
Loss-freedom, Order-preservation and No-buffering:
Pick Any Two During Flow Migration in Network

Functions
Radhika Sukapuram∗, Ranjan Patowary†, Gautam Barua‡

∗‡ Indian Institute of Information Technology Guwahati, India † Central Institute of Technology Kokrajhar, India
Email: ∗radhika@iiitg.ac.in, †r.patowary@cit.ac.in, ‡gb@iiitg.ac.in

Abstract—Network Functions (NFs) provide security and op-
timization services to networks by examining and modifying
packets and by collecting information. When NFs need to be
scaled out to manage higher load or scaled in to conserve energy,
flows need to be migrated from one instance of an NF, called the
source instance, to another, called the destination instance, or
from one chain of instances to another chain of instances. Before
flows are migrated, the state information associated with the
source instance needs to be migrated to the destination instance.
Packets that arrive at the destination instance meanwhile need
to be either buffered or dropped until the state information is
migrated, for correct functioning of some stateful NFs, while for
some others, the destination NF may continue to function. We
define the properties of Loss-freedom, where the flow migration
system does not drop packets, No-buffering, where it does
not buffer packets, and Order-preservation, where it processes
packets in the same manner as the source NF, if there was no
flow migration. We formalize these properties, for the first time,
and prove that it is impossible for a flow migration algorithm
in stateful NFs to guarantee satisfying all three of the properties
of Loss-freedom (L), Order-preservation (O) and No-buffering
(N) during flow migration, even if messages or packets are
not lost. We demonstrate how existing algorithms operate with
regard to these properties and prove that these properties are
compositional.

Index Terms—Network Functions, Flow Migration, Loss-
freedom, Order-preservation, No-Latency, Service Functions

I. INTRODUCTION

Middleboxes provide security to a network and optimize
network services by inspecting, modifying and forwarding
packets. For optimum performance, independence from ex-
pensive and proprietary hardware, and easy scaling, there is
extensive research on implementing them in software on high
performing servers, as Network Functions (NFs) [1] (also
called Service Functions). In addition to middleboxes, it is also
convenient to implement network components such as Evolved
Packet Core (EPC) or Mobility Management, in software [2],
or application specific functions such as Video Decoding,
Screen Rendering etc. [3], for the same reasons.

NFs are chained in a partial order, describing a sequence
in which packets may traverse them. These chains are called
Service Function Chains (SFCs) [1]. When an NF instance
is scaled out to reduce its load, the flows existing on that
NF instance are migrated to another instance of that NF [4]–
[10], as early as possible. Flows may be migrated from one

or more NF instances, even from an entire SFC [11], possibly
simultaneously. Flows will also need to be moved when NF
instances are consolidated. The NF instance from which a flow
is being migrated is called a source NF instance, or source NF,
and the NF instance to which it is being migrated is called a
destination NF instance, or destination NF.

A flow is a finite sequence of packets that have the same
values for a set of headers1. The set of values associated
with one or more structures or objects internal to an NF
and related to a flow (or a set of flows) forms a state [4].
For correct functioning, NFs are required to maintain state
information on a per-flow basis or across flows. For example, a
stateful firewall may be used to ensure that connections can be
initiated only from inside the network that the firewall protects.
When such a connection is initiated, the firewall keeps state
information corresponding to this flow so that when a packet
belonging to this flow comes from outside the network, it
can be allowed in. Therefore when flows are migrated from
one NF to another, the states associated with these flows
also need to be migrated. In fact, when flows traverse a set
of switches that maintain state (for example, programmable
switches), the states associated with these switches also need
to be migrated [12].

When flows are migrated from an NF instance to another,
the destination NF receiving packets of the migrated flow
may not have enough information to process the packets if
associated state is not migrated before the packets are received
(such as in a firewall). Packets such as these must not be
dropped on account of flow migration. We call this property
Loss freedom. It is not unusual for packets to be dropped on
networks — however, a flow migration resulting in packet
drops could be used to trigger attacks, besides increasing ap-
plication latency. In SFCs (modeled as directed graphs), there
could be situations where packets are cloned and forwarded to
off-path NFs [6]. If a packet that is traversing a set of switches
along its intended path is dropped, it may be re-transmitted
depending on the protocol used or the applications involved.
However, if the packets that are cloned and sent to off-path
NFs are dropped, they are irrecoverably lost and would never
reach the intended NF, potentially causing security issues [13].

1For example, the set of headers may be the 5-tuple of source IP address,
destination IP address, source port, destination port and protocol978-1-6654-4131-5/21/$31.00 ©2021 IEEE

Fig. 1. Example of a Network Address Translator

Therefore preserving Loss-freedom is of interest.
Another option to deal with packets that arrive at the new

NF instance before state information is migrated to it is to
buffer them at the controller [4], at the NFs [14] or even at
switches that have large buffers [15]. Alternatively, states are
located on a remote common server [16] and they are updated
by all NFs - this would also entail packet buffering. Another
alternative is to implement states in a distributed manner [5],
[17], also requiring packet buffering to retrieve or update
states. NF instances may cache states as and when required
[6]. If states are unavailable in caches, packets will need to
be buffered until states are available. Packet buffering causes
latency, which may cause violation of SLAs, and increased
storage requirements. While the seminal work of OpenNF [4]
requires packets to be buffered at the controller, TFM [14]
reduces the total buffer requirements during migration and
buffers packets at the NFs. For example, for 100 flows, each of
1000 pps, 139792 packets are buffered for OpenNF while for
TFM, only 4770 packets are buffered [14]. Other attempts to
reduce buffer sizes during migration are explained in detail in
Section VII. Ideally, there should be no need to buffer packets
at all. We call this property No-buffering.

Consider an NF such as a Network Address Translator
(NAT) in Fig. 1. Assume that a NAT instance NF1a receives
a SYN of a TCP flow from its internal network. It updates the
source address and source port number of SYN, denoted as
y1, stores these values against the original source address and
port number, denoted as x1, and sends the SYN out. After
the TCP handshake is over, when a packet p1 arrives from
the internal network, NF1a updates the source address and
source port number to the one stored for this flow. If the flow
is migrated to NF1b, another NAT instance, and the order
of arrival at NF1b of the stored state information at NF1a

(denoted as state[x1, y1]), and the next packet of the flow p2,
is not maintained, then p2 will need to be buffered or dropped.
Thus, for 5-tuple-modifying (source IP address, source port,
destination IP address, destination port and protocol) NFs such
as NATs, the state of the destination NF must be consistent
with that of the source NF before it processes the packets
received. In other words, the flow migration system containing
the source and destination NFs must process packets of a flow
in the same manner that the source NF would have processed

them in the absence of migration. If so, the flow migration
system is said to be Order-preserving.

Consider another example. Deep Packet Inspectors (DPIs)
such as signature-based Intrusion Detection Systems and ex-
filtration checkers require total ordering of packets within a
flow [18] because they can be used to classify flows based on
patterns found in the payloads of packets. For example, packets
that contain requests for small objects in a database could be
sent over low-latency paths while requests for large objects
may be sent over paths with high bandwidth. A pattern that
is being searched may be spread across the payloads of two
or more packets. Therefore, if packet-order is not maintained,
packets will need to be buffered and processed in the correct
order. If deep packet inspection is being done for purposes
of security, it is important to perform matches that cross
packet boundaries. If that is not done, an adversary could split
malicious content across packet boundaries to evade detection.

