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Abstract—The rapid popularization of wireless power trans-
fer (WPT) technology promotes the wide adoption of wireless
rechargeable sensor networks (WRSNs). Traditional methods
only focus on how to optimize network performance, and most
of them overlook the energy waste issue induced by WPT. In
this paper, we explore the potentials of recycling wasted energy
when using WPT by means of freeloading. Specifically, with a
slight modification on hardware, we expand the functionality
of the mobile chargers (MCs), enabling them to harvest and
recycle the WPT-induced wasted energy in the air to serve more
sensors, which promotes energy efficiency. We model the problem,
termed MEFree, as maximizing network energy efficiency by
utilizing a limited number of freeloading MCs and scheduling
their freeloading behaviors. Through jointly scheduling freeload-
ing and charging tasks, the proposed scheme is able to solve
the problem with a (1 − 1/e)/2 approximation ratio with a
slightly relaxed budget. Extensive simulations are conducted and
corresponding numerical results show that our proposed scheme
significantly improves network energy efficiency by at least 18.8%
and outperforms baseline algorithms by 19.1% on average in
various aspects. Our test-bed experiments further demonstrate
the practicability of our scheme in actual scenes.

Index Terms—wireless power transfer, freeload charging, mo-
bile charger, energy recycling

I. INTRODUCTION

Wireless power transfer [1] provides an enabling tech-
nology for realizing sensor perpetuation in Wireless Sensor
Networks (WSNs), which in turn derives the concept of
Wireless Rechargeable Sensor Networks (WRSNs) [2]–[6]. In
recent years, considerable research achievements have been
proposed on WRSNs. In general, traditional methods can be
categorized based on the functionality of wireless charger(s)
into two types: stationary chargers (SCs) [7]–[9] and mobile
chargers (MCs) [10]–[12]. In these schemes, when performing
charging tasks, wireless chargers will emit charging signal
in the air, and rechargeable sensors harvest energy through
directional antennas, omnidirectional antennas, or coupling
coils. However, compared with the huge size of the charging
signal coverage area, the size of the energy harvesting antennas
is quite small, which is only about 4cm∗20cm, thus resulting
in large amounts of energy waste. Statistically, the transmitting
power of a wireless charger is usually two or three orders of
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magnitudes higher than the receiving power of rechargeable
sensors with energy harvesting antenna (i.e., 3W vs. 50mW).
Even if multiple rechargeable sensors are simultaneously har-
vesting from one charger, the energy efficiency can only be as
high as 20%. In other words, more than 80% of the charging
power is wasted in vain [14], [15].

This intrinsic defect of WPT hinders the wide adoption of
WPT-based applications. Unfortunately, it is overlooked by
most previous arts. Hence, it is quite meaningful to explore
how to recycle wasted energy to improve the energy efficiency
of WRSN. The main goal of this paper is to propose a scheme
that reduces excessive energy waste and recycles the ambient
wireless signal wasted by chargers. In this work, we make a
slight modification on commodity devices where an energy
harvesting antenna (or coupling coil) and a small printed
circuit board (PCB, e.g., Powercast P2110B [14]) are installed
on a UAV (i.e., the MC), which enables it to freeload energy.
With such modifications, these “freeloading MCs” are able to
recycle the ambient charging signals which should have been
wasted, and replenish sensors without increasing the energy
burdens of the base station.

We formalize the problem as a Maximizing Network
Efficiency via Freeloading Mobile Chargers (MEFree) problem
(see Section III-C), which aims at utilizing a limited number of
reasonably scheduled freeloading MCs to recycle the wasted
energy to charge sensors. To address the MEFree problem, we
face with several technical challenges:
• When determining the behavior of an MC, it is non-

trivial to trade-off energy harvesting and charging tasks
scheduling in a global view. Moreover, distributing and
scheduling the charging tasks for multiple MCs is equiv-
alent to solving multiple interrelated charging scheduling
problems simultaneously, leading to great difficulties.

• Since the freeloading spots for mobile chargers to harvest
energy is selected from the continuous 2D space, the
number of candidate freeloading spots is infinite, which
yields an extremely high computational complexity.

• Calculating the traveling path of MCs is similar to solving
a traveling salesman problem (TSP), which is proved to
be NP-hard. Moreover, the selection of the redundant SCs
can be reduced to a variance of the budgeted maximum
coverage problem [16], which is also NP-hard. There-
fore, the MEFree problem is the combination of several



coupling NP-hard problems, posing great challenges.
To tackle the above-mentioned challenges, we divide the

MEFree problem into two subproblems and propose several
algorithms to solve them simultaneously. Theoretical analyses
are proposed to present some insights for our scheme. Finally,
simulations and experiments are conducted to highlight the
features of energy recycling. In general, the main contributions
of this paper are summarized as follows:
• To the best knowledge of the authors, this is the first work

that addresses the energy recycling problem of wireless
power transfer in WRSN. Through equipping an energy
harvesting antenna (or coupling coil) and a small printed
circuit board on each MC, the original MCs are able
to recycle the wasted energy, thus reducing energy con-
sumption and saving cost for WRSN. Through reasonable
scheduling of the MCs, we are able to replace redundant
SCs with freeloading MCs to serve sensors with less
energy consumption. Thereby, the energy efficiency of
the network is significantly improved.

• With the innovative freeloading MCs, a novel WRSN
architecture is constructed. We formalize the MEFree
problem, which aims at maximizing the energy effi-
ciency of the WRSN through utilizing freeloading MCs
while ensuring energy supply of sensors. Afterwards,
we propose area discretization techniques and several
algorithms to solve the MEFree problem with a 1

2 (1− 1
e )

approximation ratio.
• Extensive simulation results indicate that our proposed

scheme achieves effective recycling of wasted energy
in the network, which significantly improves network
energy efficiency by 18.8% and excels with other baseline
algorithms by 19.1% on average. Moreover, test-bed
experiments demonstrate that our scheme is suitable for
practical applications and show merits in recycling wasted
energy.

II. RELATED WORK

In recent years, much effort has been devoted to WRSNs.
According to different functionalities of chargers, traditional
methods are three-folds: stationary chargers scheduling [7],
[8], [17], [18] and mobile chargers scheduling [10], [19]–[23].

