which no new data packets are driven at the

sender unless grant packets are received. Unfortunately, when

the delay of some paths changes, the flow with larger RTT

also easily leads to spare bandwidth at the bottleneck link.

When some flows change from ON mode to OFF mode, the

other flows will not grab the spare bandwidth. In both cases,

the corresponding sender are not able to make full use of the

bandwidth of bottleneck link due to inadequate grant packets

from the receiver.

To improve bottleneck link utilization in receiver-driven

transmission, an intuitive way is to trigger more data packets

per grant. However, the highly dynamic nature of datacenter

traffic makes it difficult to control the number of data packets

driven by each grant. If the transmission is too conservative,

the bottleneck link is still potentially under-utilized. While

being too aggressive can avoid spare bandwidth, the queueing

buildup violates the ultra-low latency property of proactive

congestion control. These challenges motivate us to design and

implement a new receiver-driven transport protocol to simul-

taneously provide high network utilization and low latency.

III. DESIGN OVERVIEW

In this section, we present an overview of RPO. The key

point of RPO is using low-priority opportunistic packets to

utilize the spare bandwidth without increasing the queueing

delay of high-priority normal packets. Specifically, the receiver

sends grant packets back to the sender to drive normal packets

and opportunistic packets simultaneously. The opportunistic

packets in the low-priority queue do not increase the queue

length of high-priority normal packets, but they can use

the remaining available bandwidth of normal packets. The

architecture of RPO is shown in Fig. 3.

(1) Receiver-driven Opportunistic Transmission: On the

sender side, when a grant packet from the receiver arrives, a

normal packet and an opportunistic packet are assigned with

high and low priority, respectively. To control the length of

low-priority queue, when the sender receives a grant packet

with the ECN-Echo flag, it stops sending opportunistic packets

until receiving the grant packets without ECN-marked. In the

first RTT of whole transmission, each flow starts sending

Sender Receiver

Packets

Grant Generation & Marking

Grants Packets Grants

Switch Cross-queue Congestion Feedback

High/Low Priority Queueing

Opportunistic Transmission

Rate Controlling

Cross-Queue ECN Marking

Priority Assigning

ECN-Echo Setting

Loss Detecting

Fig. 3: Overview of RPO

a bandwidth-delay product (BDP) worth of normal packets

(BDPbytes) to quickly saturate bandwidth.

(2) Cross-queue Congestion Feedback: At the switch,

the normal and opportunistic packets enter the high and low

priority queues, respectively. Furthermore, we propose a cross-

queue marking scheme to quickly notify the congestion state

of low-priority queue. Specifically, when the length of the

low priority queue exceeds the ECN marking threshold k,

the dequeued normal packets in the high priority queue are

marked with ECN flag. RPO needs enough opportunistic

packets to seize the available bandwidth while controlling

the low-priority queue length to avoid long waiting time

for opportunistic packets at the receiver. Therefore, the key

challenge is to adjust the cross-queue marking threshold k to

make full use of network bandwidth and limit the queueing

delay of opportunistic packets.

(3) Grant Generation and Marking: On the receiver side,

grant packets are generated according to the data arrival rate.

Once a normal packet or an opportunistic packet arrives, the

receiver generates the corresponding grant packet. Meanwhile,

if an ECN-marked normal packet arrives, the receiver sets the

ECN-Echo flag in the corresponding grant packet to notify

congestion. In addition, RPO uses a fine-grained timer to

detect packet loss at the receiver side.

IV. DESIGN DETAILS

A. Receiver-driven Opportunistic Transmission

At the sender, RPO leverages grant packets from the receiver

to drive normal and opportunistic packets. As illustrated in Fig.

4, the high-priority normal packets are sent in order from the

beginning of sending buffer. To minimize the overlap between

the normal and opportunistic packets, RPO transmits the low-

priority opportunistic packets in reverse order from the very

last packet in the same sending buffer. When the maximum

sequence number of transmitted normal packet is equal to the

smallest sequence number of transmitted opportunistic packet,

the sender will start to retransmit the opportunistic packets as

the high-priority normal ones in the sending buffer. Therefore,

even some opportunistic packets are backlogged in the low-

priority queue of switch, they will not introduce additional

waiting delay at the receiver.

Pn PnPPPP Pn Pn

Fig. 4: Priority assignment and forward order for normal and

opportunistic packets in the sending buffer

Moreover, RPO uses ECN marking as congestion sign of

low-priority opportunistic packets. Specifically, if the grant

packet is not ECN-marked, it indicates that the low-priority

queue occupied by opportunistic packets is not congested. In

this case, RPO can drive a normal packet and an opportunistic

packet through a grant to rapidly make use of the available

bandwidth. On the contrary, if an ECN-marked grant packet

arrives at the sender, it means that the opportunistic packets

are queued at the switch. If RPO continues to send oppor-

tunistic packets, it will cause queue backlog, resulting in larger

queueing delay or even packet loss. Thus, once receiving ECN-

marked grants, RPO stops transmitting opportunistic packets

to control the number of inflight opportunistic packets.

P
P

P
P

P P
P P

P P P P P P P P

P P
P P P P P P

P P P P
P PP P

Fig. 5: Receiver-driven opportunistic transmission

To show how RPO transmits the normal and opportunistic

packets, Fig. 5 illustrates a simple example with only one flow.

We assume that the capacity of bottleneck link is 4 packets.