Assume that NF1a and NF1b in Fig. 1 are DPIs. In order to
process packets in order, the state of the destination NF must
be consistent with that of the source NF before it processes
packets received by it and it must receive packets in order.
Re-ordering packets reaching NF1b can be a strategy by an
adversary to increase the load on the buffer in NF1b and render
it dysfunctional. In addition to preserving Order, if a flow
migration system requires that packets are processed by it in
the order in which they arrive at its input, it is said to preserve
Strict-ordering.

Suppose NF2a in Fig. 1 is a Deep Packet Inspector while
NF1a and NF1b are instances of a NAT. For packets to
be received in order at NF2a, the flow migration system
containing NF1a and NF1b must not re-order packets. That is,
the packets that cross the boundary of the system, shown by the
dotted line, must be in the order of timestamps (timestamped
by the flow migration system at its entry), which is another
property of flow migration. We call this property External
order (E). This property ensures that a flow migration system
outputs packets of a flow in the same manner that the source
NF would have output them in the absence of migration.
Suppose there are packets that do not cause state updates in
the input and a subset of them are processed by the source
NF and the remaining by the destination NF. These packets
may not be output necessarily in the order of their entry into
the network, even if the flow migration is Order preserving or
Strict-order preserving.

Existing solutions for flow migration achieve Loss-freedom
(L) and Strict-Order-preservation (SO) [4], [6]–[10] or only
Loss-freedom with reduction in the buffer size required [13]
or provide workable solutions that guarantee low latency,
minimum buffering and weak but sufficient consistency [5],
[17]. There is no solution that achieves No-buffering (N), and
no solution discusses preserving the order of packets that exit
a flow migration system (E). All the properties are desirable.
This is the first work that formalizes these properties, as far as
we know. These are the questions we wish to explore in this
paper: Is it possible to have a flow migration algorithm that
guarantees to preserve Loss-freedom (L), Order (O) and No-

Fig. 2. Example of a stateful firewall

buffering (N) simultaneously? What are the characteristics of
each of these properties? How are External-order preservation
(E) and SO related to O?

We illustrate that the three properties L, O and N cannot
be guaranteed to be satisfied during flow migration, even if
packets and messages are not lost. The same is true for L,
SO and N too. The properties to be preserved will depend on
the NFs, as will be illustrated in the next section. Answering
the questions posed is useful because the algorithm to be
used for flow migration may be tailored for the properties
that must be preserved, which in turn depend upon the set
of NFs participating in the migration, instead of the general
“one-size-fits-all” approach followed currently. We prove that
all the properties are compositional. Whenever a property of
flow migration is referred to, the first letter is capitalized.

II. MOTIVATING EXAMPLES

We cannot preserve all of Loss-freedom (L), Order-
preservation (O) and No-buffering (N) during migration of
flows from a set of NF instances to another set of NF instances
when the NFs are stateful. Consider Fig. 1, regarding flow
migration from one instance of a NAT NF1a, to another
instance, NF1b. If we forgo L at NF1b, upon receiving p2,
NF11b may drop p2 and subsequent packets until it gets the
required state information, thus preserving Order (O) and No-
buffering (N). If we forgo N at NF1b, NF1b (or a switch
connected to it, the controller or any other node) may buffer p2
and subsequent packets until it receives state[x1, y1] and then
it can forward p2, thus preserving Order of packets (O) and
Loss-freedom(L). If we forgo Order-preservation (O), NF1b

can send p2 immediately, preserving L and N, but it will not
be meaningful for this example. For this, let us consider the
example of a stateful firewall, in Fig. 2.

A stateful firewall NF1a is protecting a network. Bi-
directional flows can be originated only from inside the
network that the firewall protects — once a flow originates
from inside and the firewall updates its state, traffic can flow
in both directions. Assume that a flow that has originated
inside the network (SYN is already sent through the source NF
instance) needs to be migrated from a firewall instance (NF1a)
to another instance (NF1b). Assume that state[x1], where x1

denotes the identifier of a flow, is not yet migrated to NF1b.
When a packet p1 is received at NF1b, it can forward p1 as it

Fig. 3. System Model for NF State Migration

can check if it has originated from within the network. NF1b

can forward packets of this flow, destined inward, from outside
the network too. If no state associated with x1 is received
from NF1a after waiting for a suitable amount of time, NF1b

can drop further packets belonging to x1, if it receives any.
Packets can continue to be forwarded while waiting for state
information. Thus L and N are preserved here, but not O.

To illustrate one of the ways in which the impossibility
result may be used, consider the example of an SFC which
consists of a DPI followed by a NAT. Let us assume that the
load on a particular NAT instance in this chain is high and that
some of the flows need to be moved to a new NAT instance
such that O is not to be preserved, as described above. Let us
also assume that buffer availability is low at the controller or
at any of the NAT instances. For this, an algorithm that forgoes
O and preserves L and N may be devised. Another application
of the result is devising an algorithm that weakens one or more
properties such that preserving all the weakened properties is
guaranteed. How to formally specify weakening each property
or set of properties such that all the weakened properties
are preserved, is an open problem. How existing algorithms
attempt weakening of the stated properties to achieve their
goals is described in Section VII.

III. FORMAL MODEL

States that are updated exclusively by a flow are discussed in
this paper and common states updated by more than one flow
(for example, counters) are outside the scope of discussion.
If a set of flows are migrated together because they share
common states, such as proxies that consolidate multiple TCP
connections into one connection, that is within the scope of
discussion.

During migration of a flow, an NF is a tuple M =
(Q,P, f, q0, F,M,U) where

• Q is the set of states of the NF for a particular flow (Note:
a state is a set of values).

TABLE I
LIST OF SYMBOLS USED

Symbol Meaning
fl The flow being migrated
NF1a (NF1b) Source (Destination) NF instance
NF1 An ideal NF
P The sequence of packets entering a flow migration

system
P1 (P2) The sequence of packets entering the source (destina-

tion) NF
P1 ⊕ P2 The actual sequence of packets entering the source and

destination NFs, in the order of timestamps
pi A packet belonging to P

si A sequence of output packets corresponding to an
input packet

qi An NF state
m(k, qi) Message sent to NF instance k with state qi
Pδ Output of an ideal NF when the input is P1 ⊕ P2

Pδ Output of an ideal NF when the input is P

Q1 (Q2) The finite sequence of states created on the source
(destination) NF

QNF1
The finite sequence of states created on the ideal NF
when its input is P1 ⊕ P2

Q∗
1 (Q∗

2) A subset of Q1 (Q2)
P ∗
1δ (P ∗

2δ) The sequence of packets output by the source (desti-
nation) NF

P ∗
δ The sequence of packets output by the flow migration

system, in order of being output: P ∗
1δ ⊞ P ∗

2δ

X̂ A set representing the elements of X

• q0 is the initial state, that is, the state of the NF before
migration begins

• P is a set of input packets
• Pδ is a set of output packets, including a ▽, indicating

no packet (explained ahead).
• M is a set containing a message m, including a ⊥,

indicating no message (explained ahead). m contains the
state of the NF sending the message and the identifier of
the destination NF.