For the stationary charger scheduling issue, the chargers
transmit wireless signals into the surrounding environment to
charge sensors in a one-to-many pattern. Rechargeable sensors
harvest the ambient wireless signals and convert them into
DC power to replenish themselves. Zhang et al. [18] aimed
at optimizing charging quality in a 2D target area. They pro-
posed a (1− 1

e )-approximation algorithm to schedule chargers
placement and power allocation. Yu et al. [8] focused on
maximizing overall charging utility by determining the place-
ment position and orientation angle for each charger under
connectivity constraint. Dai et al. [17] considered the potential
risk of electromagnetic radiation from charging signals. They
explored how to adjust the power of chargers to maximize
the charging utility while ensuring that the radiation does not
exceed a given threshold. In addition, they also considered
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Fig. 1. Network model.

the case where the electromagnetic radiation is floating [7].
Wang et al. [23] aimed at maximizing the overall expected
charging utility through determining the orientations of the
wireless chargers while taking the charging power fluctuation
problem into consideration.

For the mobile charger scheduling issue, mobile chargers
are employed to travel around the network and stop at specific
spots near sensors to perform charging tasks. Wu et al. [10]
studied the collaborated tasks-driven mobile charging and
scheduling to deal with the energy requirement diversity.
Lin et al. [20] introduced both temporal and spatial factors
to prioritize charging requests, and investigated the issue
of multiple WCVs online collaborative charging scheduling.
Liang et al. [21] studied the deployment of the minimum
number of mobile charging vehicles to charge sensors in a
large-scale WRSN while enabling network perpetuation. Chen
et al. [19] developed a class of generic optimization problems
on charging scheduling. They designed a quasi-polynomial
time algorithm that achieves poly-logarithmic approximation
to the optimal charging path. Zhang et al. [22] considered
how to efficiently provide flexible wireless charging using pre-
planned charging itineraries where the energy consumption of
rechargeable devices fluctuates overtime.

The common problem of previous arts is that they over-
looked the recycling of the energy waste induced by WPT,
which yields a considerable amount of energy delivered in the
air and wasted in vain. To solve this problem, in this work,
we focus on utilizing hybrid chargers and use freeloading MCs
to recycle the wasted energy, and thereby improve the energy
efficiency of the whole network.

III. MODEL AND PROBLEM STATEMENT

A. Network Model

As shown in Figure 1, we consider n stationary sensors
(denoted as S = {s1, s2, ..., sn}) deployed in a 2D plane
network (with side length L) uniformly to conduct monitoring
tasks and they are configured with certain protocols [27], [28].
Each sensor is equipped with a rechargeable battery and an
energy harvesting module, which can be used to capture the
RF signals in the surrounding environment and convert them
into DC power to replenish the onboard rechargeable battery.

To provide energy supply for rechargeable sensors, similar
to [13], we utilize both SCs and MCs to achieve higher net-
work energy efficiency. Specifically, m SCs (denoted as O =



{o1, o2, ..., om}) are distributed in the network, which can emit
RF signals continuously into the surrounding environment,
forming a sector charging area with charging radius ro and
charging angle Ao (see Figure 2(a)). Accordingly, rechargeable
sensors harvest these RF signals to recharge themselves to
sustain normal operation perpetually. Nevertheless, after taking
a deep investigation, we found that SCs have rather low energy
efficiency since they provide energy supply for quite a few
sensors while consuming a large amount of energy to transmit
charging signals into the surrounding environment. As reported
in [14], [15], in the charging process, more than 80% energy
will be wasted.

To address the energy waste issue and enhance the energy
efficiency (i.e., reduce the energy consumption) of the whole
network, we make a slight modification on existing commodity
MCs (i.e., UAVs in this work) where an energy harvesting
antenna (or coupling coil) and a small PCB (Powercast
P2110B [14]) are attached to the rechargeable battery (see
Figure 9) of an MC. With this modification, an MC is able to
emit RF signals for replenishing sensors and harvest wasted
energy by receiving ambient RF signals. Afterwards, to recycle
the wasted energy, an MC can travel towards an SC and stay
close to it to take a freeload charging. Thereby, introducing
freeloading MCs will not increase energy consumption. It will
enable us to replace some of the SCs with freeloading MCs,
thereby reducing the energy consumption of the network.

We consider that there are k available MCs (denoted as
U = {u1, u2, ..., uk}), which can harvest energy from ambient
RF signals from SCs and charge sensors. With freeloading
MCs, some redundant SCs can be removed to save network
energy consumption.

Rechargeable sensors perform sensing tasks, data transmis-
sion, and data relaying, which are energy-consuming. The
energy consumption rate of sensor si is denoted as ηi, which
consists of sensing consumption rate ηi,s and transmission
consumption rate ηi,t. As a result, the energy consumption
rate for a sensor is no less than ηi,s.

Sensors are able to harvest energy by receiving RF signals
transmitted by nearby SCs. The transmitting power of an
SC is denoted as Po. The corresponding charging radius is
denoted as ro. The charging power from charger oi to sensor
sj decreases as their distance increases (see Equation (1)).
Whenever the distance exceeds ro or the sensor is out of the
sector charging area, it cannot capture any energy. Thus we
define the coverage set of SC oi as the set of sensors within its
charging area, and it is denoted as Soi = {sj ∈ S| l(oi, sj) ≤
ro,
−−→oi, x · −→aoi − l(oi, x)cos(Ao/2) ≥ 0}.

B. Freeloading MC

Different from SCs, freeloading MCs work in a different
pattern. During the working process, freeloading MCs will
first stay at selected freeloading spots and harvest energy from
nearby SCs, and then depart to charge panic sensors. Such
process is performed in every time period T . Referring to [29],
compared with the time period T , the charging scheduling time
(traveling towards sensors and charging them) is negligible.

A Freeloading MC is implemented based on a UAV
equipped with a low-cost energy harvesting antenna (or cou-
pling coil) and a small PCB (see Figure 9), which enables it
to harvest RF signals. Here, such additional components are
cheap and small in size, which will not cost burdens to the
MC.

