
Generalizable and Interpretable Deep Learning for
Network Congestion Prediction

Konstantinos Poularakis1, Qiaofeng Qin1, Franck Le2, Sastry Kompella3, and Leandros Tassiulas1

1Department of Electrical Engineering and Institute for Network Science, Yale University, USA
2IBM Research, USA

3Naval Research Laboratory, USA

Abstract—While recent years have witnessed a steady trend
of applying Deep Learning (DL) to networking systems, most of
the underlying Deep Neural Networks (DNNs) suffer two major
limitations. First, they fail to generalize to topologies unseen
during training. This lack of generalizability hampers the ability
of the DNNs to make good decisions every time the topology of
the networking system changes. Second, existing DNNs commonly
operate as “blackboxes” that are difficult to interpret by network
operators, and hinder their deployment in practice. In this
paper, we propose to rely on a recently developed family of
graph-based DNNs to address the aforementioned limitations.
More specifically, we focus on a network congestion prediction
application and apply Graph Attention (GAT) models to make
congestion predictions per link using the graph topology and
time series of link loads as inputs. Evaluations on three real
backbone networks demonstrate the benefits of our proposed
approach in terms of prediction accuracy, generalizability, and
interpretability.

Index terms— Deep Learning, Graph Attention Networks,
Interpretability, Congestion Prediction.

I. INTRODUCTION

A. Motivation

While prevalent in various areas in computer science (e.g.,
computer vision, speech recognition, machine translation, etc),
Deep Learning (DL) [1] has only recently attracted the interest
of the networking community. DL uses Deep Neural Networks
(DNNs) to find patterns in massive measurement data and
fit complex models accordingly [2]. This capability can be
exploited for the prediction of network events (e.g., traffic
congestion) and the recommendation of appropriate network
control policies (e.g., traffic routing over less-congested paths).
In fact, recent work has demonstrated significant benefits of
using DNNs for various networking applications including
video streaming [3], cloud resource allocation [4], and traffic
routing [5].

Despite the recent progress, the application of DL in net-
working faces unique challenges compared to other areas.
More specifically, DNNs have been originally designed to

This research was supported by the U.S. Office of Naval Research under
Grant N00173-21-1-G006, the U.S. Army Research Laboratory and the U.K.
Ministry of Defence under Agreement Number W911NF-16-3-0001, and the
National Science Foundation in U.S. under Grant CNS 1815676.

learn models of data defined on Euclidean domains (e.g.,
images, text, and videos). For example, an image data can
be represented as a regular grid in the Euclidean domain.
However, for networking applications, the topology of the
network is often a critical component to be considered as an
input to the DNN models, but such those network topologies
consist of a graph-based, and non-Euclidean, format. Indeed, it
can be helpful for the DNN to know which links are adjacent,
as the behavior of these links is typically correlated and could
therefore be exploited to make more accurate predictions, e.g.,
about future traffic loads.

When applied to networking problems, most of the exist-
ing DNN architectures (e.g., feedforward, recurrent, convolu-
tional) represent the network to a certain extent only through
time series of traffic matrices [6] or link load vectors [7]
whose format are in the Euclidean domain, just like images.
Paradoxically (and ironically), while these architectures do
not take the network topology as input, they end up building
models that are specific and dependant to the topology (or
topologies) seen during training. Therefore, if the topology
changes (e.g., due to node or link failure, or addition) or if
only part of the topology can be observed (due to malfunction
of the network monitoring system) the network operator would
have to re-train a new model from scratch with traffic matrices
and link load vectors (of possibly fewer or more elements
than before) corresponding to the new topology. Besides, in
case the same operator manages multiple networks of different
topologies (and possibly sizes), he would have to train a
separate model for each network; re-using the same model
across the networks is not possible2.

Continuously re-training a DNN model every time the
network topology changes is not computation-efficient and
can disrupt network operations, especially in highly-dynamic
settings (e.g., wireless and ad hoc networks, Internet of Things,
etc.) where topology changes are the norm rather than the
exception. Meanwhile, we cannot train in advance separate
models for all possible topologies, numbers and permutations
of links and nodes, due to their exponentially large number.
Ideally, we would like to train a single model that can be
applied and generalized to topologies unseen during training.

2Note that this issue does not exist for other non-networking applications
like image classification where an operator can re-use the same DNN model
(taking as input the image features and trained once) among multiple networks.978-1-6654-4131-5/21/$31.00 ©2021 IEEE

In addition, network operators are still skeptical and hesitant
about deploying DNN-based systems in their production en-
vironments. The reason is that DNNs typically require a large
number (e.g., on the order of millions) of parameters to achieve
universal function approximation. This makes it difficult to
interpret how a decision is made, and what the hypothesis
behind the prediction outcome is. Consequently, network op-
erators regard DNNs as ”blackboxes” that are hard to explain
and trust despite their promising performance benefits. Several
attempts have been made recently towards interpreting the
decision-making process of DNNs, with most of them focusing
on image classification and language processing applications,
and only a few on networking applications [8], [9].

From the above discussion, the following question naturally
arises: is it possible to design DNN-based networking systems
that at the same time (i) exploit topological information from
the network for better predictions, (ii) are generalizable to
different topologies even unseen during training, and (iii)
whose prediction outcome can be easily interpreted by network
operators?

The above question remains open, since the application of
DNNs in networking is a relatively new area of research and
their interpretability an even newer one, almost totally unex-
plored. To answer this question we need a DNN model that
will be by its design aware of the network topology, yet robust
to topology changes, and will offer the means to interpret
its decision-making process. However, networking systems
typically support a diverse set of applications that use different
data structures to make their decisions (e.g., time-series of
traffic matrices, link loads, buffer levels, routing paths, etc.).
Therefore, coming up with a model that is suitable for all
different applications is highly unlikely. In this paper we rather
focus on a basic, yet fundamental, application of predicting
whether links in a network would become congested, using
as input data time series of link loads. We note that this
is an important application that all network operators need
to support in order to guide in time their traffic engineering
decisions and prevent the network from being congested and
the quality of service of their users being degraded.