• f : Q× P → (Pδ ×Q×M) is the transition function.
• U : M×Q → Q is the function that receives the message

sent by another NF and updates the current NF.

Symbols other than the ones defined above are listed in
Table I.

Let fl be the flow that is being migrated. Fig. 3 depicts
migration of this flow from NF1a, an instance of an NF called
NF1, to another instance of the same NF, NF1b. Let us assume
that both NF1 (Fig. 3 (a)) and NF1a have the same starting
state, q0. The system for NF migration, referred to as the
Flow Migration System (FMS), consists of an Action Manager
(AM), a State Migration Manager (SMM) and the source
(NF1a) and destination (NF1b) NFs. What is described is a
logical organization of FMS — in the general case, the source
and destination NFs are on different servers connected over a
network. AM manages the following actions on packets: drop,
buffer and nop (indicating no operation). AM also accords a

logical timestamp to each packet when it is received2. SMM
decides the NF instance to which a packet pi of the flow
fl must be sent to, and manages migration of state, if any,
from the source to the destination NF. To aid this, it may
instruct AM to drop or buffer packets or forward packets to
an NF instance, using messages to AM, NFs, both, and/or
other network nodes. AM will forward a packet without delay,
unless it is asked to buffer or drop it. SMM may also instruct
NFs to start and stop updating each other’s states. AM and
SMM may be co-located with NFs, switches or the controller,
or may be independent entities.

Let ≺ be a total order on the sequence of packets P =
⟨p1, p2, ..., pn⟩, belonging to fl, where ≺ denotes the order in
which packets enter FMS. As packets ⟨p1, p2, ..., pn⟩ enter the
NF, they are transformed to ⟨s1, s2, ..., sn⟩ (denoted as Pδ) ,
depending on the state at the NF. Transformation of packets is
by a function f(), where f(pi, qi−1) = ⟨si, qi,m(k, qi)⟩, 1 ≤
i ≤ n, where qi denotes the state of the NF. si = ⟨pδi1 , ..., pδic⟩
denotes a sequence of zero, one or more output packets. An
output packet may be obtained by altering the input packet (by
changing its header, for example). If there is no change, and
only one packet is output, si = ⟨pδi1⟩ = ⟨pi⟩. It is possible that
an NF drops an input packet, in which case no packet (⟨▽⟩)
will be output. Packets may get re-ordered after they enter the
network. Suppose FMS receives two packets, p2, p1, which
were re-ordered by the network before entering it. FMS itself
does not change their order. It may output ⟨▽⟩ corresponding
to p2 and ⟨pδ11 , pδ12⟩, corresponding to p1. In general, FMS
may output no packet, or one or more altered or unaltered
packets. It is possible that due to arrival of a packet, there is
no state change in an NF, that is, qi = qi−1. Pδ

3 is totally
ordered by ≺.

When a flow fl is to be migrated, SMM sends a message
to the source and destination NFs involved in the migration,
indicating start of flow migration. m(k, qi) denotes the mes-
sage sent to the other NF k involved in the flow migration and
qi denotes the state to be updated in the NF that receives the
message. An NF sends this during the start of migration to
send the initial state q0, and subsequently if only if and when
a state change occurs during flow migration. Updation of the
NF that receives the message is done by U(m, qx) = qj —
the NF receives m in state qx and updates it to state qj . SMM
informs both the source and the destination NFs when a flow
migration is complete, indicating end of flow migration, so
that they can stop updating each others’ states. If no packets
are being sent to the source NF after a point in time, SMM
can instruct the destination NF to stop updating the state of
the source NF, in which case no message (⊥) will be sent.

The sequence of packets that are received at the source
NF in Fig. 3(c), NF1a, is denoted by P1 and the sequence
of packets that are received at the destination NF, NF1b, is
denoted by P2. SMM may cause re-ordering of packets. Thus

2This is not a requirement on any flow migration algorithm and is only for
purposes of explanation

3The output of NFs is a sequence of a sequence of packets. For simplicity,
we denote it as a sequence of packets

P1 and P2 may not be in timestamp order. There may be
packets in P that are neither present in P1 nor in P2, as some
packets in P may be instructed to be dropped by SMM (if
Loss-freedom is not preserved). P1⊕P2 denotes a sequence
of packets that are present in P1 or P2 and ordered according
to their timestamps.

Fig. 3(a) depicts an NF instance, called NF1, that accepts
the sequence of packets P1⊕P2 and emits a modified sequence
of packets Pδ , while undergoing state transformations. Let the
sequence of state transformations for this sequence of packets
be Q1. An NF that does not drop, buffer or re-order packets
is called an ideal NF. NF1 in Fig. 3(a) and Fig. 3(b) are
ideal NFs. The sequence of states in NF1, denoted by QNF1

,
follows the total order ≺ of the sequence of packets P1 ⊕ P2

or P , as the case may be. The reason for two different inputs,
that is, P1 ⊕ P2 and P , is explained further ahead.

Let Q1 be the finite sequence of states created on NF1a and
Q2 on NF1b. SMM migrates Q∗

1, a subset of Q1, from NF1a

to NF1b and Q∗
2, a subset of Q2, from NF1b to NF1a

4 during
flow migration, depending on the flow migration algorithm
employed. It may instruct AM to buffer or drop packets or
both until the flow migration is complete. A subset of Q2 is
considered, as in some cases, only the latest state may need to
be migrated to the destination NF whereas in some others, after
a state is migrated, newer packets may cause state changes at
the source NF, requiring further state migrations.
P ∗
1δ denotes the sequence of packets output by NF1a and

P ∗
2δ denotes the sequence of packets output by NF1b. In

general, a packet pi, 1 ≤ i ≤ n is transformed to si by
NF1a or by NF1b. However, it is likely that some packets
were dropped by AM before reaching NF1a or NF1b, due
to the state migration algorithm used. Hence some packets
pi, 1 ≤ i ≤ n, may not be transformed to si by NF1a or
by NF1b. P ∗

δ = P ∗
1δ ⊞ P ∗

2δ denotes the sequence of packets
output by FMS . The order of packets in P ∗

δ is the order in
which packets in P ∗

1δ and P ∗
2δ arrive at the output of FMS,

represented symbolically by a queue in Fig 3(c). This may
not be in the order of packets in P . In Fig 3(a), the input
to NF1 is the union of P1 and P2, the actual sequence of
packets processed by either NF1a or NF2a, but in the order
of their timestamps (this may not contain all the packets in
P , as SMM may choose to drop some packets). Fig. 3(b)
represents an ideal NF whose input is P . P is the set of all
packets that may enter an FMS . The output then is Pδ .

The state migration model is applicable for all networks,
whether synchronous, asynchronous or partially synchronous
[19], as the model makes no assumptions with regard to these.

Definition III.1 (Order preservation (O)). Let Q1 be the finite
sequence of states created on NF1a and Q2 on NF1b between
the start and end of flow migration. Let QNF1 be the finite
sequence of states created on the ideal NF due to P1 ⊕ P2

4All flow migration algorithms, as far as we know, stop sending packets to
the source NF once flow migration begins. The model allows state movement
in both directions for generality.