At the beginning, a normal packet P5 and an opportunistic

packet P40 utilize only half of the bandwidth. When they

arrive at the receiver, two corresponding grants are generated

and sent back to the sender. Then each grant triggers a new

normal packet and a new opportunistic packet. The bottleneck

link is fully utilized by 4 packets, i.e., P6, P7, P38, P39,

which fire the next four corresponding grants. These four new

grants drive 4 normal packets (P8∼P11) filling the bottleneck

pipe and 4 opportunistic packets (P34∼P37) queued at the

low-priority queue. When the length of low priority queue

exceeds the ECN marking threshold, the normal packets are

marked. The sender reacts by stopping sending the opportunis-

tic packets until receiving the grant without ECN marking flag

again. Therefore, after the four ECN-marked normal packets

(P8∼P11) arrive at the receiver, four ECN-marked grants are

generated to drive only four new normal packets (P12∼P15)

from the sender. In short, RPO adaptively adjusts the number

of opportunistic packets according to whether the arrival grants

are ECN-marked or not to balance the high network utilization

and low queueing delay.

Moreover, RPO starts sending a BDP bytes of normal

packets to quickly saturate bandwidth at the beginning of

transmission [23]. To guarantee the near-zero queueing delay

of normal packets, like Aeolus [12], RPO drops the normal

packets at switch when the queue length of high-priority queue

exceeds a very small dropping threshold (i.e., 1 packet).

B. Cross-queue Congestion Feedback

At the switch, RPO employs a simple queue management

scheme. As illustrated in Fig. 6, switches are mainly responsi-

ble for the cross-queue ECN marking. To ensure low latency

in the receiver-driven transmission, the normal packets and

opportunistic packets enter the high and low priority queues,

respectively. In the priority queues, the normal packets with

high priority are served before the opportunistic packets with

low priority. As soon as the low-priority queue occupancy is

greater than the ECN marking threshold k, the switch sets

the Congestion Experienced (CE) codepoint of the dequeued

normal packets. Otherwise, the normal packets are not marked.

This scheme ensures that the receivers are quickly notified of

the congestion state in low-priority queue. Furthermore, the

cross-queue marking can be easily implemented using ECN,

a built-in function of most commodity switches.

k k-

Fig. 6: Cross-queue ECN marking

It is important to set the appropriate cross-queue marking

threshold k to make a tradeoff between network utilization and

limited queueing delay of opportunistic packets. If the value

of k is too small, the opportunistic packets may under-utilize

the available bandwidth due to premature marking of normal

packets to stop sending opportunistic packets. As a result, the

opportunistic packets cannot fill up the free bandwidth during

the receiver-driven transmission. On the contrary, a too large

value of k may lead to large queueing delay and even packet

loss. Therefore, we set the value of k as follows.

Let C and MSS denote the bottleneck link capacity and the

TCP segment size, respectively. RPO measures the output rate

Cd of normal packets and updates k in every time period t. To

fully utilize the spare bandwidth with opportunistic packets,

the following equation should be satisfied k ≥ (C−Cd)×t
MSS .

Finally, RPO sets k as the minimum value (i.e. k =
(C−Cd)×t

MSS) to reduce the queueing delay for opportunistic

packets. The value of k is periodically updated according to

the remaining bandwidth at the switch output port. To estimate

the available bandwidth quickly and accurately, the updating

period of t is set to the round trip time (i.e. 50μs) [24].

C. Grant Generation and Marking

At the receiver, once a normal packet or an opportunistic

packet arrives, a corresponding grant is generated and sent

back to the sender to trigger new packets. Consequently, the

sender naturally knows how many packets can be sent without

causing network congestion, rather than reactively reducing

sending rate after congestion occurs. Once receiving a normal

packet that has a marked CE codepoint, the receiver sets the

ECN-Echo flag in the corresponding grant packets to notify

the sender to stop sending opportunistic packets. Thus, by

controlling data transmission rate, RPO is able to proactively

control congestion and obtain ultra-low queueing delay.

RPO detects packet loss at the receiver side. In order to

submit packets to the application layer in a timely manner,

the receiver uses a fine-grained timer to detect lost packets.

Specifically, after a grant has been sent, if the receiver has

not received the corresponding packet after timeout (default

3×RTT [4]), the grant will be retransmitted. For lost normal

packets, RPO sender retransmits them with high priority. For

lost opportunistic packets, if the maximum sequence number

of transmitted normal packets is larger than the smallest

sequence number of transmitted opportunistic packets, the

lost packets are retransmitted quickly as high-priority normal

packets, otherwise they are still retransmitted with low priority.

In addition, since the opportunistic packets with large sequence

number introduce out-of-order arrivals, RPO uses the re-

sequencing buffer to absorb the disordered packets at the

receiver [25].

V. MODEL ANALYSIS

RPO uses low-priority opportunistic packets to seize the

spare bandwidth without increasing additional queueing delay

to the high-priority normal packets. Compared to the existing

receiver-driven transmission protocols, RPO achieves both

low latency and high link utilization. Here, we construct the

theoretical model to analyze the performance gains of RPO in

terms of link utilization and flow completion time.

C/N

T TTf Ti0

R/N

Tc

Fig. 7: RPO vs. Traditional receiver-driven scheme

Fig. 7 illustrates the advantage of RPO. Consider that N
flows fairly sharing a bottleneck link with capacity of C. At

time Tc, the available bandwidth of bottleneck link is reduced

from C to R due to congestion. Then, the sending rate of each

flow decreases from C
N to R

N .