B. Methodology and Contributions

To address the challenges mentioned above, we propose to
rely on a recently developed family of graph-based DNNs that
have attracted increasing interest within the research commu-
nity (e.g., see the survey in [10]). These models can learn
the relationships among graph elements (vertices and edges)
and generalize over graphs unseen during training. Among
the various models known within this family, we choose to
build upon the Graph Attention Network (GAT) model [11].
An attractive property of this architecture is the attention
mechanism which can be directly used for interpreting its
decisions. More specifically, the attention weights can indicate
the links that play an important role towards the prediction
outcome.

We formally show how to apply the GAT model to pre-
dict congestion on the links in a network. This is a binary

classification problem where the objective is to “minimize the
error between the predicted class (congestion or not for each
link) and the actual class” as a mean to train the network
(i.e., learn the weights). More specifically, the objective is to
“predict, given the traffic loads of the different links from
time t −M − 1, to t, whether a link would be congested at
time t + 1”. In the literature, this problem has already been
addressed by using DNN methods (e.g., see [6], [7] and the
discussion of related work in Section V). However, to the best
of our knowledge, this is the first time that a topology-aware,
generalizable and interpretable DNN method is employed
to perform this task. Evaluations using real data gathered
from three real networks demonstrate the performance benefits
of our proposed approach compared to several baselines,
quantify the performance loss when generalizing over unseen
topologies, and explain the decisions by commenting on the
attention coefficient values and the importance of each link on
the prediction outcome. Overall, the contribution of this paper
can be summarized as follows:
• Generalizable & Interpretable DL. We leverage graph-

based models to design DNN-based networking systems
that at the same time exploit topological-information,
generalize over different topologies, and make inter-
pretable decisions.

• Congestion Prediction. We specifically apply the GAT
model for predicting whether the links in a network would
become congested or not, using as input data the graph
topology and time series of link loads.

• Evaluation on Real Data. We implement our GAT ap-
proach on Tensorflow [12] and perform evaluations on
three real backbone networks and using real link load
measurements. We find that our approach: (i) achieves
better prediction accuracy than three popular state-of-the-
art DNN models (MLP, CNN and LSTM) as well as
a traditional k-nearest neighbors learning algorithm, (ii)
when trained on one network it can generalize on other
networks of similar sizes with small loss in accuracy;
however the generalizability has a limit and might not
perform well for networks of much different sizes and
structures, and (iii) by interpreting the attention coeffi-
cient values we can identify which links are important
towards predicting congestion, and this way provide prac-
tical guidelines to network operators for deciding which
subsets of links to monitor in their networks.

The rest of the paper is organized as follows. Section
II briefly reviews background concepts, while Section III
defines the congestion prediction problem and describes the
proposed approach. Description of the evaluation settings and
presentation of results is given in Section IV. Section V
reviews our contribution compared to related works, while
Section VI concludes the paper.

II. BACKGROUND

In this section, we provide a brief overview of the key
concepts in graph-based neural network models, and also those
more specific to graph attention network models.

A. Graph Neural Networks

Graph Neural Networks (GNNs) are a general neural net-
work architecture able to process graph structures as input
data. The main idea is to learn hidden states of vertices in a
graph based on the hidden states of their neighbor (adjacent)
vertices. Note that by restricting the learning of hidden states
between adjacent vertices only we essentially inject the graph
structure (topology) into the process.

There exist many variants of GNNs in the literature. In
this subsection, we briefly review the pioneer work in [13]
which suggests that GNNs can learn the vertex representations
(states) by adopting recurrent neural network architectures.
They work in an iterative (recursive) manner where a vertex
in a graph constantly exchanges messages with its neighbors
for updating its hidden state until a stable equilibrium point is
reached. We define below the notations required to understand
these GNNs. A graph is represented as G = (V, E) with
vertices v ∈ V and edges e ∈ E . Edges can be represented
as pairs of vertices e = (v, u). Φ(v) denotes the set of
neighboring vertices of v. The notations iv and ov represent the
input and target values of vertex v, respectively. The operation
of the GNN can be described by the following equations:

h(t)
v = f

(
{h(t−1)

u }|u ∈ Φ(u)
)

(1)

ov = g
(
h(t→∞)
v

)
(2)

h(t=0)
v = init(iv) (3)

where h
(t)
v represents the hidden state of vertex v at time

(iteration) t. f(.) and g(.) are parametric functions that can
be implemented as feed-forward neural networks. The role of
f(.) is to update the hidden states while the role of g(.) is to
transform the final hidden state to the output value. Function
init(.) initializes h(t=0)

v based on the input features, where zero
padding is used to fit the dimensions if they are different for
the input features and the hidden states. The training of the
GNN, namely the parameters of f(.) and g(.), is possible via
the Almeida-Pineda algorithm [14] which works by running
the propagation of the hidden states to convergence, and then
computing gradients based upon the converged solution.

An important observation here is that the functions f(.)
and g(.) above do not depend on the topology of the graph.
Therefore, once trained, the same model can be applied
(without re-training) to different graphs of potentially different
topologies (different neighborhood sets Φ(v)). However, this
type of GNNs do not provide any mechanism to interpret the
decision-making process which was one of the main design
goals we set in the introduction of this paper.

B. Graph Attention Networks

Graph Attention Networks (GATs) are a variant of GNNs
that have been recently introduced [11]. Similar to the pioneer
GNNs in [13], GATs exploit the graph structure (topology)
during the learning process. However, GATs adopt a convo-
lutional rather than a recurrent neural network architecture.
That is, instead of recursively learning the values of hidden
states of the vertices, GATs learn a set of weight values so

that output features of vertices are equal to weighted sums of
input features3. A novel aspect of GATs compared to other
convolutional-based GNNs is the adoption of an attention
mechanism that aims to learn relative weights between two
neighboring vertices, i.e., the contributions of vertices’ features
to their neighboring vertices. Such mechanism is important in
order to understand the behavior of the model and interpret
how decisions are made, as we will elaborate and illustrate it
further in the next sections.