(Fig. 3(a)). Migration of a flow fl from an NF instance NF1a

to NF1b is Order-preserving iff

1) Q1 is a prefix of QNF1 and
2) Q2 is a suffix of QNF1

Remark. Condition 1 (Condition 2) above ensures that all
state updates in the source (destination) NF are the same as
those in the ideal NF. The flow migration system processes
packets of a flow in the same manner that the source NF would
have processed them in the absence of migration.

Since Q1, Q2 and QNF1
are the sequence of states created

due to various packets, they do not include the initial state q0.
During state migration, as soon as a state update is performed
on NF1a, the same update must be performed on NF1b and
vice-versa. All updates in NF1a and NF1b must be in the
order in which states are updated in the ideal NF, NF1.

In Order Preservation, the packets sent to NF1a or NF1b

may not be in order, as long as the out of order packets do
not cause state changes. This is useful for NFs where every
packet need not result in a state change, such as certain NAT
implementations. In such NATs, packets other than the control
packets of a TCP flow need not cause state changes.

There is no requirement that to preserve Order packets must
not be dropped before they reach the source or destination NF.
The only requirement is that while comparing with the ideal
NF, the ideal NF must also receive the same packets that the
source and destination NFs receive.

As per this definition, it is possible that some states in the
ideal NF are missing from the source or destination NFs. For
example, Suppose Q1 = ⟨q1⟩ while Q2 = ⟨q3⟩ for a given
set of packets, while the ideal NF has QNF1

= ⟨q1, q2, q3⟩.
However, the destination NF cannot move to state q3 unless
the source NF has moved to q3 first or unless the destination
NF itself has moved to q2 before moving to q3. Therefore, we
rule out this possibility and do not impose this condition: Q̂1∪
Q̂2 = Q̂NF1

where X̂ denotes a set containing the members
of the sequence X .

Fig. 4(a) is an example of an Order-preserving flow migra-
tion algorithm. This shows the sequence of states (in dotted
boxes) created by a sequence of packets ⟨p1, p2, p3, p4, ⟩.
Fig. 4(b) shows the sequence of steps during state migration
where Order is preserved and Fig. 4(c), the timeline of events.

State migration begins, with state q0 sent to NF1b (1). This
is required if no packet arrives for some time and migration
can end before the arrival of any packet. p1 arrives at NF1a

(2). The state of NF1a changes to q1 (3), a message m(b, q1)
is sent to the destination NF (b = NF1b) (4) which updates
its state (5). A packet p2 arrives at NF1b (6) which updates
its state (7), sends a message m(a, q3), with a denoting NF1a

(8) and updates the state of NF1a (9). Since state migration
ends at this point (10), no new packets will reach NF1a and
no messages to update NF1a need to be sent to it. Packet
p3 arrives at NF1b (11), the state of NF1b is updated to q3
(12), then p4 arrives (13) and the state of NF1b is further
updated to q4 (14). Q1 is ⟨q1, q2⟩. Q2 is ⟨q1, q2, q3, q4⟩. QNF1

Fig. 4. Example for preserving Order: NFs and their states

is ⟨q1, q2, q3, q4⟩. Thus Q1 is a prefix of QNF1
and Q2 is a

suffix of QNF1
.

Definition III.2 (External-order-preservation (E)). The migra-
tion of P to NF1b is External-order preserving iff: P ∗

δ is a
subsequence of Pδ .

Remark. P ∗
δ is a subsequence of Pδ in the definition of

External-order-preservation to account for the fact that packets
may be dropped during flow migration. Also, the fact that
packets may arrive out of order at NF1b needs to be accounted
for. That is why Pδ is considered instead of Pδ .

It is possible that Order is preserved, yet External-order is
not preserved, as the set of packets that causes loss of order
does not effect any state change. Suppose there are two packets
in a flow, p1 and p2, entering the flow migration system in
that order. p1 enters NF1a while p2 enters NF1b. They cause
no state changes. NF1b outputs the transformed packet first,

followed by NF1a. Thus the output of the flow migration
system is ⟨s2, s1⟩. This preserves Order but not External order.

As another example, assume that FMS re-orders only two
packets p1 and p2 of fl. Let NF1b receive them as ⟨p2, p1⟩.
Assuming that these two packets do not cause any state
changes, Order will be preserved. However, the output of FMS
will be ⟨s2, s1⟩, not preserving External order.

In order that packets arrive at the DPI (NF2a) in Fig. 1, in
order, it is not sufficient that Order is preserved by the flow
migration system for NAT (consisting of NF1a and NF1b). It
is necessary for External-order to be preserved.

Order preservation ensures that a flow migration system
processes packets of a flow in the same manner that the source
NF would have processed them in the absence of migration.
However, packets may not be output in the same manner that
the source NF would have output in the absence of migration.
This idea is captured in External-order preservation.

Definition III.3 (Loss-freedom). Let P̂ ∗
δ represent a set con-

taining the elements of P ∗
δ , and P̂δ represent a set containing

the elements of Pδ . The migration of P to NF1b is Loss-free
iff: P̂ ∗

δ = P̂δ .

Definition III.4 (No-buffering). The migration of P to NF1b

is No-buffering preserving iff: no packet pi ∈ P is buffered
by Action Manager.

Remark. If a packet is dropped by Action Manager, it
preserves No-buffering as per this definition.

IV. IMPOSSIBILITY RESULT

Theorem 1. It is impossible for a flow migration algorithm in
stateful NFs to guarantee satisfying all three of the properties
of Loss-freedom (L), Order-preservation (O) and No-buffering
(N) during flow migration, even if messages or packets are not
lost.

Proof. Given any flow fl containing many packets, consider
only two consecutive packets, p1 and p2. fl has to be migrated
from NF1a to NF1b , as shown in Fig. 3 (c). Assume that p1
causes state changes. If p1 does not cause a state change, the
sequence of packets before p1, if any, contributes to state q0,
which will be migrated at the start of migration. The sequence
of packets arriving after p2, if any, will be handled by NF1b

after the completion of migration.
Let p1 reach AM at t1 and let p2 reach AM at t2 and

let AM forward these packets instantaneously, after receiving
instructions from SMM, also instantaneously. It takes a finite
time Ts for state to get updated at NF1a after receiving a
packet (if p1 does not cause a state change, Ts = 0.), since
we make no assumptions about link or processing speeds. Tm

indicates the time to migrate this state from one NF to another
(using the message m). Let T = Ts + Tm.

We enumerate all possibilities below.
1) Suppose t1 + T ≤ t2. In such a case, SMM will ask

AM to forward p2 to NF1b, and all three of L, N, and
O will be preserved. The migration will be complete and
all packets of the flow, if any, will now go to NF1b.

2) But, when t1 + T > t2, then when p2 arrives at AM,
it can take one of only four actions, depending on
instructions from SMM:

a) SMM asks AM to buffer the packet. In this case,
N is not preserved while L and O are preserved.

b) SMM asks AM to drop the packet. In this case L
is not preserved while N and O are preserved.

c) SMM asks AM to send the packet to NF1b. In
this case O is not preserved, while N and L are
preserved.

d) SMM asks AM to send the packet to NF1a, in
which case no migration happens. Suppose the next
packet p3, if any, arrives at AM. Consider that p3
arrives at AM at t3 and it takes T units of time for
NF1a to process the latest packet that causes state
change, p1 or p2, and migrate the state to NF1b. If
t2 + T ≤ t3, case 1 will apply and if t2 + T > t3,
any of the cases 2a, 2b, 2c or 2d will apply. If
case 2d continues to apply for subsequent packets,
if any, migration will be delayed indefinitely and
the flow migration algorithm will fail.

