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Abstract—The Domain Name System (DNS) has been fre-
quently abused for distributed denial-of-service (DDoS) attacks
and cache poisoning because it relies on the User Datagram
Protocol (UDP). Since UDP is connection-less, it is trivial for an
attacker to spoof the source of a DNS query or response. While
other secure transport mechanisms provide identity management,
such as the Transmission Control Protocol (TCP) and DNS
Cookies, there is currently no method for a client to state that
they only use a given protocol. This paper presents a new method
to allow protocol enforcement: DNS Protocol Advertisement
Records (DPAR). Advertisement records allow Internet Protocol
(IP) address subnets to post a public record in the reverse
DNS zone stating which DNS mechanisms are used by their
clients. DNS servers may then look up this record and require
a client to use the stated mechanism, in turn preventing an
attacker from sending spoofed messages over UDP. In this paper,
we define the specification for DNS Protocol Advertisement
Records, considerations that were made, and comparisons to
alternative approaches. We additionally estimate the effectiveness
of advertisements in preventing DDoS attacks and the expected
burden to DNS servers.

Index Terms—Domain Name System, DNS, Identity Manage-
ment, Protocol, DNS Cookies, DDoS Mitigation

I. INTRODUCTION

The Domain Name System (DNS) has consistently been
used for reflection-based distributed denial-of-service (DDoS)
attacks which have the power to disrupt major internet in-
frastructure [1]. The DNS remains susceptible to these attacks
because it relies on the User Datagram Protocol (UDP) for
message transport. By design, UDP has no form of a connec-
tion and, thus, no method of verifying the sender of a packet.
This makes it trivial for an attacker to spoof a query to a
DNS server with the victim as the source, causing that server
to respond and reflect traffic towards the victim.

Other transport mechanisms are supported in the DNS
including DNS-over-TCP (Transmission Control Protocol) [2],
DNS-over-TLS (Transport-Layer Security) [3], and DNS-over-
HTTPS (Hypertext Transfer Protocol Secure) [4]. All three of
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these standardized mechanisms provide the identity manage-
ment inherent in a TCP handshake and thus prevent spoofing
attacks. DNS Cookies [5] are an alternative approach that adds
unique identifiers to DNS messages. DNS Cookies allow UDP
to be used while still preventing spoofing.

These protocols, and others, effectively enable a DNS client
to ensure that the responses it receives are not spoofed. How-
ever, because they are client-centric, none prevent a reflection-
based DDoS attack wherein the client’s queries are spoofed.
When an authoritative or recursive DNS server receives a
query over UDP, it has no standardized method for determining
whether that client uses UDP or an alternative protocol that
includes identity management. As a result, a server will always
respond to incoming queries—even those that may be spoofed.

In this work, we present DNS Protocol Advertisement
Records (DPARs). Advertisement records enable subnets to
publicly state the protocol used by their DNS clients in the
corresponding address space by placing a DNS TXT record
in the reverse DNS namespace. When receiving a query,
servers that would otherwise act as reflectors can check for an
advertisement and enforce that the given protocol is used. This
effectively prevents any spoofed queries from being reflected
by the enforcing servers towards a potential victim who has
advertised its support of a more secure transport mechanism.

In §II we provide background information on the DNS,
spoofing attacks, and alternative options for DDoS mitigation.
Next, we define the specification for our protocol in §III.
We then share our key design considerations and evaluate the
protocol using data in §IV and §V. Finally, we conclude with
limitations and future work in §VI.

II. BACKGROUND

A. The Domain Name System

The Domain Name System (DNS) is an essential backbone
of the Internet. Its primary responsibility is to translate domain
names (e.g., example.com) to Internet Protocol (IP) ad-
dresses (e.g., 192.0.2.1), but records containing other data
are also used. The DNS architecture consists of two client-
server pairs: stub resolvers communicate to recursive resolvers,
and recursive resolvers communicate to authoritative servers.

While the DNS primarily translates domain names to other
resources, the reverse DNS zone is used to provide records



for a given IP address [6]. This is often used for verifica-
tion purposes. For IPv4 addresses, a specialized domain of
in-addr.arpa is used for this resolution. The delegation of
this domain follows that of IP addresses in reverse byte order.
For example, any records for the IP address 192.0.2.1
can be found at 1.2.0.192.in-addr.arpa. A similar
implementation exists for IPv6 using the ip6.arpa domain.

Reverse records can also exist at standard subnet boundaries.
For example, 10.4.0.0/16 could have a reverse record at
4.10.in-addr.arpa.

B. Transport Protocols and Spoofing

UDP is the recommended transport mechanism given by
the DNS specification [6]. However, TCP has also been a
viable transport since the beginning [6], [2]. More recently,
TLS [3], and HTTPS [4] have been established as additional
transports. DNS-over-TLS and DNS-over-HTTPS have begun
seeing adoption [7], but it is expected that effectively al/l DNS
servers will continue to support UDP queries in order to be
compatible with other clients and servers.

A major drawback of UDP is its lack of identity manage-
ment. Unlike TCP (and TLS and HTTPS, which effectively
extend TCP), UDP does not establish a connection prior to
exchanging data. As a result, neither a client nor a server can
verify the source of a received packet.

Lack of identity management with UDP enables spoofing,
wherein an attacker falsifies the source IP address of the
packet, effectively impersonating a third-party entity. In a
cache poisoning attack, the attacker impersonates a server’s
response, and in turn, can redirect the client to the attacker’s IP
address. In a reflection-based attack, the attacker impersonates
the victim’s IP address and sends many DNS queries to
recursive or authoritative DNS servers. This elicits activity
from the DNS servers, resulting in the victim being flooded
with unsolicited response traffic. Past attacks have reached
traffic volumes of 300Gbps and are capable of affecting major
services such as Amazon and Netflix [1]. These attacks are
often referred to as reflection attacks because the malicious
traffic is reflected off an unknowing DNS server. They are a
type of distributed denial-of-service (DDoS) attacks because
the result is an incapacitated victim.