When a freeloading MC stays at a freeloading spot to
harvest energy, its receiving power can be calculated as the
same as that of sensors:

Pui
(x) =


Po · α

(β+l(oi,x))2 , 0 ≤ l(oi, x) ≤ ro,
and −−→oi, x · −→aoi − l(oi, x)cos(Ao/2) ≥ 0,

0, otherwise.
(1)

Here, x is the freeloading spot, Pui(x) is the receiving power
of ui when it is staying at freeloading spot x. α and β
are energy transfer constants configured by hardware and
environment. oi denotes the SC from which MC ui receives
energy. −→aoi is the unit vector in the orientation of oi. l(oi, x)
is the distance between oi and x.

WPT requires tight alignment between charging and receiv-
ing antennas (or coils). When an MC is moving, the displace-
ment between transceivers is likely to occur at anytime. Hence,
such received energy can be negligible. Due to the intrinsic
feature of the energy management module, when MC performs
charging tasks, it cannot harvest ambient energy either, as the
energy harvesting module will be blocked when its battery is
discharging [14], [15], [30].

Since the energy source of freeloading MCs is the wasted
energy in the air, we believe such MCs will not bring in extra
energy consumption in the network. In essence, the role of
MC is to convert the wasted charging signals into their own
energy and transfer it to sensors. Thus, they can be considered
as energy-saving alternatives to SCs. With freeloading MCs,
some of the SCs can be removed to save energy.

Let O′ ⊆ O be the set of selected SCs to be removed,
and U ′ ⊆ U be the set of scheduled freeloading MCs. Once
SCs in O′ are removed, some of the sensors may suffer from
insufficient energy supply. To keep the network perpetual, the
energy received by a sensor over a time period T should be
no less than the energy it consumes. Since each sensor has
its own charging deadline, in order to serve the most panic
sensor timely, MCs have different scheduling cycles of time
T1, T2, ..., Tm. MCs in U ′ should provide energy supply for
these sensors to compensate for their power loss:

e(ui, sj) ≥ ηi · T, ∀ui ∈ U ′, ∀sj ∈ Sui
, (2)

where e(ui, sj) is the energy transmitted from ui to sj , and
Sui

is defined as the set of sensors to be charged by ui.
Let S′ denote the set of sensors that lack energy supply

after removing chargers in O′, i.e. S′ =
⋃
oi∈O′ Soi . Thus we

have
S′ =

⋃
ui∈U ′

Sui
. (3)

Let δ be the energy consumed by MC on transmitting per
unit energy to the sensor and σ be the energy consumed on
traveling a unit length. The energy cost Ci of MC ui to finish



the whole charging task is composed of two parts: charging
cost Ci,e and traveling cost Ci,t, which can be calculated by

Ci = Ci,e + Ci,t =
∑

sj∈Sui

e(ui, sj) · δ + Li · σ, (4)

where Li is the length of the shortest Hamiltonian cycle
including all sensors in Sui

and the freeloading spot. The
calculation problem of Li is similar to the traveling salesman
problem (TSP), which is NP-Hard and can be approximately
solved using the nearest neighbor strategy [31].

Note that, the energy cost Ci of ui should never exceed its
harvested energy. In other words, a mobile charger should head
towards a freeloading spot to harvest energy before exhaustion,
because it has no energy supply except for the ambient RF
signal. Specifically, this energy constraint can be described as

Pui(x) · T ≥ Ci. (5)

C. Problem Formalization

Given an existing WRSN in which n rechargeable sensors
are distributed in a 2D plane, and m SCs are deployed around
rechargeable sensors to provide energy supply for them by
transmitting RF signals into the surrounding environment. We
consider that there are k freeloading MCs available to dispatch.

The Maximizing Network Efficiency via Freeloading Mobile
Chargers (MEFree) problem is to replace some of the sta-
tionary chargers with a limited number of freeloading mobile
chargers to reduce network energy consumption and maximize
the network energy efficiency. The MEFree problem can be
formulated as

(MEFree) max ψ =

∑
si∈S ηi∑

oj∈O\O′ Poj

s.t. |U ′| ≤ k.
(1)− (5)

(6)

Here, ψ represents the energy efficiency of the network, and
Poj is the transmitting power of SC oj . Note that ψ can be
calculated as the ratio of the total power consumed by sensors
to the total power injected into the network by SCs.

IV. PROPOSED SCHEME

To solve the MEFree problem, we firstly reformulate the
problem into a simplified version. Then we propose area
discretization techniques and several algorithms to solve the
problem with a specific performance guarantee.

A. Problem Reformulation

According to the problem formalization, our objective is
to maximize the network energy efficiency. Since the energy
consumption rate of sensors is fixed, maximizing the network
energy efficiency is equivalent to minimizing SCs’ energy con-
sumption. Therefore, this problem can be further transformed
into maximizing the reduction of energy consumption caused
by SCs. In other words, our objective is to maximize the
total transmitting power (denoted as E′) of the removed SCs.
Accordingly, the MEFree problem can be reformulated as

(MEFree-R) max E′ = |O′| · Po
s.t. |U ′| ≤ k.

(1)− (5)

(7)

Through in-depth analysis, we can divide the MEFree-R
problem into two subproblems: (1) Selecting the set O′ ∈ O
of redundant SCs and removing them while enabling network
perpetuation by scheduling a limited number of freeloading
MCs; (2) Scheduling freeloading MCs in set U ′ ∈ U to
compensate for energy loss of sensors caused by removal of
SCs while minimizing required number of MCs.

Note that the reformulated MEFree-R problem is NP-hard
(see proofs in Section V-A). In the following, we propose a
series of methods to address this problem.

B. Area Discretization

After problem reformulation, we still face another difficulty
that the freeloading spots of mobile chargers are in the
continuous space, which means that the candidate locations are
infinite. Enumerating all possible spots to select an appropriate
one will induce extremely high computational complexity.

To reduce the computational complexity of selecting
freeloading spots for MCs, an area discretization technique is
required, which can partition the continuous network area into
discrete subareas. We apply the grid area discretization method
which fits well with our network model and has rather low
computational complexity. The related discretization-induced
error will be explored in Section V-B.

