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Abstract—LoRa has been shown as a promising Low-Power
Wide Area Network (LPWAN) technology to connect millions of
devices for the Internet of Things by providing long-distance low-
power communication in a very low SNR. Real LoRa networks,
however, suffer from severe packet collisions. Existing collision
resolution approaches introduce a high SNR loss, i.e., require
a much higher SNR than LoRa. To push the limit of LoRa
collision decoding, we present AlignTrack, the first LoRa collision
decoding approach that can work in the SNR limit of the original
LoRa. Our key finding is that a LoRa chirp aligned with a
decoding window should lead to the highest peak in the frequency
domain and thus has the least SNR loss. By aligning a moving
window with different packets, we separate packets by identifying
the aligned chirp in each window. We theoretically prove this
leads to the minimal SNR loss. In practical implementation, we
address two key challenges: (1) accurately detecting the start
of each packet, and (2) separating collided packets in each
window in the presence of CFO and inter-packet interference.
We implement AlignTrack on HackRF One and compare its
performance with the state-of-the-arts. The evaluation results
show that AlignTrack improves network throughput by 1.68×
compared with NScale and 3× compared with CoLoRa.

I. INTRODUCTION

Recent years have witnessed the rapid development of Inter-

net of Things (IoT) technology [1]. LPWANs have been shown

as a promising technology to provide low-power long-distance

communication for IoT applications [2] such as health moni-

toring [3], smart agriculture [4], smart traffic light congestion

monitoring [5], intelligent parking space allocation [6]. LoRa,

as a representative LPWAN technology, has attracted both

academic and industrial attention in the world [7] [8]. LoRa

can communicate for a distance of up to tens of kilometers

with very low energy consumption and a very low SNR. The

operational lifetime of battery-powered LoRa nodes can reach

up to ten years.

However, real LoRa networks suffer from severe packet

collisions. The vision of LoRa is to support connections with

a large number of low-cost and low-power devices. LoRa

network adopts a star network topology for communication.

However, a typical LoRa gateway can only receive LoRa

packets from eight channels. While in practice, a gateway

is supposed to connect with thousands of nodes or even

more. This leads to severe packet collisions in real LoRa

deployments. Moreover, to reduce control overhead, typical

LoRa networks use Aloha [9] based MAC protocols (e.g.,

LoRaWAN [10]), in which LoRa nodes send packets without
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Fig. 1. An example of AlignTrack to decode a 3-packet collision. AlignTrack
moves a window to align with different chirps, and finds the aligned chirps
to separate packets.

detecting the channel status. This further exacerbates the

collision problem in practice [11].

Existing approaches. Different approaches are proposed

to address the collision problem for LoRa. mLoRa [12]

can decode three collided LoRa packets using Successive

Interference Cancellation (SIC). FTrack [13] calculates the

continuity of instantaneous frequency to separate collided

packets. However, those approaches are based on time-domain

signal analysis and do not leverage features of LoRa encoding.

Thus, they require a high SNR of the packets (e.g., SNR > 0
dB) in decoding, which deviates from LoRa application sce-

narios. Further, CoLoRa [14] leverages the time offset among

packets and translates the time offset to frequency-domain

features to separate different collided packets. NScale [15]

uses a non-stationary scaling method to translate the time

offset to more robust features. They need to partition a chirp

(symbol in LoRa) and therefore still introduce inevitable SNR

loss in practice. In summary, existing approaches require

a much higher SNR in decoding collision than traditional

LoRa [14] [15]. Thus, those approaches cannot work in many

practical scenarios.

Our design. To push the limit of LoRa collision decoding,

we propose AlignTrack, a novel LoRa packet collision decod-

ing approach to minimize SNR loss. AlignTrack can decode

collisions with the same SNR requirement of LoRa. LoRa

modulates data with chirps of linearly increasing frequency

with different start frequency shifts to encode data bits. The978-1-6654-4131-5/21/$31.00 ©2021 IEEE



start frequency shift fs is decoded by de-chirp: a chirp is

multiplied with a standard linearly decreasing down-chirp,

which leads to a single tone at frequency fs.