C. DNS-Based Verification in SPF Records

Other protocols have used the DNS for out-of-band identity
management. One example is the Sender Policy Framework
(SPF) [8], which allows domains to publish a policy indicating
which TP addresses can legitimately send email messages
claiming to be from the domain. When a mail server receives
an email, it looks up the associated domain’s SPF policy to
verify that the sender’s IP address is among those allowed to
send for the domain. If the policy is enforced, it will prevent
an attacker from using the protected domain in the “from”
address of an email, sending it from an illegitimate IP address,
and having it perceived as legitimate.

A key aspect of SPF is that a DNS record is used as a source
of information outside of the email exchange. This makes

spoofing an email significantly more difficult as the attacker
needs to either be on-path or needs to perform a successful
cache poisoning to alter the policy that the mail server receives.
We draw from this out-of-band communication method in the
design of our protocol.

D. Related Work

A large body of research has been conducted to determine a
method to prevent DDoS attacks. Mitigation methods typically
fall into one of two categories: filters and challenges. Each
method poses its own benefits and limitations.

Filter-based mechanisms have an advantage in that they
do not require protocol changes; however, they rely on a
system capable of handling attack traffic. For example, some
solutions suggest filters at ISP edge routers [9]. Many large
backbone providers also offer reverse-proxy services, essen-
tially absorbing attack traffic with their high bandwidth [10].
These solutions are readily deployable and may be a good fit
for entities that can afford them.

Challenge-based methods rely on clients verifying their
identity by providing a unique token given to them by the
server. A common example of a challenge is the sequence
number of a TCP handshake [11]. An off-path attacker is
unable to see the sequence number and cannot spoof packets
as a result. DNS Cookies [5] are an alternative design that
provides identity management at a strength similar to TCP
but without the latency burden. They are included in DNS
messages as a COOKIE option inside the Extended DNS
(EDNS) OPT resource record [12]. Recent work [13] has
found that around 30% of servers and 10% of recursive
clients have adopted cookies since their standardization 5
years ago. A major issue with TCP, DNS Cookies, and other
challenge methods is that they require server support and some
mode of enforcement. As it currently stands, servers reflect
spoofed UDP attack packets regardless of the client’s preferred
protocol [13].

III. DNS PROTOCOL ADVERTISEMENT RECORD
SPECIFICATION

We have noted that while protocols such as DNS Cook-
ies, DNS-over-TLS, and DNS-over-HTTPS are seeing some
adoption, no mechanism exists for enforcing their use. That is,
servers must continue to answer DNS queries over unauthen-
ticated UDP for all clients because a server has no mechanism
for verifying a client’s preferred protocol. As a result, clients
and servers that use these secure protocols remain susceptible
to spoofing attacks.

Here we present a new protocol: DNS Protocol Advertise-
ment Record (DPAR). Advertisement records are designed to
allow servers to enforce that a given client uses DNS cookies,
or another protocol if that client has advertised support. With
proper adoption, this would prevent reflection-based attacks: a
server would know to refrain from answering a query lacking
authenticated transport.



A. Protocol Overview

The advertisement protocol is designed to allow clients
to protect themselves from reflection-based DDoS attacks.
Clients publish a record stating their support of secure trans-
port, allowing servers to drop incoming queries that are non-
compliant with the advertisement. While the secure transport
might be any one of the secure protocols aforementioned, we
use DNS Cookies as the use case in this paper.

1) Threat Model: We assume a threat model where an
active off-path attacker is capable of spoofing DNS packets
with the victim as the source. The attacker’s primary goal is
to deny service to the victim by spoofing packets to a large
number of DNS servers. We assume that each server behaves
in a standard manner, implementing DPAR and other best
practices (e.g., rate-limiting).

Advertisement records are about server-side authentication
of DNS clients and do not provide additional protection
from cache poisoning attacks. Other methods, such as DNS
Cookies [5], 0x20 encoding [14], and source port random-
ization [15] have addressed client-side authentication of DNS
servers. Further investigation of client-side authentication is
outside the scope of this protocol.

Given that the primary motivation for advertisement records
is in preventing denial-of-service (DoS) attacks, our threat
model does not consider an on-path attacker. For an on-path
attacker to be able to circumvent advertisement records for a
large number of servers, they would need to be located near the
victim’s endpoint. However, an attacker in this position could
simply drop traffic to and from the victim to effectively deny
service. In other words, a much simpler method for on-path
DoS already exists.

2) Client-Server Architecture: DNS queries operate on a
client-server model. The two primary instances of this in the
DNS are stub to recursive resolver and recursive resolver to
authoritative server. In each case, the client is the one issuing
the DNS query, and the server is the one receiving (and
replying to) the query. Thus, a recursive resolver can play the
role of either client or server, depending on the entity with
which it is interacting. In the case of advertisement records,
clients advertise their policy while servers (both authoritative
and recursive) enforce the policies.

The advertisement protocol protects not only DNS clients
but entire ranges of IP addresses. A record applies a policy to
an entire subnet, preventing a spoofing attack against any IP
in the range. As a result, any owner of IP space can benefit
from the use of an advertisement, regardless of whether or not
they maintain DNS clients. If the subnet does not have any
DNS clients, a none policy can be applied—meaning that a
server should not expect any DNS query activity from that IP
space. In instances where a subnet contains only a single DNS
client, the policy should match the client’s behavior, but will
additionally protect other IP addresses in the subnet.

Advertisement records must be enforced by servers, i.e.,
those receiving queries. Both recursive resolvers and authori-
tative servers should implement the protocol; enforcement by
only one or the other leaves a set of servers available for

reflection attacks. Enforcement requires servers to perform a
lookup for advertisement records. While this is trivial for a
recursive resolver (which acts as a client and server), it may
require more significant changes for authoritative servers. One
option may be for the authoritative server to work in tandem
with a stub or recursive client that can retrieve records.