We formally define a GAT model below. The model may
consist of multiple graph attentional layers. We will describe
below a single of these layers. The input to our layer is a set of
vertex features hv ∈ RF for each vertex v in the input graph
where F is the number of features in each vertex. The layer
produces a new set of vertex features (of potentially different
cardinality F ′), h′v ∈ RF ′

, as its output. To transform the input
features into the output features two steps are required. In the
first step, a shared linear transformation, parameterized by a
weight matrix, W ∈ RF ′×F , is applied to every vertex. In
the second step, we perform a so-called self-attention on the
vertices, i.e., a shared attentional mechanism a : RF ′ ×RF ′

that computes attention coefficients for each pair of vertices
v, u:

evu = a(Whv,Whu) (4)

The above coefficients indicate the importance of vertex u′s
features to the features of vertex v. In its most general
formulation, the model allows every vertex to attend on every
other vertex, dropping all structural (topological) informa-
tion [11]. We inject the graph structure into the mechanism
by performing masked attention, i.e., we only compute evu
for the neighbor vertices u ∈ Φ(v). To make coefficients
easily comparable across different vertices, we normalize
them across all choices of u using the softmax function, and
compute the new coefficients:

αvu = softmaxu(evu) =
exp(evu)∑

y∈Φ(v) exp(evy)
(5)

The attention mechanism a in Equation (4) is a single-layer
feedforward neural network, parametrized by a weight vector
a ∈ R2F ′

, and applying the LeakyReLU activation function.
Therefore, and by using Equation (5), we can expand the αvu

values as:

αvu =
exp(LeakyReLU(aT [Whv||Whu]))∑

y∈Φ(v) exp(LeakyReLU(aT [Whv||Why]))
(6)

where T represents transposition and || is the concatenation
operation.

Once obtained, the normalized attention coefficients are
used to compute a linear combination of the features corre-

3Note the different terms used in different types of DNNs; hidden states
for recurrent architectures and input/output features for convolutional archi-
tectures.

Figure 1. An illustration of multihead attention (with K = 3 heads) by node
1 on its neighborhood [11]. Three different arrow styles and colors denote
independent attention computations. The aggregated features from each head
are concatenated or averaged to obtain h′1.

sponding to them, to serve as the final output features for every
vertex (after potentially applying a nonlinearity, σ):

h′v = σ

(∑
u∈Φ(v)

αvuWhu

)
(7)

The stability of the learning process can be improved by
utilizing K heads for each vertex, therefore performing the
above operation in Equation (7) separately K times with
K weight and attention factors and then concatenate the K
outputs to form an output in RK×F ′

:

h′v = ||Kk=1σ

(∑
u∈Φ(v)

αk
vuWkhu

)
(8)

where αk
vu are normalized attention coefficients computed

by the k-th attention mechanism (ak), and Wk is the cor-
responding input linear transformation’s weight matrix. The
aggregation process of a multi-head graph attentional layer is
illustrated by Figure 1.

We note that once the model is trained and the values of the
parameters a and W are learned, then we can apply the same
model (without re-training) to a different graph (of possibly
different topology and even different numbers of vertices and
edges); we just need to compute the value of αvu for each pair
of neighbor vertices v and u (as many pairs as they may be)
in the new graph by evaluating Equation (6). Then, we can
simply pass the αvu values we computed to evaluate Equation
(7) (or Equation (8) if we choose to stabilize the learning
process with multiple heads). These are simple computations
that can be easily performed with low computational power.
Therefore, the GAT model can be easily generalized over
topologies unseen during training. Besides, our second design
goal of interpretability is achieved thanks to the attention
coefficient values αuv , as we will explain in more detail in
the evaluation Section IV.

III. CONGESTION PREDICTION

In this section, we show how to employ the GAT architec-
ture for predicting congestion of links in a network based on

…X(1) X(2) X(3) X(M-1) X(M) X(M+1) X(M+2) X(M+3) …

Input
OutputC(M+1)

…X(1) X(2) X(3) X(M-1) X(M) X(M+1) X(M+2) X(M+3) …

Input
OutputC(M+2)

…X(1) X(2) X(3) X(M-1) X(M) X(M+1) X(M+2) X(M+3) …

Input
OutputC(M+3)

X(T)

X(T)

X(T)

Figure 2. Sliding window for building training data set. Link loads in M+1
time slots are used to create a sample in the dataset; M for the input features
and 1 for the output features.

historical time-series of link loads.

A. Network Model

We consider a telecom network composed of set of nodes
N (e.g., routers, switches, base stations) and links L (wireline
or wireless) connecting them4. The links can be directed or
undirected. Regardless, each link connects a pair of endpoint
nodes. We say that two links are neighbors if they have a
common endpoint node. Formally, we define by Φ′(l) ⊆ L the
neighbor links5 of link l. The set Φ′(l) contains topological
information that is important to know since often the behavior
of neighbor links is correlated and can be used by the network
operator to make more accurate predictions.

The traffic exchanged among the nodes in the network is
routed according to a routing protocol such as OSPF or MPLS
or any other of the standard protocols. The resulting traffic
load measured on the network at time t can be represented as
a vector X(t) ∈ RL×1, where L = |L| is the number of links
in the network. We say that a link l is congested at time t when
its load exceeds a given threshold τl, i.e., when Xl(t) ≥ τl.
Here, τl can be set equal to a portion of the capacity of the link.
We denote by Cl(t) the binary variable indicating whether link
l is congested at time t (Cl(t) = 1) or not (Cl(t) = 0), and by
C(t) the respective vector for all links. Such binary indicator is
a typical way to handle congestion. For example, mechanisms
such as Explicit Congestion Notification (ECN) [32] enable
the switches or routers to modify specific bits in the packet
header to indicate the occurrence of a congestion event.