Thus no algorithm exists that can guarantee satisfying all the
three properties of L, O and N.

Remark. The theorem states that preserving all the three
properties is not guaranteed. For some instances, all the three
properties may be preserved.

Definition IV.1 (Strict Order preservation (SO)). To Definition
III.1, the following condition is added:

3) Both P1 and P2 are subsequences of P

Remark. Order preservation (O) ensures that a flow migration
system processes packets of a flow in the same manner that
the source NF would have processed them in the absence
of migration. In addition to this, to preserve SO, Condition
3 ensures that the flow migration system does not re-order
packets as they enter the source or destination NFs. Preserving
SO is not required for NFs such as NATs and preserving O is
sufficient. Preserving SO does not necessarily result in packets
being output by the flow migration system in timestamp order.
For example, in Fig. 1, NF1b may not be able to prevent a
packet with a later timestamp from reaching the boundary of
FMS (shown by the dotted line) before a packet with an earlier
timestamp output by the source NF, NF1a.

Corollary 1.1. Theorem 1 is applicable if Strict Order preser-
vation is substituted by Order preservation: It is impossible
for a flow migration algorithm in stateful NFs to guarantee
satisfying all three of the properties of Loss-freedom (L),
Strict-Order-preservation (SO) and No-buffering (N) during
flow migration, even if messages or packets are not lost.

Proof. By definition, SO is a stronger property than O. There-
fore, in the proof for Theorem 1, if O is not preserved, SO is
not preserved.

In cases 1, 2a and 2b of Theorem 1, SO is preserved, as
O is preserved, p1 is a subsequence of ⟨p1, p2⟩ and p2 is a
subsequence of ⟨p1, p2⟩.

For case 2c, either the previous cases apply, or the flow
migration algorithm fails.

Thus no algorithm exists that can guarantee satisfying all
the three properties of L, SO and N.

In the next two theorems, we examine the relationship
between Strict-order (SO) and External-order (E), and Order
(O) and External-order.

Theorem 2. If a flow migration algorithm is External-order-
preserving (E) then it preserves Strict-Order (SO).

Proof. Let there be a flow migration algorithm A that pre-
serves E. Let Fig. 3 depict an FMS that implements A.
Let Pδ = ⟨s1, s2, ..., sn⟩, corresponding to the input P =
⟨p1, p2, ..., pn⟩. Let the corresponding states on the ideal NF
be Q = ⟨q1, q2, ..., qn⟩. Let the first packet that reaches the
source NF after state migration begins be p1.

By definition of E, P ∗
δ is a subsequence of Pδ . By definition

of P ∗
δ , its constituents P ∗

1δ and P ∗
2δ are subsequences of P ∗

δ .
Case 1) Let us assume that A does not satisfy SO because

either of P1 or P2 is not a subsequence of P . Let us consider
that P1 is not a subsequence of P , because two packets are
re-ordered. Let us assume that these packets do not cause state
changes. If packets pi and pi+1, of P1, are re-ordered, let the
corresponding outputs be s

′

i+1 and s
′

i.
Case 2) Let us assume that A does not satisfy SO because

Q1 is not a prefix of QNF1
. This can happen if packets pi and

pi+1 of P1 are re-ordered and they cause state changes. Let
us assume that the corresponding states are q

′

i+1 and q
′

i and
the corresponding outputs are s

′′

i+1 and s
′′

i .
Depending on the case above, the packets s

′

i+1 and s
′

i and/or
s
′′

i+1 and s
′′

i , will be present in P ∗
1δ and consequently in P ∗

δ ,
no longer making it a subsequence of Pδ , contradicting our
assumption that A preserves E. A similar argument could be
made if the packets of P2 are re-ordered or if Q2 is not a
prefix of QNF1

.
Thus, if A preserves E, it preserves SO.

Corollary 2.1. If a flow migration algorithm is External-order-
preserving (E) then it preserves Order (O).

Proof. By Theorem 2, if a flow migration algorithm preserves
E, then it preserves SO. But every algorithm that preserves
SO preserves O as SO is a stronger property than O. Hence
the proof.

Corollary 2.2. If a flow migration algorithm is Strict-Order-
preserving (SO), then it is not necessarily External-order-
preserving (E).

Proof. The implication in Theorem 2 is not in the other
direction, as packets not causing state changes may not be
in order. Let us assume that if a flow migration algorithm is
SO-preserving, then it is always E-preserving. Consider two

Fig. 5. A chain of NFs, where each instance pair preserves E

sequential packets p1 and p2 in a flow migration that preserves
SO. p1 enters NF1a while p2 enters NF1b. They cause no state
changes. NF1b outputs the transformed packet first, followed
by NF1a. Thus the output of the flow migration system cor-
responding to ⟨p1, p2⟩ is ⟨s2, s1⟩. The flow migration system
processes and outputs the remaining packets of fl in the order
of timestamps and maintains order. Thus the flow migration
system satisfies the conditions for Strict-Order-preservation,
but E is violated, contradicting our assumption.

V. COMPOSITIONALITY OF L, O, SO AND N
As stated in [20], “A correctness property P is composi-

tional if, whenever each object in a system satisfied P, the
system as a whole satisfies P”. In this section, we examine
whether each of L, O, SO and N is compositional.

Theorem 3. Migration of flows from a chain of NFs to
another chain of NFs is External-order-preserving if for each
NF instance pair it is External-order-preserving.

Proof. We prove this by induction. For an NF instance pair,
when there is only 1 element in the chain (n=1, where n is the
number of NFs in the chain) , as given in Fig. 3, migration of
flows is External-order-preserving, that is, P ∗

δ is a subsequence
of Pδ , as each instance is given to be External-order-preserving
(the base case). Suppose for n = k this is true. Consider
Fig. 5(a), illustrating a chain of ideal NFs. Suppose Pkδ is
the input to an instance NFk of another NF and its output
is P(k+1)δ . Consider Fig. 5(b), illustrating a chain for flow
migration systems. Suppose P ∗

kδ is the input to another NF
instance pair, the output of which is P ∗

(k+1)δ . Then P ∗
(k+1)δ

is a subsequence of P(k+1)δ . Assume that one more NF is
added to the chain in Fig. 5(a), whose input is P(k+1)δ and in
Fig. 5(b), whose input is P ∗

(k+1)δ . For the instance pair newly
added, the flow migration is External-order preserving, as each
instance pair is order preserving. Assume that their outputs are
P(k+2)δ and P ∗

(k+2)δ respectively. Since the flow migration of
the last added NF instance pair is External-order-preserving,
P ∗
(k+2)δ is a subsequence of P(k+2)δ . If we consider a chain

of k+1 elements, its input is P and output is P ∗
(k+2)δ for the

migration system and P(k+2)δ for the chain of ideal NFs. This
also implies that the chains with k + 1 elements is External-
order-preserving. Thus if a chain with k elements is External-
order-preserving, a chain with k+1 elements is External-order-
preserving.

Note that each NF instance pair being External-order-
preserving is only a sufficient condition. There could be two
NF pairs where they are External-order-preserving when taken
together, but not so individually.