B. Protocol Specification

Any network advertises the use of a specific DNS secure
transport protocol by including a record in their reverse
DNS zone at the /16 subnet level for IPv4 or the /40
level for IPv6. For example, the record for 192.0.2.1
would be published at 0.192.in-addr.arpa while
the record for 2001:db8::1 would be published at
0.0.8.0.d.0.1.0.0.2.1ip6.arpa. If a single adver-
tisement record does not apply to the entire subnet, exceptions
can be made via advertisement delegations at individual /24
or /48 subnets. The discussion and analysis upon which the
prefix lengths were selected for both IPv4 and IPv6 is found
in §V-A.

A server (recursive or authoritative) supporting advertise-
ments performs a reverse lookup for an incoming DNS query
from a new client IP address. If an advertisement is found—
whether at the base or the delegated subnet—the server
enforces the policy by limiting its response to queries that
conform with the policy. If an advertisement is not found at
the base subnet (/16 or /40), the server caches the lack of
a policy and proceeds to behave like normal for the IP.

This effectively prevents a victim IP, who is advertising
a secure protocol (e.g., DNS Cookies or TCP), from being
attacked via reflection; all servers can check the policy and
ignore any spoofed packets they see.

v=dparl none

|v:dparl tcp
1094...£140

|v:dparl cookie |

Fig. 1. An example of advertisement records in the reverse DNS for two
IPv4 /16 subnets (10.4.0.0/16 and 10.5.0.0/16) and a delegated
/24 (10.4.6.0/24). The hexadecimal string has been shortened for space.
Like colors show which subnets are covered by the given policy.

1) Advertisement Record: An advertisement record must
exist at the base /16 or /40 subnet level and can optionally
delegate down to the /24 or /48 level. Figure 1 shows an
example of delegation for an IPv4 network.

An advertisement DNS record is of type text (TXT) and has
the format shown in Figure 2. The version field represents
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Fig. 2. Format of an advertisement record.

the version of the DNS protocol advertisement. Only version 1
is allowed at this time. The <transport> value represents
the minimum level of security the subnet intends to use
when sending queries; only a single value is specified (e.g.,
udp or cookie). The options shown are sorted by security
level, from least to most secure. For example, a record with
a <transport> value of cookie would allow cookies
and DNS-over-TCP connections but not UDP. While we only
specify options for DNS Cookies and TCP in this paper, future
revisions might include DNS-over-TLS or DNS-over-HTTPS.
We describe each option further:

e udp: DNS queries are expected to originate from this
subnet, but there is no expectation of secure transport.
This option exists as a formality and is the default
level when no advertisement record exists. Clients may
explicitly state that any mechanism is valid through the
use of this record.

e cookie: Any DNS queries originating from this subnet
will use DNS cookies or use TCP.

e tcp: Any DNS queries originating from this subnet will
use TCP—or a higher security protocol if added.

e none: No DNS queries will originate from this DNS
subnet; thus, any queries from this subnet can be consid-
ered illegitimate. This option allows clients to explicitly
state that any DNS queries appearing to originate from
the subnet should be dropped.

The <delegation> value is only valid in records published
at the base level (/16 for IPv4 and /40 for IPv6). This
parameter may optionally be added to a record in instances
where the policies for some /24s or /48s differ from the
base policy. It is composed of a 64-character hex string which
is interpreted as a bit field. A bit value of 0 means to use
the policy of the base record, while 1 means that the policy
is delegated to the /24 or /48. The right-most hexadecimal
character represents the four least significant bits, i.e., bits 0
through 3. Delegation at other subnet boundaries should be
achieved using multiple records or delegations (see §V-A).

Clients may choose the time-to-live (TTL) of the record
as they would for any other DNS record. The recommended
range of TTLs is between 3 and 48 hours. Clients may prefer
a shorter TTL such that they are not locked out by servers in
the case of a misconfiguration.

2) Example Record: We list three example advertisement
records used in the IPv4 address space:

v=dparl none 1094cf9546e8a240511d946bc9d
0400998800£4b11084881a80848612645£140

v=dparl cookie

v=dparl tcp

Figure 1 illustrates where the records might be placed in
the DNS and which subnets they would affect if so placed.
Specifically, the advertisement for 10.4.0.0/16 is pub-
lished at 4.10.1in-addr.arpa, indicating that no DNS
queries are expected from that /16. However, the delegation
string indicates that policy has been further delegated to many
of its constituent /24 subnets, including 10.4.6.0/24. The
delegation to 10.4.6.0/24 is indicated by a value of 1
for bit 6, i.e., the only bit set in the right-most “40” in the
delegation string. In the case of 10.4.6.0/24, DNS queries
are expected, but they must ar least use DNS cookies. Finally,
the policy for 10.5.0.0/16 is that all DNS queries from
that /16 will be over TCP, with no exceptions.

Client Reverse DNS
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Fig. 3. High-level overview of the server enforcement process. If the server
experiences a cache miss, it may respond normally to a predetermined amount
of queries.

3) Server Behavior: Figure 3 provides an overview of
a server’s behavior. Upon receiving a DNS query, a server
checks for an existing advertisement record in its cache for
the appropriate /16 when the client is using IPv4 or the
appropriate /40 when the client is using IPv6. The server
also checks its cache for a delegated record if (1) the base
record is cached and (2) it has the delegation bit set for the
client’s IP. If a cached record exists, the server must enforce
the provided policy.

If a cached record does not exist, the server performs an
advertisement lookup; however, this lookup does not need to
be performed before responding to the incoming query. A
server may define a maximum number of queries to respond to
from a new client before an advertisement record is retrieved.
This allows for the server to optimize its load without sending
a significant amount of traffic to the potential victim.

If the server finds an advertisement record, it caches it per
normal DNS operations. If the record requires delegation, the
server performs an additional lookup for the /24 or /48 and
caches that. A minimum TTL can be enforced by the server
for any cached record to prevent excessively repeated queries.