RPO leverages opportunistic packets to make full use of

the free bandwidth. Specifically, one grant triggers a normal

packet and an opportunistic packet if there is spare bandwidth.

Similar to the slow-start process in the traditional TCP, the

total number of normal and opportunistic packets increases

exponentially until RPO achieves 100% bottleneck utilization

at time Tf . The value of Tf in RTT rounds is calculated as

Tf = �log2
C

R
�+ Tc. (1)

After Tf , RPO fully utilizes all of the available bandwidth.

We assume that the flow size is S. Then we have

S =
C

N
× Tc +

R

N
× (2Tf−Tc − 1) +

C

N
× (T1 − Tf). (2)

Then, we obtain the flow completion time T1 of RPO as

T1 = Tf +
N × S − C × Tc −R× (2Tf−Tc − 1)

C
. (3)

Under the existing receiver-driven transport protocols, the

sending rate R cannot be increased due to the conservativeness

of flow control mechanism. Thus, the flow is completed at time

T2, which is calculated as

T2 =
S − C

N × Tc

R
N

+ Tc. (4)

Let URPO and URP denote the bottleneck utilization ratios

of RPO and the traditional receiver-driven protocols, respec-

tively. Then we get the utilization gain Ugain as

Ugain =
T2

T1
=

S− C
N ×Tc
R
N

+ Tc

Tf + N×S−C×Tc−R×(2Tf−Tc−1)
C

. (5)

Assuming that the flow does not experience congestion, the

ideal flow completion time is Ti = N × S
C . The gain of flow

completion time FCT gain = T2−Ti

T1−Ti
, which is calculated as

FCT gain =

S− C
N ×Tc
R
N

+ Tc −N × S
C

Tf + N×S−C×Tc−R×(2Tf−Tc−1)
C −N × S

C

.

(6)

S=100pkts
S=200pkts
S=800pkts

U R
PO
/U

RP

0
5
10
15
20
25
30

R/C
0 0.2 0.4 0.6 0.8 1.0

(a) Increasing R
C

S=100pkts
S=200pkts
S=800pkts

(T
2-

T i
)/

(T
1-

T i
)

0

10

20

30

40

50

60

Tc/Ti

0 0.2 0.4 0.6 0.8 1.0

(b) Increasing Tc
Ti

Fig. 8: Utilization and FCT gain with varying R
C and Tc

Ti

Fig. 8 shows the theoretical gain of bottleneck utilization

and FCT with different flow sizes. The link capacity C is

10Gbps and the round-trip time is 50μs. We set the number

of flows N to 1 and the congestion time Tc to 0. In Fig. 8

(a), it is shown that when the ratio of R
C increases, the gain

of utilization decreases in RPO due to less spare bandwidth.

In Fig. 8 (b), the sending rate R is set to 20 packets per

round-trip time. The results show that the improvement of flow

completion time increases with larger S under a certain Tc

Ti
.

Similarly to Fig. 8 (a), with the increasing value of Tc

Ti
, the FCT

gain of RPO decreases due to fewer opportunities to increase

utilization.

VI. IMPLEMENTATION

We implement RPO by using Intel DPDK [19], which

allows the network stack to bypass OS kernel and directly

communicate with NIC to accelerate packet processing.

k

k

Fig. 9: RPO’s DPDK Implementation at switch

Fig. 9 illustrates the architecture of RPO’s DPDK imple-

mentation at switch, which consists of the receiving, marking

and transmitting components. Specifically, when a packet

arrives at the receiving ports, it is transmitted to the cor-

responding receive queue, which is allocated and set up

by rte eth rx queue setup() function. Each receive queue

is served by an individual CPU to guarantee fast packet

processing. Then the packet is enqueued into a logic queue,

which is created by rte ring create() function. In RPO, each

port has a high and a low priority logical queues. When the

low-priority queue length obtained by the rte ring count()
function exceeds the marking threshold k, the packet is marked

to indicate under-utilization. Then the packet is delivered to

the transmit queue of the corresponding output port by using

rte eth tx buffer() function. Note that the above DPDK

processing only manipulates the packet pointer. Finally, the

real packet described as rte mbuf struct is driven from the

shared memory pool.

Fig. 10: RPO’s DPDK Implementation at hosts

Fig. 10 shows the architecture of RPO’s DPDK imple-

mentation at hosts, which consists of the packet sending and

receiving pipelines. At the sender, application starts data trans-

mission by calling the send() function. The RPO transmission

control logic checks the ECN-Echo flag in each grant sent from

the receiver, controls the triggering of normal and opportunity

packets, and assigns high and low priority for the packets.

Then the packets are sent out to the TX Ring buffer of NIC

by calling rte eth tx buffer flush() function.

At the receiver, packets are retrieved from the RX Ring

buffer of NIC by using rte eth rx burst() function. For

each arrival data packet, according to the ECN fields in the

IP header, a corresponding grant with or without ECN-Echo

flag is generated and sent back to the sender. The data packets

are directly delivered to the application by calling a receive()
function. The packet loss information is fed back to the sender.