It is critical for the network operator to monitor and if
possible predict the congestion of the links so as to take ap-
propriate actions in time, e.g., re-route traffic flows away from
the congested links to balance the loads across the network.

4Note how we use the terms nodes and links to refer to the elements in the
telecom network, while we used the terms vertices and edges for the elements
in the abstract graph in Section II.

5We note that the definition of Φ′(l) looks similar to Φ(u) presented in
Section II. This time, however, we refer to the neighborhood relationship
among links in the telecom network rather than among vertices in the abstract
graph G.

(a) Abilene topology with 30 unidirectional links. Link 16-30 connect the
same nodes as Link 1-15 while being in an opposite direction.

(b) GEANT (72 links) and BRAIN topology (332 links).

Figure 3. Different topologies for congestion prediction evaluations.

Given the sequence of the link loads X(t−M −1), . . . , X(t)
measured in the past M > 0 time slots, the goal of the
network operator is to predict the congestion vector in the
next time slot, C(t+ 1). The dataset of input/output features
(link load sequences/congestion events) can be easily built by
the network operator by processing the time series of link
loads in a sliding window manner, as shown in Figure 2. For
each sequence of link loads within the sliding window (input
feature values), the operator can simply observe the link loads
in the next time slot, right after the sliding window, to compute
whether there is a congestion event at each link, and this way
label the dataset with the appropriate output feature values.

We emphasize that the above objective is a binary classifi-
cation task that can be addressed using common DL models
(e.g., see the discussion of related work in Section V). In the
next subsection, we show how we can address it using the
GAT model in order to take advantage from the topological
structure of the network, as well as the generalizability and
interpretability properties of this architecture.

B. Graph Representation

The GAT model takes as input an abstract graph G with
features on the vertices. To construct such a graph for our
congestion prediction problem, we map each link l ∈ L
in the telecom network to a vertex vl ∈ V in the graph.
The GAT model may consist of multiple graph attentional
layers depending on the actual implementation (e.g., see the
evaluation Section IV). We need to define the input and output
features of the vertices separately for each of those layers.
For the first layer, the input features hvl of vertex vl are the
sequences of traffic loads Xl(t − M − 1), . . . , Xl(t) of the
respective link l. For the last layer, the output features h′vl of
vertex vl are the congestion event binary values Cl(t+1). For
an intermediate layer, the input features are the output features
of the previous layer, and the number of these features depend
on the actual implementation. We also say that a vertex vl is
a neighbor to another vertex vl′ (formally, vl ∈ Φ(vl′)) if the
two corresponding links l, l′ in the telecom network problem
instance have a common endpoint node (formally, l ∈ Φ′(l′)).
We then restrict to zero each attention coefficient value αvlvl′

(see Equation (6)) for which the vertices vl, vl′ corresponding
to links l, l′ are not neighbors.

IV. EVALUATION

In this section, we evaluate the impact of the proposed
approach using datasets of topologies and traffic matrices col-
lected from real networks. Overall, we find that our approach
predicts network congestion more accurately than state-of-the-
art DL algorithms, while it has the extra benefit of generalizing
to other networks than the one trained. The generalizability
incurs a loss in accuracy that is small for networks of similar
sizes but might be larger for networks of much different
sizes and structures. The information revealed by the attention
mechanism can be useful to network operators for deciding
which subsets of links to monitor in their networks. In the rest
of this section, we discuss these results in detail; we begin by
describing the setup used in the later evaluations.

A. Setup

Datasets. Throughout our evaluations, we consider the
topology and dynamic traffic traces of three real backbone
networks captured in the SNDlib project [15]. The first net-
work, named Abilene, contains 12 nodes and 30 unidirectional
(i.e., 15 bidirectional) links, as depicted in Figure 3(a). The
traffic demands between each pair of source and destination
nodes are recorded dynamically as matrices for a time period
of 6 months. The dataset also provides with link weights for
calculating the shortest routing paths. Therefore, we are able
to get the total traffic volume on each link. Similarly, we also
consider two more networks, GEANT (22 nodes and 72 links)
and BRAIN (161 nodes and 332 links) depicted in Figure 3(b).
Although they vary in the size and topology, we will show that
our approach is capable to generalize for different network
graphs. The time granularity of the three traces are 5 min, 15
min, 1 hour respectively. To make meaningful comparisons,
we aggregating the traffic matrices of the first two traces into
1-hour time slots as well in most evaluations. Then, we choose
the loads of past 10 time slots as the input features to base
our prediction (M = 10). Each dataset is split into training,
validation and testing sets at the ratio 7 : 1 : 2.

Metrics. To define congestion events, which are not spec-
ified in the original dataset, we calculate the average load of
each link over all time slots as a constant value, and then
multiply it by a threshold factor denoted by β. If the load
of a link l exceeds this threshold in a specific time slot t,
we regard this link as congested, i.e., Cl(t) = 1. In this way,
we can emulate different levels of link capacity constraints by
adjusting the β value. The same approach was used in [7].

One common metric to measure the prediction ability is
the accuracy. However, the dataset is not balanced, where
congestion events usually account for less than 10% among
all records. Therefore, we also report the precision and recall
rate metrics. Besides, we measure the F1 score, which is the
harmonic mean of the precision and recall, as well as the Area
under the Precision-Recall Curve (AUC) metric [16].

Algorithms. We deploy a GAT model with three attention
layers. In each layer, there are K = 8 attention heads with
an Exponential Linear Unit (ELU) activation function. The
number of output features per head (F ′) are 8, 6 and 4 for the
first, second and third layer, respectively. We adopt a similar
approach as in [17], concatenating the outputs of all heads
together with the original input features of this layer. Finally,
we add an output layer with sigmoid activation function to
generate a binary prediction for each link.