As shown in Figure 2(b), we divide the 2D plane into
uniform grids {Γ1,Γ2, ...,Γg} with side length θ. The number
of grids is g = d Φ

θ2 e, where Φ is the area of the network.
Similar to [11], the receiving power at each spot within a grid
is considered as uniform. Therefore, any point within it can
be regarded as the candidate freeloading spot for MCs, and
we randomly choose one in every grid as a candidate for MC
to harvest energy.

Note that, the uniform receiving power in a grid is approx-
imated as the minimum receiving power within it. When a
grid Γi is covered by SC oi, the minimum/uniform receiving
power (denoted as p(oi,Γi)) is identical with the spot that has
the longest distance to oi. When a grid is partially covered
by a single SC, it will be divided into two sub-grids: covered
sub-grid Γ′i and uncovered sub-grid Γ′′i (see Figure 2 (b)). We
calculate p(oi,Γ′i) as the minimum/uniform receiving power
in Γ′i while p(oi,Γ′′i ) is naturally considered as 0.

Let θ =
√

2
2 β( 1√

1−ζ −1), where ζ is a given error threshold
(0 ≤ ζ < 1). For each spot x within grid Γi, we have the
following bounded approximation error:

p(oi,Γi) ≥ (1− ζ)p(oi, x), ∀x ∈ Γi. (8)
The detailed proof for (8) is given in Section V-B. Thereby,

the second challenge introduced in Section I is tackled.

C. Scheduling Freeloading MCs

We propose two algorithms named MCS and CMN to solve
one of the above-mentioned subproblems: charge sensors with



(a) (b)

Fig. 2. (a) Charging model: SC can only charge the sensors within its
sector charging area (e.g., sk) rather than outside sensors (e.g., sj ). (b) Area
discretization.

the minimized number of freeloading MCs. Note that the
key difference from existing mobile charging schemes is the
uncertainty of freeloading spots and sensor allocation.

1) Status of MC: First, we introduce the two statuses of a
freeloading MC: busy and available. An MC harvests energy
at a freeloading spot for battery replenishment to support it
to perform charging tasks later. For an MC ui, after serving
all sensors, if there is still free time for it before the next
scheduling cycle, we consider that ui is available and is not
busy enough. Apparently, serving more sensors and increasing
the traveling distance will also increase the energy consump-
tion of ui, thus making it spend more harvested energy, in
other words, making it busier.

For an MC ui in a network, if it has to spend all the
harvested energy to fulfill charging tasks, or adding any other
sensor to Sui will make it fail to complete all charging tasks
(i.e., cause node exhaustion), we consider that it is busy. In
other words, for a busy MC, there is no spare time within
a scheduling cycle besides harvesting energy and performing
charging tasks.

To minimize the number of the required freeloading MCs, a
straightforward method is to make full use of the MCs in U ′.
For a freeloading MC ui, we tend to add sensors to Sui until
it is busy so that ui can serve as many sensors as possible.

2) Duty Ratio: For a freeloading MC ui, we define its busy
degree as the ratio of its consumed energy (traveling cost and
charging cost) to its total harvested energy in one time period
T , which is denoted as duty ratio di, i.e.,

di =
Ci

Pui(x) · T
. (9)

Obviously, a larger duty ratio indicates that the correspond-
ing MC has heavier charging tasks. If there is no charging task
for MC ui, we have di = 0. In contrast, di = 1 means ui is
busy since all the harvested energy will be used for charging
tasks.

For a more accurate description, we use the total duty ratio
D to represent the number of scheduled freeloading MCs to
charge sensors in S′. Specifically, D is calculated as

D =
∑
ui∈U ′

di. (10)

Naturally, we have D ≤ |U ′| since di ≤ 1 for each ui.
3) Single MC Scheduling: We introduce an algo-

rithm named Maximizing Coverage with Single mobile
charger (MCS for short), and its objective is to schedule

Algorithm 1 Maximizing Coverage with Single Mobile
Charger (MCS)
1: Input: The set S′ of sensors to be charged, candidate freeloading spots

Γ1,Γ2, ...,Γg , and freeloading MC ui.
2: Output: Charging set Sui , freeloading spot Γui , traveling path L, and

duty ratio di.
3: Initialization: Sui ← ∅, L ← ∅, k ← 1.
4: Select the freeloading spot Γui with the maximum energy receiving

power;
5: while S′ 6= ∅ do
6: for ∀s ∈ S′ do
7: Calculate the traveling path Li consisting of Sui ∪ {s} ∪ {Γui}

through the nearest neighbor strategy [31];
8: if (1)-(5) hold for Sui ∪ {s} then
9: Compute d′i with Sui ∪ {s};

10: else
11: Continue;
12: end if
13: end for
14: sk ← arg maxs∈S′{d′i|d′i ≤ 1};
15: Sui ← Sui ∪ {sk};
16: S′ ← S′\{sk};
17: Γui ← arg minΓ di;
18: Recalculate Li;
19: k ← k + 1;
20: end while
21: Output Sui , Γui , Li, and di.

charging tasks and construct the corresponding traveling path
for a single MC.

To remove SCs from O′ and compensate charging service
for sensors in S′, as shown in Algorithm 1, we present the
detailed process of scheduling an MC to serve sensors.

Algorithm 1 works as follows. In the initial state, Sui = ∅
and di = 0 (Line 3). To ensure the network perpetuation, the
energy received by a sensor should be no less than the energy
it consumes in time period T . Hence, a straightforward method
is to let MC harvest as much energy as possible. Thereby, we
select the freeloading spot with the maximum energy receiving
power as the initial freeloading spot (Line 4).

Afterwards, we iteratively select sensors until all sensors in
S′ are added into Sui , or ui is busy and cannot serve more
sensors. Specifically, in an iteration, for each sensor in S′,
we add it to Sui

and rebuild the traveling path through the
nearest neighbor strategy. If (1)-(5) hold for Sui

∪{s}, which
means that ui is able to serve all the sensors in Sui

∪ {s},
the corresponding duty ratio d′i will be calculated. Otherwise,
such a sensor will be excluded (Lines 5-13). The sensor with
the maximum value of d′i will be added to Sui

. Once Sui
is

modified, we assign the MC to harvest energy from different
freeloading spots separately and obtain the corresponding duty
ratio. The spot with the minimum duty ratio will be selected
as the new freeloading spot Γui for ui. After that, Li will be
recalculated (Lines 14-18).