In addition, RPO can also be feasibly deployed on the P4

programmable switch since only few matching tables and static

random access memory (SRAM) are required. Specifically,

RPO only needs 4 match action tables including packet priority

identifying, queue length reading, ECN marking and packet

forwarding to implement per-packet processing. Each packet

only adds 2-bit metadata for 1-bit priority marking and 1-bit

ECN marking. RPO records the ECN marking threshold, the

low-priority queue length, the number of packets forwarded in

a certain period at the switch.

VII. TESTBED EVALUATION

In this section, we use a real 10Gbps testbed to evaluate

the applicability and effectiveness of RPO. The details of

testbed are the same as that in Section II-C. We compare RPO

against pHost (in Section II), Homa and NDP. The protocols

are implemented via Intel DPDK and all parameters are set to

the default values in the related literatures [10], [7], [8].

We firstly evaluate the basic performance of RPO in a

well-known dumbbell scenario with 2 senders and 2 receivers

sharing a single 10Gbps bottleneck link, as shown in Fig. 2

(a). We set the buffer size to 32 packets. Throughput and

queue length of switch buffer are shown in Fig. 11 (a) and

(b), respectively.

background flow (f1)
normal packet (f2)
opportunistic packet (f2)

Th
ro

ut
pu

t (
G

bp
s)

0
2
4
6
8

10

Time (s)
0 0.1 0.2 0.3 0.4 0.5 0.6

(a) Normalized throughput

low-priority queue
high-priority queue

Q
ue

ue
 le

ng
th

 (p
kt

)

0

5

10

15

20

Time (s)
0 0.1 0.2 0.3 0.4 0.5 0.6

(b) Queue length

Fig. 11: Normal and opportunistic packets transmitted in RPO

At the beginning, each of two flows starts with a BDP bytes

(i.e. ∼80 packets) to compete for the bottleneck link. For flow

f2, 40 normal packets arrive at the receiver and 25 normal

packets are dropped due to buffer overflow. In this case, the

ECN marking threshold k of the low-priority queue is reduced

to 0 due to full link utilization. Since all normal packets are

ECN-marked, none of opportunistic packets are generated.

When the background flow f1 enters OFF state at 0.2s, since

the link bandwidth becomes available, RPO increases the

ECN marking threshold k to allow the sender to generate

more opportunistic packets. From 0.2s, with the exponentially

increasing total number of normal and opportunistic packets,

f2 quickly seizes all bottleneck bandwidth.

At 0.3s, once the number of normal packets increases to

80, which is enough to fill up the bottleneck bandwidth, 15

opportunistic packets are queued at the low-priority queues as

shown in Fig. 11 (b). Then k is updated to 0 and the oppor-

tunistic packets are stopped. The low-priority queue’s length

maintains at 15 packets to avoid low link utilization. The result

in Fig. 11 (b) shows that, under dynamic traffic, RPO is able

to achieve low queueing delay for normal packets while using

opportunistic packets to obtain high link utilization.

Th
ro

ug
hp

ut
 (G

bp
s)

f1 f2 f3
Homa

NDP

RPO

0
2
4
6
8

10
0
2
4
6
8

10

0
2
4
6
8

10

Time (s)
0 0.1 0.2 0.3 0.4 0.5 0.6

Fig. 12: Receiver-driven transmission under dynamic traffic

Next, we compare the RPO performance with the state-

of-the-art receiver-driven transport protocols. We test three

receiver-driven flows in the multi-bottleneck topology as

shown in Fig. 1 (a). The experimental settings are as same as

that in Section II-C. Flow f1, f2 and f3 are sent to different

receivers. All flows exhibit ON/OFF pattern in transmission.

Fig. 12 shows the test results of Homa, NDP and RPO.

At the beginning, f1 and f2 achieve their fair bandwidth

allocations of the 10Gbps bottleneck link. At 0.1s, a new

flow f3 starts transmission and competes with f2. The round

trip time of f2 increases under multiple bottlenecks. Homa

prioritizes the shortest flow f3 to fully use the bottleneck link

through the highest priority queue. Under NDP and RPO, f1
and f3 fairly share the bandwidth. The total link utilizations

of f1 and f2 are around 50% and 80% in Homa and NDP,

respectively. However, even under the impact of RTT variation

in f2, RPO is still able to fully utilize bottleneck bandwidth

by using opportunistic packets from f1.

In Homa, after f2 finishes at 0.48s, f1 only utilizes 50%

of the bottleneck bandwidth because of its conservativeness in

seizing free bandwidth. NDP saturates the bottleneck link after

0.4s. Since NDP trims the payloads of packets when the switch

queue is filled to avoid packet loss, NDP fully uses bandwidth

after f2 stops. RPO uses opportunistic packets to make use of

the spare bandwidth and achieve full link utilization. Overall,

since always achieving high link utilization under ON/OFF

traffic and RTT variation, RPO reduces the AFCT by 15%,

14% and 8% over pHost, Homa and NDP, respectively.

Enqueue Dequeue

Ut
iliz

ati
on

 (%
)

0
0.05
0.10
0.15
0.20

pHost Homa NDP RPO

Fig. 13: CPU overhead

Finally, we evaluate the system overhead of RPO at switch.

The link utilization estimation and packets marking function

of RPO are implemented using DPDK, causing overhead in

the enqueue and dequeue modules. In this test, we measure

the average CPU utilization ratio at switches. As shown in

Fig. 13, RPO consumes slightly more resources than pHost

due to the cross queue marking. However, RPO achieves

lower CPU utilization in both enqueue and dequeue processes

compared with Homa and NDP due to the simpler marking

and forwarding operations.