We train the neural network with the Adam optimizer [18].
During the training process, we monitor the AUC metric of
the validation set and stop training when the AUC cannot
be further improved. The network architecture as well as the
estimation of AUC are implemented using TensorFlow [12]
and Spektral [19].

In order to show the advantages of our method, we im-
plement several state-of-the-art algorithms to compare with,
including the Multi-Layer Perceptron (MLP), which only con-
tains fully-connected neural network layers, and the Convolu-
tional Neural Network (CNN). We also consider a recurrent
architecture, the Long Short-Term Memory (LSTM), which
is adopted in [6] for traffic prediction. To ensure a fair
comparison, we deploy the above state-of-the-art algorithms
with similar depth (three layers) and amount of trainable
parameters as our algorithm. We also consider more traditional
methods without the usage of neural networks. We implement
the k-nearest neighbors algorithm (KNN), which is used for
network traffic analysis [31] by comparing the input vector
with the most similar samples in the training set. The details
of the implementation of all algorithms can be found online
in our publicly available code in [30], which ensures the
reproducibility of all the evaluation results presented in this
paper. In the next three subsections, we present the evaluation
results on performance, generalizability and interpretability,
respectively.

B. Performance

We evaluate the performance of the above algorithms on
the Abilene dataset for different threshold factor values from
β = 1.5 to β = 3.0. The results are summarized in Table I. We
observe that in all cases GAT achieves the highest prediction

β Method Accuracy Precision Recall F1 Score AUC

1.5
GAT 0.9605 0.8246 0.7441 0.7822 0.8354
MLP 0.9483 0.7254 0.7350 0.7302 0.7590
CNN 0.9522 0.7874 0.6818 0.7308 0.7952
LSTM 0.9538 0.7991 0.6879 0.7393 0.7937
KNN 0.9500 0.8118 0.6176 0.7015 N/A

2.0
GAT 0.9763 0.8060 0.6463 0.7173 0.7544
MLP 0.9711 0.7042 0.6494 0.6757 0.6564
CNN 0.9722 0.7676 0.5757 0.6580 0.7032
LSTM 0.9709 0.6844 0.6929 0.6887 0.7160
KNN 0.9751 0.8237 0.5913 0.6884 N/A

2.5
GAT 0.9819 0.6649 0.6673 0.6661 0.6802
MLP 0.9801 0.6511 0.5712 0.6085 0.5426
CNN 0.9816 0.7217 0.5214 0.6054 0.6120
LSTM 0.9812 0.6982 0.5391 0.6084 0.6320
KNN 0.9833 0.7851 0.5267 0.6305 N/A

3.0
GAT 0.9876 0.7238 0.5729 0.6396 0.6581
MLP 0.9853 0.6332 0.5553 0.5917 0.4933
CNN 0.9870 0.7529 0.4824 0.5881 0.5806
LSTM 0.9854 0.6361 0.5578 0.5944 0.5563
KNN 0.9883 0.8112 0.5075 0.6244 N/A

Table I
COMPARISON OF ALGORITHMS PERFORMING CONGESTION PREDICTION

WITH DIFFERENT THRESHOLD FACTORS IN THE ABILENE NETWORK.

accuracy compared with the MLP, CNN and LSTM methods.
Although KNN reaches slightly better accuracy when β = 2.5
and 3.0, in such cases, the larger threshold factor value β
implies a scenario where there is less limitation on the link
capacity and so congestion happens less frequently. In other
words, the dataset is largely biased, where the overall accuracy
becomes less important. In addition to it, we should also
prevent the algorithm from raising false alarms. Therefore,
we also investigate the ability of the algorithms to achieve
a trade-off between precision and recall. By setting different
thresholds to the output layer, we plot the precision-recall
curves in Figure 4. We observe that for the same precision,
our GAT algorithm can always achieve higher recall rates
than other methods, and vice versa. This is also indicated by
the F1 score and AUC, where GAT has the best performance
for all β values in Table I. We note that the KNN algorithm
outputs binary values rather than probabilities and therefore
is not capable of realizing the trade-off between precision
and recall. For this reason, precision-recall curves and AUC
calculation are not applicable and are not reported in Table I
and Figure 4.

It is worth noting that the performance values of the CNN
and LSTM algorithms we report in Table I are much better
than those for the same algorithms reported in [7] which used
the same dataset (Abilene) and the same setup with our work
in its evaluation, implying that our implementation of these
algorithms (number of layers and parameters) is more efficient
(and therefore the comparison with our algorithm is more fair).
Besides, [7] proposed an algorithm named DCRNN (Diffusion
Convolutional Recurrent Neural Network) which for the same
setup was shown to achieve worse performance than our GAT
algorithm (0.9667 accuracy and 0.5414 F1 score for β = 3.0).

Although we focus on generating binary congestion indi-
cators, our method can be easily extended to other types
of predictions, such as the multiclass classification or even

GAT
MLP
CNN
LSTM

Pr
ec
is
io
n

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall
0.4 0.5 0.6 0.7 0.8 0.9 1

(a) β = 1.5.

GAT
MLP
CNN
LSTM

Pr
ec
is
io
n

0.4

0.5

0.6

0.7

0.8

0.9

Recall
0.3 0.4 0.5 0.6 0.7 0.8

(b) β = 3.0.

Figure 4. The precision-recall trade-off curves for different threshold factor values in the Abilene network.

GAT
MLP
CNN
LSTM
KNN

F-
1

Sc
or

e

0.7

0.75

0.8

0.85

0.9

Time Granularity (min)
5 10 20 40

(a) Impact of time granularity on F1 scores.

GAT
MLP
CNN
LSTM

A
re

a
un

de
r t

he
 C

ur
ve

 (A
U

C
)

0.75

0.8

0.85

0.9

0.95

Time Granularity (min)
5 10 20 40

(b) Impact of time granularity on AUC values.