If a record does not exist at the base level the server uses
negative DNS caching [16] to prevent repeat lookups. Negative
caching is also used when a record does exist at the base level,
the policy is delegated, and the policy at the delegated subnet
does not exist. A negative cache record, in either case, is the
equivalent of a udp transport value. Negative cache entries
should have a reasonable TTL. This allows for clients to add
an advertisement record quickly and to have it distributed to
all servers in a short time frame.

When a server is enforcing an advertisement policy and re-
ceives a non-compliant query, it drops the query. This prevents
any attack packets from being reflected to the client. However,
an exception must be made for enforcing a cookie policy.
If incoming queries include a client cookie, but no server
cookie, the server must respond with a valid server cookie
(and optionally an answer) to a portion of the queries. This
is consistent with the DNS Cookie specification. It ensures
that a legitimate client is able to obtain a valid server cookie.
However, these “bootstrap” responses must account for only a
fraction of the total volume of incoming queries. Otherwise,
the server could still be used effectively in a reflection attack.

IV. DESIGN CONSIDERATIONS
A. Backward Compatibility and Incremental Deployment

Our protocol is designed to ensure backward compatibility
with both clients and servers. In instances where a client
publishes an advertisement record but a server does not support
enforcement, operations proceed normally. The server will
simply not query for the record and will respond to the client
with no restrictions. In the opposite scenario, where a server
supports enforcement but the client has no record, the server
treats the client as having a udp policy (see §III-B). This
policy is the least restrictive and enables the server to handle
clients without an advertisement easily.

Built-in backward compatibility also facilitates incremental
deployment. One approach to accomplish incremental deploy-
ment involves publishing a record with policy udp at the base
/16 or /40. As more specific prefixes desire to use advertise-
ment records, they request to have the delegation bit set for the
/24 or /48 subnets in the appropriate record, allowing them
to manage their own policies. If all organizations within the
base subnet later converge on a single, more secure policy,
this policy can be placed at the /16 or /40 level and the
delegations removed.

B. Authoritative Servers Performing Queries

This protocol requires authoritative servers to make outgo-
ing queries in order to determine the advertisement policy of
an incoming IP address. We acknowledge that this behavior is
non-standard for authoritative servers since they do not have
a client-side component like recursive resolvers. We suggest
that an authoritative server utilize the stub resolver found on
its system and preferably a local recursive resolver. Overall,
a large and quickly accessible cache should be maintained.
The implementation of that cache is outside the scope of this

paper.

C. Shortcomings of Alternative Designs

While designing this protocol, we explored several alter-
native options. We provide an overview of several of these
options below and why they ultimately were not chosen.

1) Records at Any Subnet: One option considered was to
allow the advertisement record at any byte (IPv4) or nibble
(IPv6) boundary (i.e., /8, /16, /24, and /32 for IPv4 and
/4, /8, ..., /124, and /128 for IPv6). This provides far
more flexibility and granularity for advertisers but increases
the workload for servers. A server would need to check each
subnet for a given IP to see if a record exists, requiring up to
4 queries for IPv4 and up to 32 for IPv6. Negative caching
of an entire subnet would also be impossible because the
lack of a record at an IPv4 /16 does not prevent a record
from existing at the /24 or /32; the same goes for the IPv6
equivalents. Policy aggregation by subnet and negative caching
are considered essential in our design, in part because a vast
majority of DNS clients do not support secure protocols, and
requiring a policy lookup for each new IP address would be
burdensome. This claim is further addressed in §V-D.

2) Distributed Sharing between Servers: In another proto-
col alternative, servers would collect data about what protocol
a client uses and then combine that data with that of other
servers to form a stronger assumption of support. Because
policies are inferred under this protocol, DNS clients would
not need to advertise protocol use; A major shortcoming of
this design is that an attacker could spoof UDP packets to trick
servers into being unsure of the client’s preference, an effective
“downgrade” attack. This is true of any design which tries to
infer client behavior. With the chosen design, a client explicitly
publishes its policy, so there is no dispute. An explicit record
also prevents issues related to Network Address Translation
(NAT) wherein the clients behind a single, public IP address
act independently and support a range of protocols.

3) Advertising Support within Queries: A final alternative
would be to have clients advertise protocol support in their
queries, e.g., as part of the EDNS record in a DNS message
whose sender identity has been authenticated, i.e., with DNS
Cookies or TCP. Servers would learn the capabilities of
those clients via authenticated DNS messages from the clients
themselves. There are several shortcomings of this alternative.
First, the victim of a DNS reflection-based DDoS attack is not
necessarily a DNS client. Therefore, servers may have never
been contacted by the target IP address and would be unaware
of its capabilities. Even in the case where a victim’s IP address
corresponds to a DNS client, many servers will be utilized in
an attack, and it is unlikely that a given reflecting server will
have been queried by the DNS client. It is imperative that a
server be able to find a client’s advertisement policy without
requiring previous contact from the client.

V. EVALUATION

In this section, we quantitatively analyze advertisement
records by looking at data for the IP address space, queries to
the authoritative root servers, and traffic for our organization’s
recursive and authoritative servers.



A. Administrative Feasibility of Records

One of the most substantial constraints we impose on this
protocol was the prefix length associated with the base and
delegated policies, i.e., /16 and /24 for IPv4 and /40 and
/48 for IPv6. The decisions to use a /16 and /40 for the
location of the base policy for IPv4 and IPv6, respectively,
were made to balance between the total number of records
a server may need to retrieve and the distribution of entities
within a given prefix. In general, a shorter prefix covers more
address space, and therefore, fewer queries are required to
retrieve policies from within that address space. However, it is
more likely that the address space covered by a shorter prefix is
announced by more entities, making policy coordination more
difficult.