VIII. SIMULATION EVALUATION

A. Performance under realistic workload

We conduct large-scale NS2 simulations to evaluate RPO

performance in the typical datacenter applications. We choose

four realistic workloads, namely web server (WSv), cache

follower (CF), web search (WSc) and data mining (DM) [7],

[10], [9]. The flow size distribution and average flow size for

each workload are shown in Table 1.

TABLE I: Flow size distribution of realistic workload.

Web
Server

Cache
Follower

Web
Search

Data
Mining

0-100KB 81% 53% 62% 83%

100KB-1MB 19% 18% 18% 8%

>1MB 0 29% 20% 9%

Average flow size 64KB 701KB 1.6MB 7.41MB

We use the common leaf-spine topology with 10 leaf and 8

core switches [16], [21]. Each leaf switch connects to 40 hosts

and the whole network has 400 hosts connected by 40Gbps

links. The round-trip propagation delay is 25μs and the switch

buffer size is 256 packets. The traffic is generated by randomly

starting flows via a Poisson process between random pair of

hosts. We change the traffic load from 0.1 to 0.6 and compare

RPO with pHost, Homa, NDP and Aeolus, which is integrated

with the latest receiver-driven protocol Homa.

In Fig. 14, each bar indicates the average and 99th per-

centile FCTs of all flows. RPO reduces AFCT across different

workloads with varying load compared to the other schemes.

Moreover, RPO obtains better improvement of AFCT under

the workloads with larger average flow size, because RPO has

pHostavg
ExPsavg
Aeolusavg

pHost99
ExPs99
Aeolus99

Homaavg
NDPavg
RPOavg

Homa99
NDP99
RPO99

FC
T

(m
s)

10−2

1

102

Workload
WSv CF WSc DM

(a) 0.1 load

pHostavg
ExPsavg
Aeolusavg

pHost99
ExPs99
Aeolus99

Homaavg
NDPavg
RPOavg

Homa99
NDP99
RPO99

FC
T

(m
s)

10−2

1

102

Workload
WSv CF WSc DM

(b) 0.3 load

pHostavg
ExPsavg
Aeolusavg

pHost99
ExPs99
Aeolus99

Homaavg
NDPavg
RPOavg

Homa99
NDP99
RPO99

FC
T

(m
s)

10−2

1

102

Workload
WSv CF WSc DM

(c) 0.5 load

pHostavg
ExPsavg
Aeolusavg

pHost99
ExPs99
Aeolus99

Homaavg
NDPavg
RPOavg

Homa99
NDP99
RPO99

FC
T

(m
s)

10−2

1

102

Workload
WSv CF WSc DM

(d) 0.6 load

Fig. 14: AFCT and 99th percentile FCT. WSv, CF, WSc and

DM stand for Web Server, Cache Follower, Web Search and

Data Mining, respectively.

more opportunities to increase link utilization. Specifically, in

data mining, RPO reduces the AFCT by 52%, 42%, 38%, 27%

and 23% under 0.6 load over pHost, ExpressPass, Homa, NDP

and Aeolus, respectively. NDP performs better than pHost

and Homa. The reason is that, once the switch queue length

exceeds a small threshold, NDP trims payloads of packets

to avoid packets loss and quickly recover the sending rate

after congestion is alleviated. In addition, Homa obtains lower

AFCT than pHost by employing priority queues to guarantee

low latency of short flows. ExpressPass (ExPs) performs worse

than Homa due to waiting for credits to start data transmission

in the first RTT and bandwidth wastage when there is no

data to send. With scheduled-packet-first mechanism, Aeolus

guarantees low tail latency and quickly recovers the dropped

unscheduled packets to reduce AFCT.

Fig. 14 shows the 99th percentile FCT of all flows to

pHost
ExpressPass
Homa

NDP
Aeolus
RPO

99
%

Slo
wd

ow
n

1

2

3

4

5

Flow size (packets)

5 6 7 20 50 60 10
0

20
0

40
0

50
0

60
0

(a) Web Server

pHost
ExpressPass
Homa

NDP
Aeolus
RPO

99
%

Slo
wd

ow
n

1

2

3

4

5

Flow size (packets)

6 70 10
0

30
0

65
0

10
00

12
00

13
00

14
00

15
00

18
00

(b) Cache Follower

pHost
ExpressPass
Homa

NDP
Aeolus
RPO

99
%

Slo
wd

ow
n

1

2

3

4

5

Flow size (packets)

10 80 20
0

40
0

65
0

80
0

10
00

30
00

40
00

50
00

60
00

(c) Web Search

pHost
ExpressPass
Homa

NDP
Aeolus
RPO

99
%

Slo
wd

ow
n

1

2

3

4

5

Flow size (packets)

2 3 4 5 6 7 60 20
0

65
0

10
00

0
50

00
0

(d) Data Mining

Fig. 15: The 99th percentile slowdown

present the tail FCT. RPO performs well with varying load

by using opportunistic packets to reduce FCT. Moreover, with

the decrease of load, more free bandwidth appears, and RPO

has more opportunities to speed up the flow transmission.

We also test the 99th percentile slowdown as a function

of flow size under 0.6 load. Fig. 15 shows the test results

of slowdown, which is defined as the ratio of the observed

FCT to the ideal FCT without any congestion. The X-axis

are linear in the total number of flows (the first tick is 50%

of all flows, then each tick is increased by 5% of all flows).