Figure 5. Evaluation results with different time granularity in the Abilene network (β = 1.5).

Method GAT MLP CNN LSTM
RMSE 0.7059 0.8226 0.7518 0.7655
MAE 0.2601 0.2797 0.3107 0.2779

Table II
COMPARISON OF ALGORITHMS PERFORMING REGRESSION IN THE

ABILENE NETWORK.

regression, where the algorithm outputs specific traffic load
values of the future time slots. For example. in Table II we
deploy the same types of neural networks but train them
with the output Cl(t + 1) replaced by Xl(t + 1). Similar
to the classification approach all values are divided by the
average load of link l. Our goal is to minimize the root mean
squared error (RMSE) between the predicted value and the
ground truth. The results indicate that our GAT method can
reach a much smaller error than the other algorithms. At the
same time, the performance is also superior on the mean
absolute error (MAE), which is another common measure of
predictions.

So far, we focus on per-hour traffic matrices of the Abi-
lene network to facilitate the comparison with other network
topologies, which will be presented in the next subsection.
However, we emphasize that our method can be applied to

make predictions with different time scales. In Figure 5, we
process the same dataset into traffic matrices of different
granularity, from 5 min to 40 min, and measure the F1 scores
and AUC values again. The results demonstrate that errors
of short-term predictions are smaller than the long-term ones,
while the GAT has better performance than other algorithms
in general.

C. Generalizability across Different Topologies

GAT is known for its inductive learning ability (also known
as generalizability). In other words, the prediction can be per-
formed in graphs that never appeared in the training set. This
is usually not true for traditional neural network architectures,
including the MLP, CNN and LSTM. Indeed, when a new
graph with a different number of vertices is the input data,
it requires a weight matrix of a different size in each MLP,
CNN and LSTM layer. Even if the new graph happens to
have the same size with the original graph that training took
place, we cannot expect good performance because all the
neuron weights are bound to specific vertices in the training
set, rather than the new graph. On the other hand, the GAT
model alleviates this issue since it concerns only with the
feature values of each pair of vertices when calculating the
attention coefficients, rather than their actual indices.

1 5 9 13 17 21 25 29
Link Index u

1
5

9
13

17
21

25
29

Lin
k

In
de

x
v

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

(a) Full topology.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Link Index u

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
Lin

k
In

de
x

v

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

(b) Partial topology with links in one direction.

Figure 6. The heat map of average attention coefficients in the Abilene topology. (a) All links are displayed. (b) We zoom-in on the links in one direction
marked in Figure 3(a).

Test Set
Training Set Abilene BRAIN GEANT

Abilene 0.9605 0.7803 0.9505
BRAIN 0.9182 0.9402 0.9023
GEANT 0.9406 0.9168 0.9584

Table III
ACCURACY WHEN PERFORMING TRAINING AND TESTING ACROSS

DIFFERENT GRAPHS.

In order to verify the generalizability of congestion pre-
diction across different topologies by our GAT algorithm, we
apply the same training process as in the previous subsection
to additional network traffic datasets, BRAIN and GEANT. In
each experiment, we train the GAT model with one of these
three datasets, and test it with another dataset. We measure
the accuracy, F1 score and AUC performance metrics for all
nine combinations. The results are presented in Table III, IV
and V, respectively. Compared with the diagonal elements in
these tables for which the training and test sets are identical,
the accuracy of our GAT algorithm remains at a high level,
with small loss in most cases. The results of F1 score and
AUC are similar, except the interaction between Abilene and
BRAIN where the performance drops more notably. This may
be attributed to the fact that the BRAIN network contains a
much larger number of links than Abilene (332 versus 30
links), and has quite different distribution of node degrees,
further challenging the generalization capability of GAT [27].
Especially, training with the Abilene dataset leads to only
3.4% lower F1 score and 16.9% lower AUC when testing
with the GEANT dataset, compared with the case where the
model is trained with GEANT dataset itself.

D. Attention and Interpretability

Besides improving the performance and making the model
generalizable to different topologies, the attention mechanism
of the GAT model also brings some interpretability to the net-

Test Set
Training Set Abilene BRAIN GEANT

Abilene 0.7822 0.4422 0.7963
BRAIN 0.2605 0.7462 0.3966
GEANT 0.6446 0.6484 0.8243

Table IV
F1 SCORES WHEN PERFORMING TRAINING AND TESTING ACROSS

DIFFERENT GRAPHS.

Test Set
Training Set Abilene BRAIN GEANT

Abilene 0.8354 0.2861 0.7351
BRAIN 0.3886 0.8130 0.5218
GEANT 0.7169 0.5980 0.8844

Table V
AUC WHEN PERFORMING TRAINING AND TESTING ACROSS DIFFERENT

GRAPHS.

work operator. By comparing the value αvu of each adjacent
link u ∈ Φ(v), we are able to figure out which links have
a stronger impact on the prediction for the congestion events
happening on link v. As an example, we plot the αvu values of
each pair of links in the Abilene dataset when β = 1.5 in a heat
map, as depicted in Figure 6(a). Here, we take average values
over all attention heads of the first attention layer, and over
all input samples of the test set. Figure 6(b) is the same graph
where we zoom in and only keep the links in one direction (the
15 links marked in Figure 3(a)). It indicates that besides the
link itself (i.e., the diagonal element), it is common that some
adjacent links may raise a strong attention when predicting a
link’s congestion. In this way, it is possible for the network
operator to understand the decision of the learning model and
trace the congestion events to some extent.

While we always have
∑

u αvu = 1 for each link v,
we can also calculate the value of

∑
v αvu, which reflects

the total impact a link u exerts on the whole network. We
refer to this value as the attention score, and depict it in the

A
tte

nt
io

n
Sc

or
e

0.6

0.8

1

1.2

1.4

1.6

Link Index
5 10 15 20 25 30

Figure 7. Importance of links in Abilene network by summing up the attention
coefficients a link contributes to other links.