We use Internet routing data to consider this balance
and support our design decision. Using the IP prefix-to-
autonomous system (AS) mapping from iptoasn.com [17],
retrieved April 21, 2021, we analyze the distribution of prefix
announcements, considering AS and prefix length. This dis-
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Fig. 4. Number of distinct ASes announcing more specific prefixes within
IPv4 prefixes of length 8 and 16 and IPv6 prefixes of 32 and 40.

tribution is shown in Figure 4. The average number of ASes
announcing more specific IPv4 prefixes within a /16 subnet
is 8.4, with a median of 2 ASes. In other words, 8.4 different
ASes, on average, announce [P prefixes within an IPv4 /16.
We find this number small enough to be manageable from
an administrative perspective. For example, if one AS desires
to support advertisements in its prefix, a udp policy could
be added at the /16 with delegation to the AS’s /24(s);
alternatively, other AS prefixes could also adopt the policy,
removing the need for delegation. For comparison, an average
of 700 different ASes announce prefixes within a /8 subnet—
a number that appears much too large to effectively coordinate
across organizations.

For IPv6, 74% of /40s and 83% of /32s have only one
AS announcing their address space. This is characteristic of
IPv6 addressing because the address space is so vast. Both
/32 and /40 are therefore attractive options for publishing
the base record (i.e., the equivalent of IPv4 /16). Notably,
for nearly 100% of /48 prefixes, only a single AS announces
its address space (not shown in Figure 4); rarely is inter-
organization coordination of policies a concern at the /48
level.

While we consider the relatively low number of ASes
announcing prefixes within an IPv4 /16 to be manageable,

other evidence supports our selection of a /16 and /24
being the optimal locations of the base policy and delegated
policy, respectively. Figure 5 shows the distribution of sizes

IPv6 Announced Prefix Size
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Fig. 5. Distribution of announced IPv4 and IPv6 prefix lengths.

for announced IPv4 and IPv6 prefixes. The vast majority of
announced IPv4 prefixes are between /16 and /24, and
nearly half of announced IPv6 prefixes are between /40 and
/48. Of the 1,995 IPv4 prefixes that are larger (i.e., contain
more addresses) than a /16, 82% are either a /14 or /15.
As a result, most large prefixes would only need a maximum
of 4 records to cover their entire range as the primary entry
point for policy. Similarly, there are 309,000 announced IPv4
prefixes which are between /17 and /24, 82% of which are
either a /22, /23, or /24. Again, a vast majority could be
covered by only a few delegated records.

For IPv6, only 10% of announced prefixes are larger than
(i.e., have more addresses than) a /32. In other words, 90%
of organizations announcing a prefix of size /32 or smaller
simply need to publish up to 256 records corresponding to
the /40 subnets comprising their subnet. IPv6 also shows
similar characteristics to IPv4 for subnets between the base
and delegated advertisement records (i.e., /41-/48). There
are 25,987 prefixes in this range, and 83% are of /46 or
higher. So again, most IPv6 prefixes sized between records
can be handled by only 4 records.

B. Estimating Advertisement Record Landscape

We continue our evaluation by estimating what the distribu-
tion of advertisement records may look like. Specifically, we
are interested in seeing how many /16 prefixes (or IPv6 /40
prefixes) can be covered by a single record, and how many
have to delegate.

For this analysis, we look at the day-in-the-life (DITL) data
of the DNS root servers from 2020 [18]. This data captures
all incoming queries to the root servers over a 48-hour period.
These queries typically come from recursive clients. We note
that there is no data available for b-root or g-root in the 2020
collection. Also, the data for i-root and l-root is anonymized
and can therefore not be used in our analysis. We analyze the
remaining 9 servers. We also note that some clients may run
a local root server, and therefore, may never query the root
servers [19]. Despite these limitations, the DITL data provides
insight into some of the most commonly used authoritative
servers. For each IP address that queried the root servers,
we record the number of UDP queries sent, with and without
cookies, as well as the number of queries made over TCP.



1) Number of Possible none Records: Our first interest is
in seeing how many subnets do not ever produce queries to the
root servers during the 48-hour collection period. Treating the
DITL capture as a representative sample, such subnets could
easily be covered by a single none advertisement record.

We initially find that at least one DNS query originates
from 38,002 (58%) of all IPv4 /16s — with a median of 60
querying IP addresses per /16 that produced a query. Thus,
we immediately infer that 42% of /16s can be covered by a
single none policy since they have no DNS clients. Once we
consider delegation, we find that 83% of /24s do not send a
query and can therefore use a none policy.

For IPv6, DNS queries are observed from 56,891 /40
subnets. While this is similar to the number of IPv4 /16s,
it represents a near-zero amount of the total IPv6 address
space. Covering the remaining IPv6 space by publishing
none policies at every /40 is infeasible. Fortunately, that
is not necessary. Advertisement records are published by a
network entity to protect that network entity from becoming
the victim of a reflection attack. As was shown in §V-A,
90% of organizations can cover their entire network in 256
advertisement records or less.

2) Number of Delegated Records: We next consider how
many instances of delegation will be necessary, i.e., from /16
to /24 (IPv4) and from /40 to /48 (IPv6). To do this, we
analyze the DITL data to make assumptions about the current
capabilities of DNS clients and how policies might be used if
they are based on that behavior.

First, we record the highest level of security transport
exhibited by each querying IP address, specifically UDP
with cookies (cookie) or UDP (udp). In the case that we
observed only TCP queries from a given client, we could not
infer whether or not the client supported cookies (because
DNS over TCP does not use cookies). Relatedly, we exclude
TCP-only (i.e., policy tcp) as a secure transport policy; the
mere presence of a TCP query does not indicate that a given
client is ready to deploy a TCP-only query strategy—even if
we only observe TCP queries in the DITL data—nor does the
lack of a TCP query imply that the DNS client is incapable
of querying over TCP. The DITL data is simply insufficient
for inferring more than that. Finally, there are multiple reasons
that we might observe multiple transport capabilities from a
given IP address, one prominent example of which is NAT.
For the purposes of this paper, our heuristic only considers
the highest level of security for a given IP address.