The results show that RPO achieves lower slowdown than the

other schemes in all workloads. Specifically, the slowdown

improvement of RPO becomes higher with increasing flow

size in the same workload. Across the different workloads,

the slowdowns of all schemes become higher with increasing

average flow size due to larger tail FCT of long flows. The

reason is that larger flows under RPO have more opportunities

to utilize free bandwidth, resulting in smaller slowdown.

Web Server
Web Search

Cache Follower
Data Mining

Pa
ck

et
 (%

)

0

10

20

30

The number of flows
600 1200 1800 2400 3000

Fig. 16: The ratio of opportunistic packets in RPO

RPO utilizes the opportunistic packets to make full use of

available bandwidth. However, since simultaneously transfer-

ring the normal and opportunistic packets, RPO potentially

needs to reorder packets at the receiver side. The required

reordering buffer size at the receiver is determined by two

factors: the number of flows simultaneously arriving at the

receiver and the number of buffered opportunistic packets

per flow. In the following, we generate 600∼3000 flows

with Poisson distributed inter arrival time. The maximum

number of flows simultaneously arriving at one receiver is

100. Fig. 16 shows that, with larger number of flows, the

ratio of opportunistic packets increases since RPO sends more

opportunistic packets to improve link utilizations under the

impacts of dynamic ON/OFF traffic and RTT variation.

As shown in Fig. 17, each bar indicates the results with

different number of flows. RPO obtains higher bottleneck

utilization than the other receiver-driven protocols by ratio-

pHost
ExpressPass

Homa
NDP

Aeolus
RPO

CF CF

CF

CF

CFW
Sv

W
Sv

W
Sv

W
Sv

W
Sv

W
Sc

W
Sc

W
Sc

W
Sc

D
M D

M D
M

D
M

D
MW
Sc

Ut
ili

za
tio

n
(%

)

50

60

70

80

90

100

The number of flows
600 1200 1800 2400 3000

Fig. 17: Link utilization

nally using the low-priority opportunistic packets. Specifically,

pHost, ExpressPass, Homa, NDP and Aeolus only obtain 56%,

63%, 65%, 67% and 69% link utilization in data mining

workload with 1200 flows and RPO improves link utilization

by 35%, 21%, 17%, 12% and 10% over pHost, ExpressPass,

Homa, NDP and Aeolus, respectively. In addition, NDP also

achieves good link utilization by pacing pull packets and

trimming packet payload. Overall, the workloads with smaller

average flow size have higher link utilization because the

large flows have long FCTs and are more likely to experience

throughput losses.

Web Server
Web Search

Cache Follower
Data Mining

Bu
ffe

r
(M

B)

0

5

10

15

20

The number of flows
600 1200 1800 2400 3000

Fig. 18: Maximum required reordering buffer in RPO

Fig. 18 shows the maximum required buffer at a receiver in

RPO. As the number of flows increases, more opportunistic

packets are generated, resulting in larger reordering buffer

space. Since cache follower and web search contain more long

flows, these workloads have higher requirements of reordering

buffer. Nonetheless, the buffer requirement is acceptable in all

cases compared with the utilization improvements.

B. Performance in Many-to-many Communications

In this section, we conduct simulations in many-to-many

scenario to compare RPO’s opportunistic transmission method

with Homa’s overcommitment mechanism. We use leaf-spine

topology with 3 leaf switches. The simulation settings are

same as in Section VIII-A. Each of the first two leaf switches

connects with 10 senders, each of which establishes 2 connec-

tions with 2 receivers under the 3rd leaf switch. We measure

the maximum queue length and link utilization with gradually

increased ratio of responsive senders from 0.1 to 1. We test

Homa with overcommitment degree of 2 and 6. That is, each

receiver concurrently sends multiple grants to 2 or 6 random

senders. For RPO, each receiver sends grants to all senders.

We repeat the test for 50 times to get the average results.

RPO
Homa (degree=2)
Homa (degree=6)

Ut
iliz

ati
on

 (%
)

0
20
40
60
80

100
120

Responsive ratio of senders
0.2 0.4 0.6 0.8 1.0

(a) Bottleneck utilization

RPO (high-priority queue)
RPO (low-priority queue)
Homa (degree=2)
Homa (degree=6)

Qu
eu

e l
en

gt
h (

pk
t)

0
50

100
150
200

Responsive ratio of senders
0.2 0.4 0.6 0.8 1.0

(b) Maximum queue length

Fig. 19: Varying the ratio of responsive senders

As shown in Fig. 19 (a), the link utilization increases with

more responsive senders. Since the opportunity transmission

quickly uses the free bandwidth, RPO sustains high link

utilization with different ratios of responsive senders. For

Homa, if the degree of overcommitment is 2, the link usage is

degraded when some senders are unresponsive. By increasing

the degree of overcommitment to 6, Homa improves the link

utilization. However, this improvement comes at the cost of

large queueing delay. In Fig. 19 (b), the maximum queue

length increases with increasing degree of overcommitment

in Homa. In RPO, the queue length of high-priority normal

packets is always close to zero. Only the low-priority oppor-

tunistic packets have small queue buildups, which have no

negative impact on normal packets.

In short, it is hard for Homa to obtain a good balance be-

tween low queueing delay and high link utilization by setting a

proper degree of overcommitment under dynamic traffic. RPO

is able to flexibly achieve ultra-low latency for normal packets

and high utilization via opportunistic transmission.