Training Set Accuracy Precision Recall F1 Score AUC
Full Abilene
Topology 0.9605 0.8246 0.7441 0.7822 0.8354

15 Links with
Low Scores
Removed

0.9531 0.8017 0.6748 0.7328 0.7884

15 Links with
High Scores
Removed

0.9410 0.7389 0.5883 0.6550 0.6711

Table VI
THE IMPACT ON PERFORMANCE METRICS WHEN MASKING SOME LINKS

OUT OF THE TRAINING SET.

Figure 7. The score varies a lot from about 0.8 to 1.4, implying
that some links play a more important role than others in
the congestion prediction. To verify this intuition, we design
another experiment scenario where the traffic traces of half
links are masked off (removed) from the training set, while the
tests are still performed on the complete topology. As shown
in Table VI, if we remove the 15 links with the lowest attention
scores from the training set, there is only a minor performance
loss (6.3% in F1 score and 5.6% in AUC) compared with the
complete training set. However, if we remove the 15 links with
the highest attention scores, both F1 score and AUC reduce a
lot.

Such information revealed by the attention mechanism is
especially useful when the resources for network monitoring
are limited, since network monitoring usually introduces non-
negligible additional traffic overheads. By using such infor-
mation, a network operator can gain similar performance of
congestion prediction by monitoring and collecting network
statistics from only a subset of all network links (those with
the highest attention scores).

V. RELATED WORK

A. Network Traffic Prediction

Accurately capturing and predicting the traffic dynamics in
a network is of utmost importance for network operators and
has become prerequisite in many advanced traffic control and
management practices. Related works have proposed several

Topology
exploitation

Generalizability Interpretability

x
Our workx

x
[7]

[6,20,21,22,24,25]

x
[26,27,28]

x
[23]

Figure 8. Classification of related works. Our work in this paper is the only
one fulfilling all three design goals at the same time.

Machine Learning-based methods targeting different variants
of this problem.

The most well-investigated variant is the prediction of
traffic matrices in a network from previous ones, a task that
can be performed with Recurrent Neural Networks (RNNs)
equipped with Long Short-Term Memory (LSTM) units [6],
combinations of convolutional neural networks (CNNs) and
RNNs (to extract both spatial and temporal information from
the traffic flows for better prediction accuracy) [20], LSTM
models with autocorrelation coefficients [21], combinations of
Gated Recurrent Units (GRU) and CNNs [22], and Attention-
based Convolutional Recurrent Neural Network models (able
to capture intra-flow dependencies and inter-flow correlations)
[23].

A second variant of the problem targets the prediction of the
link loads in a network. We note that we cannot directly infer
the link loads from a traffic matrix, because link loads are also
affected by the network topology and routing strategies. There-
fore, this is a different problem. Previous works addressed this
problem by using Support Vector Machine (SVM) [24], and
Diffusion Convolution Recurrent Neural Network (DCRNN)
[7] methods.

While traffic matrix and link load predictions are kinds
of regression problems, another question is how to predict
congestion events in a network which is a classification kind
of problem. This problem can be addressed by solving first
the regression problem of predicting the link load values and
then defining a threshold above which the load is regarded as
overflowing causing congestion (e.g., see [7]). Alternatively,
a neural network can be trained directly to output the binary
classification result, as modeled in [25]. In our evaluation, we
considered both the classification and regression versions of
the problem.

Despite relevant and interesting, the above methods neither
exploit the topological information for better predictions (with
the exception of [7]), nor generalize over topologies unseen
during training (which is a capability of graph-based NNs), nor
provide any mechanism for interpretation (with the exception
of [23]). A classification of the related works is illustrated in
Figure 8.

B. Graph-based Neural Networks

Graph-based NNs have been applied to networking applica-
tions in the past to benefit from their ability to generalize over
topologies unseen during training [26], [27], [28]. Neverthe-
less, these works focused on routing applications rather than
prediction of traffic. Besides, none of these works considered
the specific GAT model which has extra benefits, including
the attention mechanism which facilitates interpretability of
the decision-making process.

C. Interpretability of Neural Networks

For completeness, we note that there exist several other
methods for achieving interpretability of the DNN model,
including saliency maps based on gradients methods [29].
Nevertheless, the GAT model offers intermediate represen-
tations (attention coefficients) that can be directly used for
interpreting the decisions.

Overall, while the area of network traffic prediction is
well-investigated, the application of graph-based NN models
in general and the GAT model in particular is novel and
promising as we showed by our evaluation results in Section
IV.

VI. CONCLUSION

In this paper, we employed a recently developed graph-
based DNN model, the GAT, to address fundamental limita-
tions of other models in literature when applied to networking
applications. We demonstrated the power of this model for a
fundamental application of predicting congestion events in a
network. Evaluations on three real networks showed superior
prediction accuracy compared to four state-of-the-art learning
methods with a small loss in accuracy when generalizing to
a topology of similar size to the original topology the model
was trained. However the generalizability has a limit and the
loss may be larger for networks of much different sizes and
structures. The information revealed by the GAT’s attention
mechanism can be useful to network operators for designing
practical lightweight network monitoring solutions. As a topic
of future work, we plan to investigate and compare with
alternative interpretability methods (such as saliency maps) for
the same congestion prediction application, as well as extend
our work for additional networking applications.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning”, Nature, vol. 521,
pp. 436–444, 2015.

[2] M. Leshno, V.Y Lin, A. Pinkus, S. Schocken, “Multilayer Feedforward
Networks with a Nonpolynomial Activation Function Can Approximate
Any Function”, Neural networks, vol. vol 6, no. 6, pp.861–867, 1993

[3] H. Mao, R. Netravali, M. Alizadeh, “Neural Adaptive Video Streaming
with Pensieve”, ACM Sigcomm, 2017.

[4] H. Mao, M. Schwarzkopf, S. Bojja Venkatakrishnan, Z. Meng, M. Al-
izadeh, “Learning Scheduling Algorithms for Data Processing Clusters”,
ACM Sigcomm, 2019.