With the MCS algorithm, we can obtain the sensor set Sui

which will be charged by ui, the corresponding freeloading
spot Γui

, traveling path Li, and ui’s duty ratio di.
4) Scheduling Multiple Mobile Chargers: Since the charg-

ing capability of a single MC is limited, we hereby explore
how to schedule multiple MCs to serve the network.

Based on MCS algorithm, we introduce an algorithm named



Algorithm 2 Coverage with Minimum Number of Mobile
Chargers (CMN)
1: Input: The set of sensors to be charged S′, candidate freeloading spots

Γ1,Γ2, ...,Γg , and freeloading MC set U .
2: Output: Deployed mobile charger set U ′, total duty ratio D, and number

of mobile chargers i.
3: Initialization: i← 1.
4: while S′ 6=

⋃
uj∈U′ Suj do

5: Use the k-means clustering algorithm to partition the sensor set S′
into i subsets {S′1, S′2, ..., S′i};

6: for each S′j do
7: Schedule mobile charger uj to cover sensors in S′j using MCS

algorithm;
8: Compute Suj , Γuj , and dj ;
9: U ′ ← U ′ ∪ {uj};

10: end for
11: if S′ ←

⋃
uj∈U′ Suj then

12: Break;
13: else
14: Sr ← S′\

⋃
uj∈U′ Suj ;

15: while Sr 6= ∅ do
16: s∗ ← arg maxsi∈Sr ηi;
17: Distribute s∗ to the MC that has the minimum duty ratio

increment and update its freeloading spot and traveling path;
18: end while
19: end if
20: if S′ ←

⋃
uj∈U′ Suj then

21: Break;
22: else
23: i← i+ 1;
24: end if
25: end while
26: D ←

∑
uj∈U′ dj ;

27: Output U ′, D, and i.

Coverage with Minimum Number of mobile chargers (CMN
for short) to coordinate multiple freeloading MCs to charge
all the sensors in sensor set S′ while minimizing the number
of required MCs. The detailed process is given in Algorithm 2.

The algorithm is to cover all sensors in S′ with the mini-
mum number of freeloading MCs. Firstly, the classic k-means
clustering algorithm is applied to partition the sensor set S′

into subsets {S′1, S′2, ..., S′k}. For each subset S′j , we dispatch
a freeloading MC to serve the sensors in it and obtain the
corresponding charging set Suj

, freeloading spot Γuj
, and

duty ratio dj (Lines 5-10). If all subsets are covered, then the
sensor set S′ is covered by i freeloading MCs. We calculate
the total duty ratio D of all mobile chargers in U ′ and output
corresponding results (Lines 11-12 and Lines 26-27).

Otherwise, MCs will try to coordinate charging tasks with
each other. We denote the set of uncovered sensors as Sr.
If Sr 6= ∅, we search for the sensor with the largest energy
consumption rate in Sr. Then, the algorithm tries to add it
to each ui in U ′ and calculate the corresponding duty ratio
after adding it. If no mobile charger can serve this sensor, the
algorithm will increase the number of MCs to divide S′ into
more subsets and repeat the above process (Lines 22-24). If
one or more MCs are able to serve this sensor, we select the
one with the minimum duty ratio increment and recalculate
the freeloading spot as well as the traveling path (Lines 13-
19). The algorithm iteratively adds uncovered sensors in Sr
to charging sets until all uncovered sensors are covered. With

Algorithm 3 Global Algorithm for MEFree-R Problem
1: Input: Stationary chargers set O, sensor set S, mobile charger set U .
2: Output: Minimized network energy consumption E, selected stationary

chargers set O′.
3: Initialization: E ← |O| · Po, O′ ← ∅, U ′ ← ∅.
4: while O 6= null do
5: for ∀oi ∈ O do
6: For O′ and O′ ∪ {oi}, compute the reduced network energy

consumption, denoted as E′(O′) and E′(O′ ∪ {oi});
7: Calculate the total duty ratio D(O′), D(O′ ∪ {oi}) and number

of mobile chargers N(O′), N(O′ ∪{oi}) with O′ and O′ ∪{oi}
through CMN algorithm (Algorithm 2);

8: end for
9: o∗ ← arg maxoi∈O

E′(O′∪{oi})−E′(O′)
D(O′∪{oi})−D(O′) ;

10: if N(O′ ∪ {oi}) ≤ |U | then
11: O′ ← O′ ∪ {o∗};
12: end if
13: O ← O\{o∗};
14: end while
15: E ← E − E′(O′);
16: Output E,O′;

this method, we can ensure the energy supply of all sensors
with the minimum number of freeloading MCs.

The algorithm will eventually output freeloading MCs set
U ′, total duty ratio D, and the number of MCs i. Thereby,
we have solved the first subproblem of MEFree, and the first
challenge introduced in Section I is tackled.

D. Replacing Stationary Chargers

Another underlying problem is to select the set O′ ∈ O
of redundant SCs and replace them with a limited number
of freeloading MCs while guaranteeing network perpetuation.
Here, we propose an algorithm based on the CMN algorithm
to solve this problem with a bounded approximation ratio.

Through Algorithm 2, we can obtain the number of required
MCs and corresponding duty ratio to charge a given sensor
set S′. Therefore, for any O′ ∈ O, we can obtain the
corresponding sensor set S′ and calculate the corresponding
duty ratio D of freeloading MCs to charge the sensors in
S′, which is considered as the cost of replacing SCs in O′.
Following this idea, we iteratively add SCs to O′ and calculate
the corresponding cost. The detailed process is described in
Algorithm 3.

For each oi ∈ O, we calculate the reduced network energy
consumption E′ when we remove this SC, and calculate the
corresponding cost of this removal, which is represented by
the increase of total duty ratio D of freeloading MCs (Lines
5-8). We define the cost-benefit ratio as the ratio of increased
E′ and increased D when adding a new SC oi to O′. In each
iteration, an SC o∗ is selected and added to O′ such that the
cost-benefit ratio is maximized (Lines 9-12), i.e.,

o∗ = arg max
oi∈O

E′(O′ ∪ {oi})− E′(O′)
D(O′ ∪ {oi})−D(O′)

. (11)

The iteration process will be repeated until the number
of required MCs exceeds |U |. Finally, the network energy
consumption is calculated as E = E − E′(O′) (Line 15).