Theorem 4. Migration of flows from a chain of NFs to
another chain of NFs is (Strict-)Order-preserving if for each
NF instance pair it is (Strict-)Order-preserving.

In the proof for Theorem 3, wherever each instance pair is
assumed to be External-order-preserving, we can assume them
to be (Strict-)Order-preserving, due to (Theorem 2) Corollary
2.1. Theorem 4 follows.

Theorem 5. Migration of flows from a chain of NFs to another
chain of NFs is Loss-free if and only if for each NF instance
pair it is Loss-free.

The proof is similar to that of Theorem 3 and is omitted
for brevity. For the “only if” part, the proof is given below.

Proof. To prove the above, it can be proven that if migration
of flows from a chain of NFs to another chain of NFs is Loss-
free, then for each instance pair it is Loss-free. Consider a
chain of ideal NFs, whose input is P and output is Pδ . Next,
consider a chain of n source NFs from which flows need to be
migrated to a chain of n destination NFs. The input to these
chains is P and the output is P ∗

nδ .
Suppose for the kth instance pair flow migration is not Loss-

free and j packets are dropped. For the kth pair, P̂ ∗
kδ ̸= P̂kδ ,

where Pkδ refers to the output of the corresponding ideal NF.
However, P ∗

kδ is the input to the next NF instance pair. Thus, at
the end of the chain, after n instance pairs, a total of j packets
are dropped and therefore P̂ ∗

nδ ̸= P̂δ . Therefore if there exists
an instance pair which is not Loss-free, migration of a flow
instance to another chain is not Loss-free.

Theorem 6. Migration of flows from a chain of NFs to another
chain of NFs is No-buffering preserving if and only if for each
NF instance pair it is No-buffering preserving.

The proof is similar to that of Theorem 5 and is omitted
for brevity.

Thus if each of L, O, N, SO and E is satisfied within a
flow migration system, each will be satisfied in a larger system
composed of smaller systems. For example, if a set of flows is
migrated from one SFC to another and L is preserved by each
of the flow migration systems in the SFC, L is preserved by
the SFC itself and there is no loss of packets while migrating
the entire SFC. Thus compositionality of these properties is
useful in a service chain migration.

VI. DISCUSSION ON STATELESS NODES

If an NF is stateless, no packets cause state changes. This is
a general case of a subset of packets of P not causing a state
change. In this case, packets may not be output in timestamp
order. But O and SO are about processing being in order,
not about output packets being in order. Therefore O and SO
are trivially preserved in stateless NF migration and L and

TABLE II
PRESERVATION OF L,O, SO AND N IN ALGORITHMS

Work L O SO N
OpenNF [4], Buffering at source NF [7], SliM [8],
SHarP [9], Controller forwarding and Tagging based
solutions [10], CHC [6], TFM [14]

✓ ✓ ✓ ✗

Packet reprocessing and P2P transfer [13] ✓ ✗ ✗ ✗

N will be preserved if no packets are dropped or buffered,
respectively. E therefore may not always be preserved as
packets may be dropped.

In Software Defined Networks (SDNs), flows traversing
a path can be moved to another path for reasons of traffic
engineering, routing due to failures etc. The set of switches
that are traversed by flows that need to be diverted form the
old path of a flow. A subset of switches in the network need to
have new rules installed or rules modified or deleted to divert
flows from the old path to a new path. If switch updates are not
performed carefully, packets may be lost or they may loop. In
network updates, a per-packet consistent (PPC) update is one
where a packet traverses either the old path or the new path
but not a combination of both [21]. In a PPC update, packets
do not get lost nor do they loop. In a per-flow consistent (PFC)
update, a flow traverses either the old path or the new path,
but not a combination of both [21].

In existing PPC update algorithms involving stateless nodes
[22]–[27], all of L, O, SO and N are preserved. However, E is
not preserved. Thus, in Fig. 1, assuming NF1a and NF1b are
stateless, a PPC update from s1−NF1a−s2 to s1−NF1b−s2
will not preserve E. In fact, for these algorithms, preserving E
is not a consideration. However, in a PFC update, the question
of flow migration does not arise, by definition.

VII. RELATED WORK

Flow migration algorithms: Table II illustrates the prop-
erties that some of the flow migration algorithms preserve,
indicated by a “✓”. No algorithm guarantees to preserve all
of the properties. The solutions in the first row of Table II
attempt to improve migration time while reducing the amount
of packets buffered. While state is being transferred from the
source NF (sNF) to the destination NF (dNF) during flow
migration, incoming packets are buffered at the controller in
the seminal work of OpenNF [4] — thus N is not preserved.
No packets are sent to the sNF after migration begins and
after state transfer is completed, the packets buffered at the
controller are sent in their arrival order to the dNF, preserving
O and SO. As no packets are dropped, L is preserved. In
another solution [7], where the goal is to improve the security
of transfer, they are buffered at the sNF. To improve migration
time, SliM [8] transfers state using statelets instead of packets,
from the sNF to the dNF, and buffers packets at the dNF during
state transfer.

In SHarP [9], packets are buffered at the controller until
appropriate rules are installed in the ingress switch (a switch
common to both the sNF and the dNF) to route the flows to

be migrated, to the dNF. After that, packets are buffered at the
dNF until the packets buffered at the controller are routed to
the dNF, ensuring that the buffer size required at the controller
is constant and is independent of the state migration time. Thus
all properties except N are preserved. In [10], there are two
solutions. The first requires buffering at the controller and at
the dNF, and takes care of a race condition in OpenNF, while
preserving properties other than N and reducing the migration
time. In the second solution, the ingress switch is instructed
to tag packets of the flows to be migrated and to send packets
to both sNF and dNF, from a certain instance in time. The
tagged packets are dropped by the sNF and are buffered by
the dNF. The controller migrates state from the sNF to the
dNF. After state migration is completed, the ingress switch is
instructed not to tag packets and to send them only to the dNF.
The dNF processes the buffered packets before it processes the
packets that arrive after migration (which are not tagged). N
is not preserved, while the other properties are preserved. The
solution is scalable, as the controller is not a bottleneck.

In [13], the dNF imports a snapshot of state from the sNF.
The sNF continues to receive packets and update its state
(packet re-processing). It forwards a copy of these packets
to the dNF over a P2P connection to update the state of
the dNF, with a do-not-output flag, to prevent the dNF from
sending out any packets. The sNF keeps updating its states
until the dNF synchronizes its state with the sNF. Though the
controller is not a bottleneck, the order of packets may not
be preserved and it is possible that packets will need to be
buffered at the dNF while the dNF continues to update its
state. In TFM [14], the sNF migrates existing state to the dNF
and the ingress switch forwards incoming packets directly to
the dNF. The dNF buffers them, as it is yet to process those
packets that reach the sNF meanwhile (the in-flight packets).
The sNF is instructed to tag the in-flight packets so that the
dNF can process them before processing the packets that it
has buffered. TFM requires no buffering at the controller. It
also reduces the buffering at the dNF due to reduced migration
times and due to an overloaded sNF processing less packets,
while preserving L and O.