Having identified the most secure DNS transport exhibited
by a given IP address, we label each delegated (i.e., /24
or /48) with a secure transport policy, basing it on the
capabilities of its constituent IP addresses. A delegated (/24
or /48) subnet is labeled with a none policy if no DNS
queries were observed from that subnet. In the case that at
least one query was observed, there are two potential strategies
for estimating the policy for a given /24: either use the
dominant transport or the least secure transport. The dominant
transport policy follows the line of thinking that the minority
of resolvers in that subnet could be “upgraded” if the majority

already is, such that the delegated subnet could publish the
more secure policy. On the other hand, the least secure policy
is what must be published if they cannot be upgraded. For
our analysis, we estimate policy for a given /24 using the
dominant transport.

Next, we extend our policy estimation to the base subnet
level (i.e., /16 or /40). We estimate a policy for each base
subnet based on the dominant policy applied to the collective
delegated subnets within its address space. In the case of the
base subnet, using the dominant strategy is most efficient (as
compared with the least secure strategy). Every subnet with a
policy different from that of the base subnet will be delegated
to, such that it can publish its own policy, overriding that of the
base. Thus, the dominant strategy approach minimizes policy
delegations.

We first present the analysis resulting from applying policies
at the IPv4 /16 level according to the strategies previously
described. As mentioned previously, no query was observed
from 42% of /16s, indicating that they can adopt a none
policy. An additional 47% have a dominant policy of none
(since no queries were observed from a majority of their
/24s); for the remaining 7,508 (11%), the dominant policy
is udp.

There are a total of 2,160,807 /24s for which the policy
at their parent /16 is different than that at the /24 itself;
that is an average of 57 delegations per /16 for which at
least one query was observed. If we include the 26 records
published at the base /16 level, approximately 2.2 million
advertisement records would be necessary to cover the entire
IPv4 address space in the state we analyzed. It is important to
note that configurations may change if advertisement records
are adopted. This could increase or decrease the total number
of records required.

Looking at IPv6, we observe only 22 /40s for which
the dominant policy was udp. The remaining subnets had
a dominant policy of none. While the frequency of none
exceeds that of udp in both cases, it is much more dominant
with IPv6, with effectively 100% of dominant policies being
none. In the case of IPv6, only 193,680 delegation records
would be required, an average of only 3.4 delegations per IPv6
/40 for which DNS activity was observed.

3) Uniformity within Delegated Subnets: The advertise-
ment protocol record is designed to have a maximum precision
of a /24 (IPv4) or a /48 (IPv6). Therefore, it is necessary for
all IPs within a delegated subnet to follow the same policy. We
examine the uniformity within /24s and /48s to determine
whether a record can apply to an entire subnet.

We first consider the simplest cases, where there is either no
DNS activity within an IPv4 /24 or the only activity comes
from a single active IP address. As we previously found, 83%
of IPv4 /24 subnets produced no DNS activity and can thus
be handled with a none record. For IPv6, all but 195,036
/48 subnets can be handled by a none policy. For 35% of
the remaining /24 subnets and 59% of the remaining /48
subnets, DNS queries were observed from only a single IP
address. For these delegated IPv4 and IPv6 subnets, there is



no dispute as to which policy should be applied; it is simply
the policy that matches the capabilities of the corresponding
client.

TABLE I
ANALYSIS OF IP ADDRESS PROTOCOL USE WITHIN DELEGATED SUBNETS
(/24S FOR IPV4 AND /48S FOR IPV6). PERCENTAGES REFLECT THE
BOLD HEADING ABOVE. “FAVORED” PROTOCOLS ARE THOSE USED BY
MOST CLIENTS.

IPv4 IPv6
Count % Count %
Total Subnets 224 100% 218 100%
No Clients 13,910,051  83% 2.8¢14 100%
Some Clients 2,867,165 17% 195,036 0.0%
One Client 1,004,614  35% 114,303 59%
Multiple Clients | 1,862,551 65% | 80,733  41%
All UDP 1,543,122 83% 67,065  83%
All Cookie 9,564 0.5% | 3,602 45%
All TCP 3,659 02% | 0 0%
Mixed 306,206 16% 10,066 12%
Favor UDP 241,031 79% 5,853 58%
Favor Cookies 11,674 3.8% 1,535 15%
Favor TCP! 1,531 05% | 0 0%
No Favor? 51,970 17% 2,678 27%

For the subnets for which we observe two or more DNS
clients, we analyze the consistency of protocol use. In 84% of
multi-client /24 subnets and 88% of multi-client /48 subnets,
all IPs exhibit consistent capabilities within the subnet: UDP,
Cookie, or TCP. In both cases, an all-UDP subnet is by far
the most common, with only a few thousand subnets being
multi-cliented and having all clients using only Cookies or
only TCP for their protocol. This leaves just 16% of multi-
client /24 subnets and 12% of multi-client /48 subnets that
exhibit varying levels of protocol capability.

Overall, the inside of a delegated subnet is fairly uniform
as far as DNS transport capabilities. All but 10% of IPv4
/24s with at least one query exhibit a consistent level of
transport capabilities. The results are similar for IPv6, with
only 4.9% of /48s from which DNS queries were observed
having inconsistent transport capabilities. This relatively small
group would be required to update their clients before adopting
an advertisement record.

C. Estimating Effectiveness for Server Adoption

Advertisement record’s effectiveness in reducing reflection-
based attacks lies solely in the number of servers that adopt
support for enforcing records. If few servers participate,
publishing a record will have little to no effect because an
attacker can still reflect off of a majority of servers. As
noted previously, 58% of /16s produce DNS queries and
thus likely host at least one recursive resolver. We expect
that accompanying that resolver is an administrator with the
knowledge to publish an advertisement record in the DNS. We
hope that every subnet publishing a record would also update
their servers to perform enforcement.

'In subnets where a majority of clients used only TCP for queries, we
cannot infer which policy might most appropriately be applied.

2In subnets classified as "No Favor”, no one protocol was observed more
than the others.