Thereby, the third challenge introduced in Section I is
tackled.



V. THEORETICAL ANALYSIS

Related theoretical analyses are provided here. We prove
the NP-hardness of MEFree-R problem and the approxima-
tion error of area discretization. In addition, we analyze the
approximation ratio of CMN algorithm and global algorithm.

A. NP-Hardness

Theorem 1: The MEFree-R problem is NP-hard.
Proof: For the MEFree-R problem, the number of MCs

can be considered as the cost of removing SCs while the
objective is to maximize the total weight (transmitting power)
of selected SCs. Thereby, it can be reduced to a variance of the
budgeted maximum coverage problem [16], which is proved to
be NP-hard. Moreover, when scheduling MCs and calculating
the required number of MCs, we need to obtain their traveling
path through solving a traveling salesman problem (TSP),
which is also NP-hard. Similar to [10], we note that the
two problems mentioned above are both NP-hard and are
coupled with each other. Thus the MEFree-R problem is the
combination of two mutual coupling NP-hard problems, which
is also NP-hard. �

B. Approximation Error of Area Discretization

Theorem 2: The approximation error introduced in area
discretization (see Section IV-B) is bounded to

p(oi,Γi) ≥ (1− ζ)p(oi, x), ∀x ∈ Γi. (12)
Proof: We let l(oi,Γi) denote the longest distance between

SC oi and all locations in grid Γi. For any spot x in Γi, we
have l(oi,Γi) ≤ l(oi, x) +

√
2θ. By comparing p(oi,Γi) with

p(oi, x), we have

p(oi,Γi)

p(oi, x)
= (

l(oi, x) + β

l(oi,Γi) + β
)2 ≥ (

l(oi, x) + β

l(oi, x) +
√

2θ + β
)2

= (
l(oi, x) + β

l(oi, x) + β√
1−ζ

)2 = (1− ζ)(
l(oi, x) + β√

1− ζl(oi, x) + β
)2

≥ 1− ζ.

Thus, we have proved Theorem 2. �

C. Approximation Ratio of CMN Algorithm

Theorem 3: The CMN algorithm has a
√

2αPon
β2ηis(

√
n−1)

approx-
imation ratio to the optimal solution.

Firstly, we analyze the relationship between energy con-
sumption and energy supplement of the whole network. For
the optimal solution, we have

ErOPT ≥
∑
ui∈U

CiOPT , (13)

where ErOPT is the total received energy of freeloading MCs
in the optimal solution.

Suppose that the total received energy is evenly distributed
to each MC, and the average received energy is denoted as
EavgOPT . We have the following equation:

N∗ · EavgOPT ≥
∑
ui∈U

C
(e,i)
OPT + C

(t,i)
OPT , (14)

where N∗ is the number of required MCs in optimal solution.

Similarly, for the approximated solution, we have
ErAPPR ≥

∑
ui∈U

CiAPPR, (15)

where ErAPPR is the total received energy in an approximated
solution. By evenly distributing the total received energy to
each freeloading MC, we can get

N ′ · EavgAPPR ≥
∑
ui∈U

C
(e,i)
APPR + C

(t,i)
APPR, (16)

where N ′ is the number of required MCs in the approximated
solution, which is the output of CMN algorithm.

For the optimal solution, we replace the average energy
EavgOPT by the maximum received energy of a single MC
(denoted as EmaxOPT ). For the approximated solution, we replace
EavgAPPR by the minimum used energy of a single MC (denoted
as EminAPPR). Thus we have

N∗ · EmaxOPT ≥
∑
ui∈U

C
(e,i)
OPT + C

(t,i)
OPT , (17)

N ′ · EminAPPR ≤
∑
ui∈U

C
(e,i)
APPR + C

(t,i)
APPR. (18)

By combining (17) and (18), we have
N ′

N∗
≤ EmaxOPT

EminAPPR

·
∑
ui∈U (C

(e,i)
APPR + C

(t,i)
APPR)∑

ui∈U (C
(e,i)
OPT + C

(t,i)
OPT )

. (19)

We calculate the maximum received energy in optimal
solution by EmaxOPT = α·Po

β2 · T . For the minimum used energy
in approximated solution, we have EminAPPR = ηi,s ·T , where a
freeloading MC serves a single sensor in a scheduling period.

The charging cost of the optimal solution and approximated
solution are the same, because the sensors’ energy consump-
tion in the two solutions are identical. For the traveling cost,
we replace the traveling cost in the optimal solution by the
minimum traveling cost of visiting each sensor. The traveling
cost in approximated solution is no more than

√
2nL·σ, which

is larger than the maximum traveling cost for visiting each
sensor. Thus, we can reformulate Equation (19) as
N ′

N∗
≤

α·Po

β2 · T
ηi,s · T

·
√

2nL · σ +
∑
ui∈U C

(t,i)
APPR

nL
d
√
nd · σ +

∑
ui∈U C

(t,i)
OPT

≤
α·Po

β2 · T
ηi,s · T

·
√

2nL · σ
(
√
n− 1)L · σ

=

√
2αPon

β2ηi,s(
√
n− 1)

,

(20)

where L
d
√
nd is the uniform interval of adjacent sensors.

Thereby, the number of required MCs obtained by the CMN
algorithm is smaller than

√
2αPon

β2ηi,s(
√
n−1)

of the optimal solution,
and Theorem 3 is proved. �

D. Approximation Ratio of Global Algorithm

Theorem 4: Our scheme achieves the approximation ratio
of 1

2 (1− 1
e ) with a slightly relaxed budget, and its total time

complexity is O(n4k3m2).
In area discretization, we randomly choose a spot within

every uniform grid as candidate freeloading spots for MCs,
which probably increases the traveling path of MCs. However,
the increased path length for each MC will not exceed 2

√
2θ =

2β( 1√
1−ζ − 1), which is twice the longest distance within a

grid. As a result, according to [32], a slightly relaxed budget



is required to achieve the approximated solution, and it has a
bounded approximation ratio if the objective function of the
problem is nonnegative, monotone, and submodular.