[5] A. Valadarsky, M. Schapira, D. Shahaf, A. Tamar, “Learning to Route”,
ACM HotNets, 2017.

[6] A. Azzouni, G. Pujolle, “NeuTM: A Neural Network-based Framework
for Traffic Matrix Prediction in SDN”, NOMS 2018.

[7] D. Andreoletti, S. Troia, F. Musumeci, G. Silvia, G.A. Maier, M.
Tornatore, “Network Traffic Prediction based on Diffusion Convolutional
Recurrent Neural Networks”, IEEE Infocom, 2019.

[8] Y. Zheng, Z. Liu, X. You, Y. Xu, J. Jiang, “Demystifying Deep Learning
in Networking”, ACM Sigcomm APNet Workshop, 2018.

[9] Z. Meng, M. Wang, J. Bai, M. Xu, H. Mao, H. Hu, “Interpreting Deep
Learning-based Networking Systems”, ACM Sigcomm, 2020.

[10] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang and P. S. Yu, “A
Comprehensive Survey on Graph Neural Networks”, IEEE Transactions
on Neural Networks and Learning Systems, vol. 32, no. 1, pp. 4-24, Jan.
2021.

[11] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y.
Bengio, “Graph Attention Networks”, ICLR, 2017.

[12] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A System for Large-scale
Machine Learning”, USENIX OSDI, 2016.

[13] F. Scarselli, M. Gori, A.C Tsoi, M. Hagenbuchner, G. Monfardini, “The
graph Neural Network Model”, IEEE Transactions on Neural Networks
vol. 20, no. 1 pp. 61-80, 2009.

[14] L.B. Almeida, “Artificial Neural Networks”, IEEE Press, Piscataway,
NJ, USA, Chapter A Learning Rule for Asynchronous Perceptrons with
Feedback in a Combinatorial Environment, pp. 102–111, 1990.

[15] S. Orlowski, M. Pioro, A. Tomaszewski, R. Wessaly, “SNDlib 1.0—Sur-
vivable Network Design Library”, Networks: An International Journal,
vol. 55, no. 3, pp. 276-286, 2010.

[16] T. Fawcett, “An Introduction to ROC Analysis”, Pattern Recognition
Letters, vol. 27, no. 8, pp. 861–74, 2006.

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez,
L. Kaiser, I. Polosukhin, “Attention Is All You Need”, Advances in neural
information processing systems, pp. 5998-6008, 2017.

[18] D.P. Kingma, J. Ba. “Adam: A Method for Stochastic Optimization”,
arXiv preprint arXiv:1412.6980, 2014.

[19] D. Grattarola, C. Alippi, “Graph Neural Networks in Tensorflow and
Keras with Spektral”, arXiv preprint arXiv:2006.12138, 2020.

[20] Y. Liu, H. Zheng, X. Feng, Z. Chen, “Short-term Traffic Flow Prediction
with Conv-LSTM”, WCSP, 2017.

[21] S. Xiang, Y. Qin, C. Zhu, Y. Wang, H. Chen, “Long Short-term Memory
Neural Network with Weight Amplification and its Application into Gear
Remaining Useful Life Prediction”, Engineering Applications of Artificial
Intelligence, vol. 91, 2020.

[22] X. Cao, Y. Zhong, Y. Zhou, J. Wang, C. Zhu and W. Zhang, “Interactive
Temporal Recurrent Convolution Network for Traffic Prediction in Data
Centers”, IEEE Access, vol. 6, pp. 5276-5289, 2018.

[23] K. Gao, D. Li, L. Chen, J. Geng, F. Gui, Y. Cheng, Y. Gu, “Incorporating
Intra-flow Dependencies and Inter-flow Correlations for Traffic Matrix
Prediction”, IEEE/ACM IWQoS, 2020.

[24] P. Bermolen, D. Rossi, “Support Vector Regression for Link Load
Prediction”, Computer Networks, vol. 53, no. 2, pp. 191-201, 2009

[25] E. Rapaport, I. Poese, P. Zilberman, O Holschke, R. Puzis, “Predicting
Traffic Overflows on Private Peering”, arXiv preprint arXiv:2010.01380,
2020.

[26] K. Rusek, J. Suárez-Varela, A. Mestres, P. Barlet-Ros, A. Cabellos-
Aparicio, “RouteNet: Leveraging Graph Neural Networks for Network
Modeling and Optimization in SDN”, IEEE Journal on Selected Areas in
Communications, vol. 38, no. 10, pp. 2260-2270, 2020.

[27] J. Suárez-Varela, S. Carol-Bosch, K. Rusek, P. Almasan, M. Arias,
P. Barlet-Ros, A. Cabellos-Aparicio, “Challenging the Generalization
Capabilities of Graph Neural Networks for Network Modeling”, ACM
SIGCOMM Conference Posters and Demos, 2019.

[28] P. Almasan, J. Suárez-Varela, A. Badia-Sampera, K. Rusek, P. Barlet-
Ros, A. Cabellos-Aparicio, “Deep Reinforcement Learning Meets Graph
Neural Networks: Exploring a Routing Optimization Use Case”, arXiv
preprint arXiv:1910.07421, 2019.

[29] J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow, M. Hardt, B. Kim,
“Sanity Checks for Saliency Maps”, NeurIPS, 2018.

[30] https://www.dropbox.com/s/ghetqx9mczts1vc/gat congestion
prediction.zip

[31] L. Jun, Z. Shunyi, L. Yanqing, Z. Zailong, “Internet traffic classification
using machine learning”, Second International Conference on Communi-
cations and Networking in China, pp. 239-243, 2007.

[32] S. Floyd, “TCP and explicit congestion notification”, ACM SIGCOMM
Computer Communication Review, vol. 24, no. 5, pp. 8-23, 1994.