Certain algorithms assume state to be a distributed object.
In general, these algorithms are not focused on preserving the
properties in Table II, with the notable exception of CHC [6],
and are more focused on improving NF performance. In
CHC [6], state is stored external to NFs and the retrieved states
may be cached, and O, SO and L are guaranteed. S6 [5] stores
states using a Distributed Hash Table and identifies an owner
for each state. While packets are processed in order at a given
NF instance, during migration of a flow, none of the properties
in Table II is guaranteed to be preserved. Using fast memory
access schemes, it is possible to use optimized shared memory
systems [28] for managing distribution of states [17] to achieve
fast state synchronization, thus reducing the amount of buffer
required and buffering time. However, preservation of SO or
O or L is not guaranteed. These solutions [5], [6], [17] aim
to minimize buffer space and time delay, but buffering is not
eliminated as a packet arriving at the destination NF needs

to wait for relevant state to be retrieved from where it exists,
which is possibly another NF [5], [17] or an external store [6].

Properties of networks: The properties of services in
distributed systems can be classified broadly as safety and
liveness properties [29]. In general, there is a tradeoff between
the two. The CAP theorem states that it is impossible for a
web service to provide Consistency, Availability and Partition-
tolerance, even when messages are not lost [30] and this is
generalized and proved for both asynchronous and partially
synchronous systems [31]. Later formulations state that if there
is no network partition, a system can be both consistent and
available and if there is a network partition, a system can be
either consistent or available [32]. Abadi et al. [33] argue that
there is a tradeoff between Consistency and Latency, even in
the absence of partitions, and also discusses a more complex
tradeoff involving Consistency and Latency in the presence of
partitions and involving Consistency and Latency [33] (abbre-
viated as PACELC), all for distributed databases. Consistency
in the above discussions is defined to be Linearizability in
some formulations [31], [34] and One-copy Serializability
(1SR) [35], [36] in some others.

In CAP theorem for networks [37], Consistency of networks
refers to enforcement of specific policies, Availability refers
to eventual delivery of packets to end hosts as long as a path
exists and Partition Tolerance refers to the network continuing
to operate in the presence of partitions. As per this, (for the
Software Defined Network (SDN) model in the paper) all the
three cannot be achieved for policies referencing two or more
entities, where an entity identifier is tied to a particular host
(whereas an address associated with a host may change due
to migration). The control network that connects controllers is
an out-of-band network that is distinct from the data network
and a partition refers to a failure in the control network. To
illustrate the theorem, assume that a policy references two
entities A and B under two different controller domains and
prevents communication between A and B. A mechanism
implementing this policy would cause the controller in one
domain to resolve the address of an entity in another domain,
which is impossible if the control network is partitioned.
However, packets will be delivered to end hosts and the
network will continue to operate in the presence of partitions
(satisfying A and P but not C). Our paper is on properties
during flow migration, which is different from the above.

Network switches can store states and based on these
states, decisions regarding packets may be taken. While SNAP
[38] places such states in only one switch per flow path,
in another work [39], states are replicated optimally, with
the replicas maintaining eventual consistency. However, these
do not address consistency issues when flows are migrated,
formalization of which is what this paper is about. Swing
[12] discusses movement of state from one switch to another
using only the data plane. However, this does not guarantee
conservation of any of the properties discussed in this paper.

Planned configuration changes in SDNs can be achieved
by per-packet consistency (that guarantee that a packet is
processed only by one network configuration) [21], [22],

[40] and per-flow consistency (a flow is processed only by
one network configuration) [21], [41]. Preserving per-packet
consistency is insufficient during flow migration involving
stateful nodes as these do not consider migrating states across
such nodes. Waypoint enforcement during network updates
[42] ensures that before and after migration, flows continue to
be routed through the same set of waypoints, which may be
stateful nodes. If per-flow consistency is preserved, flows are
not migrated at all, by definition.

Reachability (a node is reachable from another node)
[43], [44], waypoint enforcement [42], congestion-freedom
and loop-freedom (packets never loop) [45] are some of the
other network properties studied in the literature on network
verification. In contrast to the above safety properties, a
method to verify liveness properties such as “a malicious host
is eventually detected” [46] is also available. A survey on
verification in stateful networks has further details [47]. These
do not discuss flow migration from a set of stateful nodes to
another while preserving these invariants.

VIII. CONCLUSIONS

For the first time, we have formalized flow migration from a
stateful source Network Function instance to a stateful destina-
tion Network Function instance and defined several properties
that characterize flow migration. We have investigated the
properties of Loss-freedom (L), Order (O), Strict-order (SO)
and No-buffering (N) during flow migration and proved that it
is impossible for a flow migration algorithm for stateful NFs
to guarantee all the three properties of L,O and N, or L, SO
and N simultaneously even if messages and packets are not
lost. The intuition that the flow migration system itself does
not re-order packets is captured by the property of External-
order preservation (E). We define and prove what it means for
a flow migration to preserve External-order (E) and establish
that External-order-preservation is a stronger property than
order preservation (O). We also prove that all the properties
are compositional.

Using the above, algorithms may be designed that chooses
the properties to preserve, for migrating flows from one NF
to another or across chains of NFs, or in general, across a
chain of stateful nodes such as programmable switches. In
addition, we hope that this spurs exploration of a new line
of research, such as investigating whether weakening some of
these properties may be beneficial for certain NFs, and once
weakened, how they may be related to each other and whether
there are additional properties of interest. We plan to explore
the theory of migrating flows further, in different contexts,
such as replication on a large scale. We believe that properties
such as availability and fault-tolerance of NFs also need to be
examined in this light.

IX. ACKNOWLEDGEMENTS

We are grateful to our shepherd Dongsu Han and the
anonymous reviewers for their helpful feedback.

REFERENCES

[1] B. Yi, X. Wang, K. Li, S. k. Das, and M. Huang, “A
comprehensive survey of network function virtualization,” Computer
Networks, vol. 133, pp. 212–262, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1389128618300306

[2] A. Jain, N. Sadagopan, S. K. Lohani, and M. Vutukuru, “A comparison
of sdn and nfv for re-designing the lte packet core,” in NFV-SDN. IEEE,
2016, pp. 74–80.

[3] L. Qu, M. Khabbaz, and C. Assi, “Reliability-aware service chaining in
carrier-grade softwarized networks,” IEEE Journal on Selected Areas in
Communications, vol. 36, no. 3, pp. 558–573, 2018.

[4] A. Gember-Jacobson et al., “OpenNF: Enabling innovation in network
function control,” ACM SIGCOMM Comput. Commun. Rev., vol. 44,
no. 4, pp. 163–174, 2015.

[5] S. Woo, J. Sherry, S. Han, S. Moon, S. Ratnasamy, and S. Shenker,
“Elastic scaling of stateful network functions,” in NSDI 18, 2018, pp.
299–312.

[6] J. Khalid and A. Akella, “Correctness and performance for stateful
chained network functions,” in NSDI 19, 2019, pp. 501–516.

[7] J. Wang, S. Hao, Y. Li, C. Fan, J. Wang, L. Han, Z. Hong, and H. Hu,
“Challenges towards protecting vnf with sgx,” in SDN-NFVSec, 2018,
pp. 39–42.

[8] L. Nobach, I. Rimac, V. Hilt, and D. Hausheer, “Statelet-based efficient
and seamless nfv state transfer,” IEEE Transactions on Network and
Service Management, vol. 14, no. 4, pp. 964–977, 2017.