We are not able to estimate the reduction in reflection
attacks created by a subset of supporting servers because an
attacker could simply utilize other servers. In this sense, the
protocol may not be effective until a high level of adoption
is achieved. However, we do note that attackers prefer to
reflect off of servers that generate large responses. If efforts
were focused on these servers adopting enforcement, an attack
would be weakened and may not be considered cost-effective.

Macfarland et al. found that the average domain produces
an amplification ratio of 3 for A records and 6 for ANY
records [20]. However, the top 1 million largest domains
produced an amplification factor of 20—40. These 1 million
domains were served from slightly less than 25,000 (3.7%) of
the 670,000 total servers they measured. What this means is
that a targeted adoption of this 3.7% of servers would result in
the maximum achievable amplification decreasing from 40x
to 6x—a remarkable improvement. At a 6x amplification
factor, the attack against Spamhaus, which created 300Gbps
of traffic [21], would have required the attacker to have a
bandwidth of 50Gbps as opposed to the estimated 3Gbps.
While this value may be achievable by some entities, it
significantly raises the cost to participate. A reflection-based
attack also loses its value at this bandwidth, as other higher-
cost attacks become possible.

Because the response size of recursive resolvers is dictated,
in large part, by the responses it receives from the authoritative
servers it queries, there is no particular set of recursive servers
for which deployment might have a significant decrease in
traffic over others. Any recursive resolver is capable of high
amplification if the attacker queries them for one of the large
domains discussed previously. As a result, all resolvers would
need to support advertisement records in order for the full
benefit to be apparent.

One final avenue of adoption would be added support by
major DNS software such as BIND [22]. If major software
added support that worked with a simple configuration option,
there may be a substantial uptick in adoption. We note here
that DNS Cookies have been supported by major software for
up to 5 years at this point, but adoption remains at under
30% [13]. Still, if 30% of servers were to adopt advertisement
enforcement, this would theoretically reduce an attacker’s
volume by 30% if it is assumed that the attacker’s pool of
servers is representative.

In summary, enforcement by servers is essential, but also
the largest challenge faced by the protocol. We hope that
as subnets publish an advertisement record, they also update
their servers accordingly. We found that if a specific subset of
authoritative servers added enforcement, overall amplification
would drop significantly. However, the same does not hold for
recursive resolvers because of their response size being based
on authoritative server response sizes, as discussed previously.
We also found that widespread adoption may still be effective
as it is non-trivial for an attacker to determine if a server is
using enforcement.



D. Server Incentives vs. Costs of Implementing Enforcement

As we have seen, advertisement record’s success depends
on adoption by authoritative and recursive DNS servers. While
these servers play a crucial role, there are not many incentives
for them to adopt enforcement. We expect that servers owned
by potential victims (i.e., those with advertisement records)
would adopt enforcement; however, the majority of servers are
likely to be bystanders. Bystanders are used for reflection but
do not see a significant gain from enforcing advertisements
because they see only a moderate level of traffic during a
distributed reflection attack. For example, 30,000 servers were
involved in the Spamhaus attack resulting in each only needing
to generate ~10 Mbps of traffic [21].

While bystanders have the incentive of adopting enforce-
ment to be good community members, they also face a po-
tentially large burden caused by the increase in the number of
queries they would have to perform for checking advertisement
records. The scale of this burden depends entirely on the
number of unique IP addresses querying the server per day.
As we saw in §V-B2, at most 2.3 million IPv4 records would
be needed based upon queries sent to the root servers over
two days, although the root servers are a special case in many
ways, including the clients that query them and the queries that
are made [23]. Additionally, the data we used was distributed
across 9 server instances.

To gain a better idea of what the cost might look like for
deployment with a lower profile, we analyze the recursive and
authoritative DNS server logs for Brigham Young University, a
mid-size educational institution. For the first week of February
2021, the authoritative servers received unique queries from an
average of 15,246 IPv4 addresses per day. The average number
of /16s and /24s from which queries were received per day
was 978 and 3,788, respectively. Assuming a typical TTL of
one day for an advertisement record, there would be between
978 (i.e., one for each /16) and 4,766 (i.e., in the case that
every /24 required a policy delegation: 978 + 3788) queries
needed to lookup policies for every incoming IP. Of course,
pinning down the exact number depends on the number of
delegations.

We estimate the relative cost for issuing queries by looking
at related numbers. First, the authoritative servers we analyzed
received an average of 4,298,078 queries per day. Additionally,
our recursive resolver averaged 8,617,274 outgoing queries
across two 12-hour periods. Given these numbers, the max-
imum number of outgoing queries (4,766) is less than 0.02%
of the total queries sent or received. From this perspective, the
load associated with policy lookup seems manageable from
both authoritative and recursive perspectives.

We note that these numbers are not representative of other
DNS servers. Servers for more popular sites, such as Google or
Facebook, likely see far more unique IP addresses. However,
these servers are also likely to be designed for a higher volume
of traffic.

E. Threat Analysis

The threat model we consider is that of an off-path attacker.
The attacker’s original goal was to deny service to the victim
through a distributed denial-of-service attack. With advertise-
ment records, this is no longer feasible when all servers have
deployed enforcement and the victim publishes a record with a
secure option (e.g., DNS Cookies). However, an attacker might
also try to abuse the advertisement system to (1) deny service
to the victim through spoofing an advertisement record or (2)
flood enforcing servers with lookup requests. We explore both
of these scenarios to gain a better understanding.

1) Spoofing Advertisement Records: One attack vector
would be to spoof an advertisement record with a more secure
option than is currently in use by the victim. This would
effectively deny service to the subnet; DNS servers would
reject legitimate packets that are not in compliance with the
spoofed record.

The key to mitigating this vector is that the record is
published by the owner of the subnet and is queried by
servers independently. An off-path attacker would be unable
to intercept or modify the query for the advertisement record.
Even when considering an on-path attacker, they could spoof
an advertisement record to a given DNS server and deny the
victim traffic from that server; however, in this position, the
attacker could also drop all communication between the two.
In other words, the attacker does not gain any advantage when
advertisement records are in use.