IX. RELATED WORKS

At the sender side, DCTCP [1], TCN [26] and MQ-ECN

[27] leverages ECN marking to control the queueing delay.

D2TCP [2] and D3 [3] modulate the sending rate to minimize

the deadline-missing ratio. MPTCP [28] transmits subflows

on parallel paths to improve link utilization. pFabric [4] and

PIAS [18] schedule packets based on the priorities at switches.

HULL [29] uses phantom queues to deliver congestion sig-

nal. ECN# [30] aggressively marks packets to avoid buffer

overflow and conservatively marks packets in order not to

adversely affect throughput. DCQCN [5], TIMELY [6], DX

[31], Swift [32] and Tagger [33] control congestion well in

lossless networks. Unfortunately, they still suffer from buffer

overflow under highly bursty traffic.

As a rate control scheme, PDQ [34] calculates flow rate

to enable flow preemption. Fastpass [35] uses a centralized

arbiter to determine the transmission time for each packet.

Karuna [36] focuses on scheduling a mix of flows with and

without deadlines by controlling the flow rate. TFC [24]

allocates the link bandwidth for each flow. However, the rate

calculating and centralized scheduling in the above schemes

may be slow for small and tiny flows at datacenter scale.

Recently proposed HPCC [37] precisely controls congestion

by leveraging in-network telemetry (INT) to obtain accurate

link load information to achieve near-zero queueing delay and

high throughput. Although HPCC effectively reduces the flow

completion time, it requires dedicated hardware support and

introduces traffic overhead for congestion feedback.

Recent receiver-driven transmission aim for near-zero

queueing delay. pHost [10] uses token packets to decouple

scheduling from the network fabric. NDP [8] controls the

incoming traffic at the receiver by using accurate pacing of

pull packets. ExpressPass [9] allocates bandwidth by shaping

the flow of credit packets at the switch. Homa [7] leverages

priority queues and the receiver-driven SRPT policy to ensure

low latency for short messages. Aeolus [12] is integrated into

the receiver-driven schemes to eliminate extra delay in the

first RTT. Though achieving low latency, these approaches

experience low link utilization under highly dynamic traffic,

resulting in suboptimal network performance.

In contrast with the above transmission schemes, our design

RPO works through a different perspective: RPO uses low-

priority opportunistic packets to fill spare bandwidth imme-

diately without affecting the high-priority normal packets to

simultaneously achieve low latency and high link utilization.

Compared with RC3 [38], which reversely sends low-priority

packets to fill the free bandwidth left by the default TCP

packets, RPO uses explicit network feedback from ECN

marking to control the queueing delay and traffic overhead

of opportunistic packets at the end hosts, without centralized

scheduler or complex rate allocation.

X. CONCLUSION

We propose a simple yet effective receiver-driven transport

protocol RPO that uses low-priority opportunistic packets to

utilize the spare bandwidth without introducing queueing delay

of high-priority normal packets. Specifically, according to the

low-priority queue length, RPO adaptively adjusts the number

of opportunistic packets to ensure the high link utilization for

the receiver-driven transmission across a wide variety of dy-

namic traffic workloads. The results of real testbed and large-

scale simulations demonstrate that RPO significantly improves

the link utilization by up to 35% over pHost, ExpressPass,

Homa and NDP. RPO remarkably reduces the average flow

completion time by up to 52% compared with these state-of-

the-art receiver-driven transmission protocols.

ACKNOWLEDGMENT

This work is supported by the National Natural Science

Foundation of China (62132022, 61872387, 62102046), MOE

Start-up Research Grant (SRG ISTD 2020 159), Hong Kong

RGC GRF-16215119.

REFERENCES

[1] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B.
Prabhakar, S. Sengupta, and M. Sridharan. Data Center TCP (DCTCP).
In Proc. ACM SIGCOMM, 2010.

[2] B. Vamanan, J. Hasan, and T. Vijaykumar. Deadline-aware Datacenter
TCP (D2TCP). In Proc. ACM SIGCOMM, 2012.

[3] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron. Better Never
Than Late: Meeting Deadlines in Datacenter Networks. In Proc. ACM
SIGCOMM, 2011.

[4] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker. pFabric: Minimal Near-optimal Datacenter Transport.
In Proc. ACM SIGCOMM, 2013.

[5] Y. Zhu, H. Eran, D. Firestone, et al. Congestion Control for Large-scale
RDMA Deployments. In Proc. ACM SIGCOMM, 2015.

[6] R. Mittal, V. T. Lam, N. Dukkipati, et al. Timely: Rtt-based Congestion
Control for The Datacenter. In Proc. ACM SIGCOMM, 2015.

[7] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout. Homa: A receiver-
driven Low-latency Transport Protocol Using Network Priorities. In
Proc. ACM SIGCOMM, 2018.

[8] M. Handley, C. Raiciu, A. Agache, A.Voinescu, A. Moore, G. Antichi,
and M. Wójcik. Re-architecting Datacenter Networks and Stacks for
Low Latency and High Performance. In Proc. ACM SIGCOMM, 2017.

[9] I. Cho, K. Jang, and D. Han. Credit-scheduled Delay-bounded Conges-
tion Control for Datacenters. In Proc. ACM SIGCOMM, 2017.