[9] M. Peuster, H. Küttner, and H. Karl, “Let the state follow its flows: An
sdn-based flow handover protocol to support state migration,” in NetSoft.
IEEE, 2018, pp. 97–104.

[10] W. Wang, Y. Liu, Y. Li, H. Song, Y. Wang, and J. Yuan, “Consistent state
updates for virtualized network function migration,” IEEE Transactions
on Services Computing, 2017.

[11] X. Chen, Y. Chen, Q. Huang, H. Zhou, D. Zhang, C. Wu, and
J. Xing, “Fastscale: Fast scaling out of network functions,” in INFOCOM
WKSHPS. IEEE, 2020, pp. 436–442.

[12] S. Luo, H. Yu, and L. Vanbever, “Swing state: Consistent updates for
stateful and programmable data planes,” in SOSR, 2017, pp. 115–121.

[13] A. Gember-Jacobson and A. Akella, “Improving the safety, scalability,
and efficiency of network function state transfers,” in HotMiddleBox,
2015, pp. 43–48.

[14] Y. Wang, G. Xie, Z. Li, P. He, and K. Salamatian, “Transparent flow
migration for nfv,” in ICNP. IEEE, 2016, pp. 1–10.

[15] Y. Lin, U. C. Kozat, J. Kaippallimalil, M. Moradi, A. C. Soong, and
Z. M. Mao, “Pausing and resuming network flows using programmable
buffers,” in SOSR, 2018, pp. 1–14.

[16] M. Kablan, A. Alsudais, E. Keller, and F. Le, “Stateless network
functions: Breaking the tight coupling of state and processing,” in
NSDI 17, 2017, pp. 97–112.

[17] M. Szalay, M. Nagy, D. Géhberger, Z. Kiss, P. Mátray, F. Németh,
G. Pongrácz, G. Rétvári, and L. Toka, “Industrial-scale stateless network
functions,” in CLOUD. IEEE, 2019, pp. 383–390.

[18] J. Hypolite, J. Sonchack, S. Hershkop, N. Dautenhahn, A. DeHon, and
J. M. Smith, “Deepmatch: practical deep packet inspection in the data
plane using network processors,” in CoNEXT, 2020, pp. 336–350.

[19] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” Journal of the ACM (JACM), vol. 35, no. 2, pp.
288–323, 1988.

[20] M. Herlihy, N. Shavit, V. Luchangco, and M. Spear, The art of
multiprocessor programming. Newnes, 2020.

[21] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” in SIGCOMM., 2012, pp. 323–334.

[22] R. Sukapuram and G. Barua, “Ppcu: Proportional per-packet consistent
updates for sdns using data plane time stamps,” Computer Networks,
vol. 155, pp. 72–86, 2019.

[23] W. Zhou, D. Jin, J. Croft, M. Caesar, and P. B. Godfrey, “Enforcing
customizable consistency properties in software-defined networks,” in
NSDI 15, 2015, pp. 73–85.

[24] N. P. Katta, J. Rexford, and D. Walker, “Incremental consistent updates,”
in HotSDN, 2013, pp. 49–54.

[25] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang,
J. Rexford, and R. Wattenhofer, “Dynamic scheduling of network
updates,” ACM SIGCOMM Computer Communication Review, vol. 44,
no. 4, pp. 539–550, 2014.

[26] S. Luo, H. Yu, and L. Li, “Consistency is not easy: How to use two-phase
update for wildcard rules?” IEEE Communications Letters, vol. 19, no. 3,
pp. 347–350, 2015.

[27] R. Sukapuram and G. Barua, “Ccu: Algorithm for concurrent consistent
updates for a software defined network,” in NCC. IEEE, 2016, pp. 1–6.

[28] G. Németh, D. Géhberger, and P. Mátray, “{DAL}: A locality-
optimizing distributed shared memory system,” in HotCloud 17, 2017.

[29] B. Alpern and F. B. Schneider, “Defining liveness,” Information pro-
cessing letters, vol. 21, no. 4, pp. 181–185, 1985.

[30] S. Gilbert and N. Lynch, “Perspectives on the cap theorem,” Computer,
vol. 45, no. 2, pp. 30–36, 2012.

[31] ——, “Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services,” Acm Sigact News, vol. 33, no. 2, pp.
51–59, 2002.

[32] E. Brewer, “Cap twelve years later: How the” rules” have changed,”
Computer, vol. 45, no. 2, pp. 23–29, 2012.

[33] D. Abadi, “Consistency tradeoffs in modern distributed database system
design: Cap is only part of the story,” Computer, vol. 45, no. 2, pp.
37–42, 2012.

[34] M. Herlihy and J. M. Wing, “Linearizability: A correctness condition for
concurrent objects,” ACM Trans. Program. Lang. Syst., vol. 12, no. 3,
pp. 463–492, 1990.

[35] A. Fox and E. A. Brewer, “Harvest, yield, and scalable tolerant systems,”
in HotOS. IEEE, 1999, pp. 174–178.

[36] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency control
and recovery in database systems. Addison-wesley Reading, 1987, vol.
370.

[37] A. Panda, C. Scott, A. Ghodsi, T. Koponen, and S. Shenker, “Cap for
networks,” in HotSDN, 2013, pp. 91–96.

[38] M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford, and D. Walker,
“SNAP: Stateful network-wide abstractions for packet processing,” SIG-
COMM, 2016.

[39] A. S. Muqaddas, G. Sviridov, P. Giaccone, and A. Bianco, “Optimal state
replication in stateful data planes,” IEEE Journal on Selected Areas in
Communications, vol. 38, no. 7, pp. 1388–1400, 2020.

[40] K.-T. Foerster, S. Schmid, and S. Vissicchio, “Survey of consistent
software-defined network updates,” IEEE Communications Surveys &
Tutorials, vol. 21, no. 2, pp. 1435–1461, 2018.

[41] R. Sukapuram and G. Barua, “Proflow: Proportional per-bidirectional-
flow consistent updates,” IEEE Transactions on Network and Service
Management, vol. 16, no. 2, pp. 675–689, 2019.

[42] A. Ludwig, M. Rost, D. Foucard, and S. Schmid, “Good network updates
for bad packets: Waypoint enforcement beyond destination-based routing
policies,” in Proceedings of the 13th ACM Workshop on Hot Topics in
Networks, 2014, pp. 1–7.

[43] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, “Veriflow:
Verifying network-wide invariants in real time,” in NSDI 13, 2013, pp.
15–27.

[44] A. Panda, O. Lahav, K. Argyraki, M. Sagiv, and S. Shenker, “Verifying
reachability in networks with mutable datapaths,” in NSDI 17), 2017,
pp. 699–718.

[45] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and D. Maltz,
“zupdate: Updating data center networks with zero loss,” in SIGCOMM,
2013, pp. 411–422.

[46] F. Yousefi, A. Abhashkumar, K. Subramanian, K. Hans, S. Ghorbani,
and A. Akella, “Liveness verification of stateful network functions,” in
NSDI 20, 2020, pp. 257–272.

[47] Y. Li, X. Yin, Z. Wang, J. Yao, X. Shi, J. Wu, H. Zhang, and
Q. Wang, “A survey on network verification and testing with formal
methods: Approaches and challenges,” IEEE Communications Surveys
& Tutorials, vol. 21, no. 1, pp. 940–969, 2018.