Figure 1 shows three collided packets. Assume we have a

moving window aligned with the chirps of those three packets.

The length of the moving window is equal to the length of a

chirp. Figure 1 shows the decoding result of three windows

w1, w2 and w3 aligned with three chirps. We can see multiple

peaks in each window due to multiple chirp segments, leading

to decoding failure. The key step in collision decoding is to

separate those peaks in each window to different packets.

Our main idea is to find the peak of the chirp aligned with

each window and thus separate peaks for different packets

based on those aligned chirps. We first detect the start of each

packet and align a moving window with each packet. A chirp

in each packet will appear in three consecutive windows. We

find that the frequency of peaks corresponding to the same

chirp is proportional to the time offset between the chirp and

the window. For example, chirp c2 leads to three peaks in

window w1, w2 and w3 with frequency fs− kτ1, fs and fs+
kτ2, respectively. Meanwhile, the peak of a chirp in different

windows reaches its highest height when the chirp is aligned

with the window. AlignTrack leverages this to determine the

peak of the chirp aligned with each window and then separate

packets. For example, AlignTrack first finds peaks at fs−kτ1,

fs and fs+kτ2 in window w1, w2 and w3 for the same chirp,

and then determines the peak at fs corresponds to the chirp

c2 aligned with window w2 iff it is the highest compared with

the other two peaks. Then, we can group peaks to different

packets based on aligned chirps and decode those packets.

Challenges. (1) How to find the accurate start of each packet

in the collided signal under the impact of Central Frequency

Offset (CFO)? Intuitively, we can detect the start of a packet

based on the preamble. However, this leads to non-negligible

errors due to the impact of CFO and inter-packet interference.

We leverage the preamble and SFD in each packet. The

preamble contains baseline up-chirps of linearly increasing

frequency, while the SFD contains baseline down-chirps of

linearly decreasing frequency. CFO introduces frequency shifts

to the up-chirp and down-chirp, and we can estimate the CFO

by combining up-chirps and down-chirps. Further, we find the

above CFO estimation method fails in collided packets due to

the challenge of finding SFD and preamble that are for the

same packet. We propose a method to identify up-chirps and

down-chirps that belong to the same packet, and thus estimate

the accurate CFO in collisions.

(2) How to accurately detect all peaks under low SNR?

The peak height for a low SNR signal is close to the noise.

Thus, using a pre-determined height threshold may fail to

identify all peaks. We design an iterative peak search method

to find all peaks in each window. In each iteration, we calculate

a dynamical threshold based on the statistic information of

existing FFT results in the window, and iteratively find all

peaks.

(3) How to alleviate the interference among peaks and

recover the precise peak information (position and height)? For
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Fig. 2. LoRa packet structure.

example, the sidelobes of one peak can distort the position and

height of other peaks. Moreover, due to the near-far problem,

sidelobes of strong signals can be higher than peaks of weak

signals, leading to mis-identified peaks. Typically, a filter (e.g.,

Hamming window) can be applied to the received signal to

reduce the amplitude of sidelobes. However, there are still

high sidelobes after filtering. Further, we find that sidelobes

are symmetric with the real peak and exploit this to iteratively

remove those symmetric sidelobes.

Main results and contributions.
• We propose AlignTrack to push the limit of decoding low

SNR LoRa packet collisions. AlignTrack leverages the

entire chirp in LoRa, and thus introduces very small SNR

loss while existing approaches introduce non-negligible

SNR loss due to the use of partial chirp.

• We address non-trivial practical challenges such as inter-

packet interference and the impact of CFO in the practical

design of AlignTrack.

• We implement AlignTrack on the HackRF One platform.

AlignTrack sits at the gateway side and can decode

collisions for COTS LoRa end nodes without any hw/sw

change. The evaluation results show that AlignTrack

improves the network throughput by 1.68× compared

with NScale [15] and 3× compared with CoLoRa [14].