[10] P. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Ratnasamy, and S.
Shenker. pHost: Distributed Near-optimal Datacenter Transport Over
Commodity Network Fabric. In Proc. ACM CoNEXT 2015.

[11] J. Hu, J Huang, Z. Li, et al. AMRT: Anti-ECN Marking to Improve
Utilization of Receiver-driven Transmission in Data Center. In Proc.
ACM ICPP, 2020.

[12] S. Hu, W. Bai, G. Zeng, Z. Wang, B. Qiao, K. Chen, K. Tan, and Y.
Wang. Aeolus: A Building Block for Proactive Transport in Datacenters.
In Proc. ACM SIGCOMM, 2020.

[13] S. Hu, W. Bai, B. Qiao, K. Chen, and K. Tan. Augmenting Proactive
Congestion Control with Aeolus. In Proc. ACM APNet 2018.

[14] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken. The
Nature of Data Center Traffic: Measurements & Analysis. In Proc. ACM
IMC, 2009.

[15] T. Benson, A. Akella, and D. Maltz. Network Traffic Characteristics of
Data Centers in The Wild. In Proc. IMC, 2010.

[16] J. Hu, J. Huang, W. Lv, Y. Zhou, J. Wang, and T. He. CAPS: Coding-
based Adaptive Packet Spraying to Reduce Flow Completion Time in
Data Center. In Proc. IEEE INFOCOM, 2018.

[17] J. Hu, J. Huang, W. Lv, Y. Zhou, J. Wang and T. He. CAPS: Coding-
based Adaptive Packet Spraying to Reduce Flow Completion Time
in Data Center. IEEE/ACM Transactions on Networking, 2019, 27(6):
2338-2353.

[18] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang. Information-
agnostic Flow Scheduling for Commodity Data Centers. In Proc.
USENIX NSDI, 2015.

[19] DPDK Plane Development Kit, Intel DPDK, 2019.
[20] Y. Cui, S. Xiao, X. Wang, Z. Yang, S. Yan, C. Zhu, X. Li, and N. Ge.

Diamond: Nesting the Data Center Network with Wireless Rings in 3-d
Space. IEEE/ACM Transactions On Networking, 2017, 26(1): 145-160.

[21] H. Zhang, J. Zhang, W. Bai, K. Chen, and M. Chowdhury. Resilient
Datacenter Load Balancing in The Wild. In Proc. ACM SIGCOMM,
2017.

[22] S. Ghorbani, Z. Yang, P. Godfrey, Y. Ganjali, and A. Firoozshahian.
DRILL: Micro Load Balancing for Low-latency Data Center Networks.
In Proc. ACM SIGCOMM, 2017.

[23] B. Stephens, A. L. Cox, A. Singla, J. Carter, C. Dixon, and W. Felter.
Practical DCB for Improved Data Center Networks. In Proc. IEEE
INFOCOM, 2014.

[24] J. Zhang, F. Ren, R. Shu, and P. Cheng. TFC: Token Flow Control in
Data Center Networks. In Proc. ACM EuroSys, 2016.

[25] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella.
Presto: Edge-based Load Balancing for Fast Datacenter Networks. In
Proc. ACM SIGCOMM, 2015.

[26] W. Bai, K. Chen, L. Chen, C. Kim, and H. Wu. Enabling ECN over
Generic Packet Scheduling. In Proc. ACM CoNEXT, 2016.

[27] W. Bai, L. Chen, K. Chen, H. Wu. Enabling ECN in Multi-Service
Multi-Queue Data Centers. In Proc. USENIX ATC, 2016.

[28] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley. Improving Datacenter Performance and Robustness with
Multipath TCP. In Proc. ACM SIGCOMM, 2011.

[29] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and M.
Yasuda. Less is More: Trading a Little Bandwidth for Ultra-low Latency
in The Data Center. In Proc. USENIX NSDI, 2012.

[30] J. Zhang, W. Bai, K. Chen. Enabling ECN for datacenter networks with
RTT variations. In Proc. ACM CoNEXT, 2019.

[31] C. Lee, C. Park, K. Jang, S. Moon, and D. Han. Accurate Latency-based
Congestion Feedback for Datacenters. In Proc. USENIX ATC, 2015.

[32] G. Kumar, N. Dukkipati, K. Jang, et al. Swift: Delay is Simple and
Effective for Congestion Control in The Datacenter. In Proc. ACM
SIGCOMM, 2020.

[33] S. Hu, Y. Zhu, P. Cheng, et al. Tagger: Practical PFC deadlock prevention
in data center networks. In Proc. ACM CoNEXT, 2017.

[34] C. Y. Hong, M. Caesar, and P. B. Godfrey. Finishing Flows Quickly
with Preemptive Scheduling. In Proc. ACM SIGCOMM, 2012.

[35] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal.
Fastpass: A Centralized ”zero-queue” Datacenter Network. In Proc.
ACM SIGCOMM, 2014.

[36] L. Chen, K. Chen, W. Bai, and M. Alizadeh. Scheduling Mix-flows in
Commodity Datacenters with Karuna. In Proc. ACM SIGCOMM, 2016.

[37] Y. Li, R. Miao, H. H. Liu, et al. HPCC: High Precision Congestion
Control. In Proc. ACM SIGCOMM, 2019.

[38] R. Mittal, J. Sherry, S. Ratnasamy, and S. Shenker. Recursively Cautious
Congestion Control. In Proc. USENIX NSDI, 2014.