An off-path attacker could still attempt a cache poisoning
attack of the advertisement record for individual servers. If
successful, the victim would no longer be able to communicate
with the poisoned server which would expect a different proto-
col than the client uses. This attack would be plausible because
an attacker can generally predict when the advertisement query
would be sent (shortly after the server receives a spoofed
packet). However, cache poisoning attacks can be easily miti-
gated by the use of DNS Cookies, 0x20 encoding, DNSSEC,
or source port randomization by the server. We would expect
that servers implementing advertisement enforcement would
also deploy one of these methods.

2) Flooding Servers: Another concern may be that an
attacker could force a server to query for many advertisement
records, causing adverse effects. There are two methods for
this attack.

In the first, the attacker could repeatedly query for a subnet
with an advertisement record that has a short TTL (e.g., 0).
This would require the server to perform a lookup every time
a query is received. This attack can be mitigated by the server
enforcing a minimum TTL.

In the other attack method, an attacker would send spoofed
packets from every subnet to create a large number of needed
records for the server. This is especially concerning for IPv6
as there are 2%C subnets the attacker could send a query
from. This attack is largely mitigated by the server delaying
an advertisement lookup until a certain threshold is reached
(e.g., performing the lookup on the tenth received query for a
subnet).



While both of these attacks have the potential to overwhelm
a server, neither of them are unique to advertisement records.
Both rely on a large number of inbound queries to the server
in the same manner as a typical DoS attack. Compared to
a traditional DoS attack that floods the server with unique
queries, adding advertisement records would only increase the
workload by 10% if the server waited for 10 queries before
checking for an advertisement record. We believe that this does
not offer a significant advantage to the attacker. Additionally,
many servers already employ methods, such as rate-limiting
and maximum cache sizes, to mitigate DoS attacks.

There is a potential concern as authoritative servers—which
are newly equipped for making queries—may not be robust
to these attacks. However, authoritative servers can still use
standard techniques to manage inbound queries and can be
assisted by a recursive resolver to handle outgoing queries.
In essence, following existing best practices should result in
servers being able to handle any advertisement-based flooding
attacks since these attacks offer only small gains over other
methods.

VI. DISCUSSION
A. Limitations and Future Work

Our work has presented a mechanism to enforce secure
protocol use by clients and prevent DDoS attacks in the DNS.
Howeyver, there are several limitations to our work which in
turn present future opportunities.

1) IPv6 Considerations: Because there is a significant
deployment of IPv6, it is as much part of the attack surface
as IPv4. We have attempted to treat IPv6 alongside IPv4 in
our analysis. However, we recognize that IPv6 deployment
is an ongoing process with current measurements showing
less than 30% adoption [24]. As a result, the landscape may
change over time and this may affect the practicality of using
advertisement records. It is therefore essential that the state of
IPv6 deployment be monitored over time to assess the most
meaningful deployment of advertisement records.

2) Limited Server Data: One limitation of our work is the
minimal dataset we had for the analysis of deployment cost for
servers. We only performed an empirical analysis of servers
in two categories: the root servers and the servers for our
university. Future work should look to analyze other recursive
and authoritative DNS server data, including servers across
the spectrum of demand. This would allow a more precise
estimate of the amount of work required by the server relative
to an average load.

3) Accuracy of Server Burden Estimations: Finally, our
work was limited in details relating to the exact server imple-
mentation for enforcement. For example, we did not specify
a precise sequence of steps a server would take when a new
query is received. Would the server check its cache for an
advertisement policy every time a query is received? What
impact on latency would this have? These questions were not
answered in our work, but can be explored in the future. There
were also multiple instances where we did not define a specific

value such as the TTL of a negative record or the number of
queries that can be answered before enforcing a policy.

In large part, these specific details were excluded because
they have little impact on the overall protocol. However,
they must be determined before an implementation can be
made. Later work should attempt to implement advertisement
enforcement in an existing piece of DNS software (e.g.,
BIND [22]). This would not only provide a proof-of-concept
but would also help in determining specific design choices.

B. Conclusion

In this work, we have presented DNS Protocol Adver-
tisement Records. These records are designed to prevent
reflection-based distributed denial-of-service attacks against
client subnets who use secure protocols.

With advertisement records, any /16 (IPv4) or /40 (IPv6)
subnet (and by delegation any /24 or /48) can publicly state
which secure transport their clients intend to utilize (e.g., TCP-
only or DNS Cookies). DNS servers are then able to look up
these records and enforce the provided policy by dropping
non-compliant packets. This will effectively prevent reflection
attacks because the queries will not be returned to victims.

We evaluated the potential effectiveness of advertisement
records. We first saw that adoption for clients is realistic. From
an administrative perspective, only a handful of autonomous
systems exist per /16 IPv4 and /40 IPv6 subnet. We found
that on average 57 delegations from /16 to /24 would be
needed for IPv4 and only 3.4 from /40 to /48 in IPv6.
Additionally, we saw high uniformity within /24 and /48
subnets.

While advertisement records are extremely easy to imple-
ment for owners of address space, we saw that there is an
increased, albeit manageable, cost for servers to implement
the enforcement. Our analysis of the authoritative servers for
our university showed that they would need to query for only
4,766 advertisement records—a small amount compared to the
volume of queries performed by our institution’s recursive
resolvers. Despite the manageable cost for servers, they are
likely to benefit very little from enforcement. Another key is
that the effectiveness of advertisement records depends entirely
on adoption by servers. Adoption by all recursive resolvers
would ultimately be needed to mitigate attacks (though a
portion supporting the protocol may weaken an attack).

Advertisement records have the potential to reduce the
effectiveness of denial-of-service attacks that utilize reflection.
This will solve a major issue that exists with the current DNS
Cookie deployment. The mechanism presented is very easy for
clients to adopt, but may not provide enough incentives to see
widespread adoption among servers. Since server adoption is
key to success, we hope that future work will explore avenues
for optimizing the protocol to reduce costs for servers.
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