Definition 1: (Nonnegativity, Monotonicity, and Submod-
ularity) Given a finite ground set V , a real-valued set function
is defined as f : 2V → R, f is called nonnegative, monotone
(nondecreasing), and submodular if and only if it satisfies
following conditions, respectively.
• f(∅) = 0 and f(A) ≥ 0 for all A ⊆ V (nonnegative);
• f(A) ≤ f(B) for all A ⊆ B ⊆ V or equivalently: f(A∪
{e})−f(A) > 0 for all A ⊆ V and e ∈ V\A (monotone);

• f(A)+f(B) ≥ f(A∪B)+f(A∩B), for any A,B ⊆ V
or equivalently: f(A∪{e})−f(A) ≥ f(B∪{e})−f(B),
A ⊆ B ⊆ V , e ∈ V\B (submodular);

Proof: It is obvious that the objective function E′ = 0 when
the result set is empty, since network consumption will not be
reduced if no SC is removed. Meanwhile, once the result set
is not an empty set, the objective function E′ will be greater
than 0. Thereby, E′ is nonnegative.

We note that adding an SC into the result set (replacing this
charger by freeloading MCs) will certainly increase the value
of objective function E′. Thus, E′ is monotone.

Since the energy consumption rate of SCs (transmitting
power) is a uniform constant, we note that the increment of
objective function when an SC is newly added will not be
influenced by the size of the result set. In any case, adding
the same SC to the result set will produce a constant increment
of the objective function value. Hence, E′ is submodular. �

Since E is nonnegative, monotone, and submodular, the
global algorithm can achieve at least 1

2 (1− 1
e ) of the optimal

solution with a slightly relaxed budget [32].
For the time complexity, the MCS algorithm has a O(n4)

time complexity, and the CMN algorithm achieves the time
complexity of O(n4k3). The global algorithm has at most m
iterations, within which m calculations and m calls of CMN
algorithm are conducted. As a result, the total time complexity
is O(n4k3m2).

VI. SIMULATION ANALYSIS

We carry out extensive simulations to evaluate the perfor-
mance of our proposed algorithm from several aspects: error
threshold of area discretization, number of available MCs,
number of sensors, and the number of SCs.

A. Simulation Setup
In our simulation, 100 rechargeable sensors are uniformly

deployed in a 100m ∗ 100m 2D network to perform sensing
tasks continuously. To provide energy supply, 40 stationary
wireless chargers are deployed in the network to serve the
sensors around them with the help of WPT technology. The
sensors receive energy from the chargers to support their
sensing tasks, thus guaranteeing the perpetual functionality of
the network.

It should be mentioned that in most previous studies, elec-
tromagnetic induction is applied for wireless charging. How-
ever, influenced by the intrinsic feature of electromagnetic in-
duction, the receiver can only harvest milliwatts of power [14],

leading to a long period of charging time for freeloading. In
our work, magnetic resonance coupling approach is utilized
to realize the WPT. The transmission distance can be up to 1
meter and the energy efficiency is around 60% [33], [34], thus
ensuring the energy supply for freeloading MCs.

Our proposed scheme aims at replacing several redundant
SCs with freeloading MCs to save network energy consump-
tion as much as possible. Referring to [35], related parameters
are set as: α = 15, β = 10, δ = 1.4, and σ = 4, which are
similar to the settings in actual situations.

B. Baseline Setup

As far as we know, there is no existing scheme that applies
the notion of freeloading MCs to reduce energy consumption.
Thereby, we choose several baseline algorithms for compar-
ison: maximum duty ratio algorithm (MDR), maximum MC
energy algorithm (MME), and random algorithm (RAN).

MDR algorithm seeks for maximizing the duty ratio of each
mobile charger. MME algorithm tries to maximize the energy
received by freeloading MCs during the scheduling process.
RAN algorithm randomly replaces SCs. Moreover, we use
Ours to represent our proposed scheme for short.

C. Simulation Results and Analysis

Generally, we compare the simulations with theoretical
analysis (see Figure 11). The numerical results indicate that
the theoretical result is approximately 3% higher than the
simulation result, and their variation trends are identical. This
demonstrates that our simulation results are consistent with
the theoretical analysis. The detailed simulation analyses are
given in the following.

Firstly, we analyze the influence of the error threshold ζ. As
shown in Figure 3, when ζ increases from 0.1 to 0.6, the saved
network energy consumption of the four algorithms decreases
gradually. We note that in area discretization, the grid side
length θ =

√
2

2 β( 1√
1−ζ −1) becomes larger when ζ increases.

Larger grids will reduce the approximation accuracy of charg-
ing power, leading to degradation of algorithm performance.
Generally, our proposed scheme outperforms other algorithms
by 16.8% on average in saving wasted energy.

Then, we analyze the influence of the number of available
MCs. As shown in Figure 4, when the number of MCs in-
creases from 30 to 80, the saved network energy consumption
of Ours, MDR, and MME algorithms increases significantly
at the beginning and gradually become stable. With more
available MCs provided, it is feasible to replace more SCs
with freeloading MCs to save energy. Nevertheless, when more
SCs are removed, the opportunities for MCs to freeload will
be fewer as well. It should be noted that when the number
of remaining SCs reduces to a certain extent (when MC
number reaches 70), the number increase of available MCs
will not evidently improve the performance of the network.
We conclude that in the aspect of available MCs, our proposed
scheme outperforms other algorithms by 10.1% at least and
17.4% on average.
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Fig. 3. Saved network consump-
tion vs. Error threshold ζ.
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tion vs. Stationary charger number.

Thirdly, we analyze the influence of sensor number n. As
shown in Figure 5, when the number of sensors increases from
50 to 150, the saved network energy consumption of Ours,
MDR, and MME algorithms reduces accordingly, because a
higher sensor density will lead to more charging tasks and
a heavier scheduling burden after removing several SCs. In
the scheduling process, more freeloading MCs are needed to
serve sensors. Meanwhile, a higher sensor density will also
shorten the distance between adjacent sensors, which reduces
the burden of freeloading MCs on traveling. As a result, with
the increase of sensor number, the decreasing trend of the
saved energy gradually slows down. We conclude that our
proposed scheme outperforms other algorithms by 17.1% on
average.

Fourthly, we analyze the influence of the number of SCs.
As shown in Figure 6, when the number of SCs increases
from 20 to 60, the saved network energy consumption of
Ours, MDR, and MME algorithms increases continuously,
because more SCs also increases the redundancy. Therefore,
more SCs can be removed to save energy. Meanwhile, a
higher SC density will optimize the SC deployment structure.
Thus, the reduction of network energy consumption increases
accordingly. After the SC number exceeds a certain value,
the newly added chargers will contribute less to charging
sensors. Thereby the increasing trend gradually stabilizes. Our
proposed scheme outperforms other algorithms by 20.3% on
average in recycling wasted energy.

To demonstrate the performance of our scheme in recycling
the wasted energy, we record the energy harvested by MCs in
a period of time while setting different network parameters.
As shown in Figure 7, MCs harvest a large amount of wasted
energy and effectively recycle the energy for charging sensors.
When the number of available MCs increases from 35 to
75, the recycled energy of MDR, MME, and Ours increases
apparently. We note that our scheme effectively recycles the
wasted energy and outperforms other baseline algorithms by
15.7% on average.

The comparison of network energy efficiency between with
and without freeloading is depicted in Figure 8. We form six
different WRSNs according to the parameters in Section VI-A,
marked A, B, C, D, E, and F . In each WRSN (A to F ), SCs
and MCs are both utilized to charge sensors in these networks,
following different deployment strategies without freeload-
ing. Afterwards, we additionally perform freeloading schemes
(Ours, MDR, and MME) in these six WRSNs and record

the increased network efficiency accordingly. We conclude
that Ours outperforms other baseline algorithms apparently in
terms of energy efficiency. The numerical results in different
networks indicate that with a slight modification of MC
(enabling its freeloading ability), we can effectively improve
the network efficiency by 18.8% on average, compared with
the case without freeloading.

VII. TEST-BED EXPERIMENTS

To highlight the outperformed feature of the proposed
scheme in realistic scenes, test-bed experiments are conducted.

Firstly, to build our test-bed, we utilize COTS (Commercial-
Off-The-Shelf) wireless power transmitters and install an en-
ergy harvesting module on COTS sensors. Through a slight
modification, they are applied as SCs and rechargeable sensors,
correspondingly. Moreover, we also equip each UAV with
an energy harvesting module, which enables it to capture
charging signals from the ambient environment and convert
them into DC power. When an MC lands at the freeloading
spot, it rotates itself to find the orientation of the antenna with
the maximum energy receiving power. Moreover, each of the
available UAVs (DJI Phantom 4 is adopted in our test-bed)
carries a wireless power transmitter to perform charging tasks
for sensors (see Figure 9) with a limited energy budget of
292.7kJ .

Magnetic resonance coupling is also applied in our real-
istic deployment scenarios. Specifically, coupling coils are
equipped on SCs, MCs, and sensors. The energy transmission
efficiency can achieve over 70% when they are close to each
other [33], [34]. Thereby, the “freeloading ability” of MC
is significantly enhanced and the proposed energy-recycling
scheme can be conducted effectively in real scenes.

The experimental scenario is shown in Figure 10, we utilize
36 rechargeable sensors to perform sensing tasks in an open
area. 15 SCs are deployed around sensors, and they send
wireless signals into the surrounding environment. Afterwards,
we select several SCs and replace them with UAVs, which are
utilized as freeloading MCs, while ensuring all the sensors’
energy supply. A UAV first chooses a freeloading spot at which
it harvests energy for the following charging tour, and then
travels within the network to perform charging tasks. After
fulfilling all the tasks, it returns to its freeloading spot to wait
for the next scheduling cycle. The color of grids indicates the
frequency of MCs’ appearance, showing that freeloading MCs
frequently appear in the grids where panic sensors, freeloading
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spots, and the path between them are located (grids with a
darker color).

Firstly, to demonstrate the rationality of our experiments,
we compare the experimental results with theoretical results in
Figure 11. The theoretical result is approximately 10% higher
than the experimental result, and the trends of the three curves
are basically consistent. We conclude that the experimental
result fits well with the theoretical analysis. The only slight
gap is due to environmental disturbance and hardware noise
of experimental parameters.

In Figure 11, we also depict the optimal value of the
objective function. It is noted that the optimal value is obtained
through the brute-force search, which is time-consuming and
only applicable to small-scale networks. Through comparison,
the theoretical value, simulation value, and experimental value
achieve better than 1

2 (1 − 1
e ) of the optimal value, which

indicates that the approximation ratio is basically correct.
The experiments are carried out several times. Each time

we change the number of available MCs and record the
corresponding value of the objective function. Meanwhile, in
each case, we additionally apply MDR and MME algorithms
for comparison.

The experimental results of three different algorithms (Ours,
MDR, and MME) with different numbers of available MCs
are shown in Figure 12. When the number of available
MCs changes from 5 to 13, our proposed algorithm always
outperforms the other two algorithms (MDR and MME).
Benefited from the recycling of wasted energy, the network
energy efficiency achieves an obvious upward trend with the
increase of available MCs (see Figure 13). Compared to the
without-freeloading scheme, our scheme can achieve at least

17.3% increment of energy efficiency.

VIII. CONCLUSIONS

Aiming at the key problems of energy waste and low
energy efficiency induced by stationary chargers in WRSN
applications, this paper arms the mobile charger with an energy
harvesting module to enable it to recycle wasted energy of
WPT in a freeloading manner without investing extra burdens
to the MC. We formulate the MEFree problem and propose
several algorithms to schedule freeloading MCs reasonably
while removing several redundant stationary chargers, which
effectively recycles a lot of wasted energy and significantly
improves the energy efficiency of the network. Theoretical
analysis indicates that our scheme can achieve 1

2 (1 − 1
e ) of

the optimal solution with a slightly relaxed budget. Through
extensive simulations, numerical results show the proposed
scheme achieves at least 18.8% energy efficiency increment
while outperforming baseline algorithms by 19.1% on average.
Moreover, test-bed experiments demonstrate the feasibility of
our scheme in realistic scenarios.
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