II. BACKGROUND

A. Chirp Modulation/Demodulation

LoRa modulates signals using the Chirp Spread Spectrum

(CSS). The basic symbol is a chirp with linearly increas-

ing/decreasing frequency occupying a certain bandwidth. A

baseline chirp is represented as C(t) = ej2π(f0+
1
2kt)t, where

|k| = BW/Tchirp is the frequency changing rate, f0 is the start

frequency at time 0, and Tchirp is the time duration. Tchirp is

usually determined by the spreading factor (SF) and frequency

bandwidth (BW), i.e., Tchirp = 2SF /BW . A chirp is an up-

chirp when k > 0, and otherwise is a down-chirp. A chirp is

a baseline up-chirp if f0 = −BW/2 with frequency linearly

increasing from −BW/2 to BW/2.

CSS modulates data bits by shifting the start frequency f0,

i.e.,

C(t, fs) = C(t)ej2πfst (1)

where fs is the frequency to encode data bits. Note that the

frequency above BW/2 is rounded by BW to fit in the range

[−BW/2, BW/2].
To demodulate C(t, fs), LoRa first multiplies it with the

baseline down-chirp C−1(t) (C−1(t) is the conjugate of the
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Fig. 3. The peak frequency and height in the moving window.

C(t)). This de-chirp operation can concentrate the signal

power in the time domain to a single frequency, and we obtain

C(t, fs)C
−1(t) = ej2πfst (2)

By applying FFT to the result, we can derive fs and decode

the chirp.

B. LoRa Packet Structure

As shown in Figure 2, a LoRa packet is usually comprised

of three parts: preamble, start frequency delimiter(SFD), and

payload. The preamble contains 6∼65535 baseline up-chirps

to determine the start of the LoRa packet and 2 up-chirps with

modulated data to carry extra information. The SFD contains

2.25 baseline down-chirps. The payload contains data bits

modulated with up-chirps.

III. MOTIVATION

A. Basic Observations

For multiple collided packets, we first find the start of

each packet. Then, we apply a moving window (the smallest

decoding unit containing the collided LoRa signal) aligned

with each packet to the signal. As shown in Figure 3, we

consider three consecutive windows, each containing multiple

partial chirp segments and a particular aligned chirp (i.e., a

chirp completely included in the window). The aligned chirp

in the middle window leads to the peak with local maximum

amplitude after de-chirp and FFT. Meanwhile, a portion of

this chirp is also contained in its preceding window and the

following window, leading to two corresponding peaks. We

first show the frequency constraint of peaks for the same chirp

in consecutive windows.

Assume the chirp aligned with the middle window w2 is

R(t) = A · C(t, fs), where A is the signal amplitude. The

segment of R(t) contained in window w1 can be written as

r1(t) = R(t− τ1)

= Aej2πfs(t−τ1)C(t− τ1), t ∈ [τ1, Tchirp)
(3)
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Fig. 4. The SNR loss comparison for different methods. Our method uses
the entire chirp while existing methods use partial chirps.

The time offset can be translated to the frequency shift, i.e.,

C(t− τ1) = e−j2πkτ1tC(t). Thus, we have

r1(t) = Aej2π(fs(t−τ1)−kτ1t)C(t)

= Ae−j2πfsτ1ej2π(fs−kτ1)tC(t), t ∈ [τ1, Tchirp)
(4)

Frequency constraint: The frequency of the peak p1 for the

chirp segment of R(t) in window w1 is f1 = fs − kτ1, and

the frequency of the peak for the chirp segment of R(t) in

window w3 is f3 = fs + kτ2. This indicates that based on the

frequency constraint, we can find the peaks corresponding to

the same chirp in consecutive windows.

Denote h1, h2 and h3 as the height of peaks in window w1,

w2 and w3. Thus h1 can be calculated as

h1 =

N−1∑

n=0

r1[n]e
−j2π

nTchirp
N = A(Tchirp − τ1)Sr (5)

where Sr is the sampling rate and N is the total sample points

of r1(t), i.e., N = (Tchirp − τ1)Sr.

Height constraint: The height of the peak is proportional to

the chirp segment length, i.e.,

h1 : h2 : h3 = Tchirp − τ1 : Tchirp : Tchirp − τ2. (6)

The peak height reaches the highest when the chirp is aligned

with the window.

B. Limitations of State-of-the-arts

Existing methods such as FTrack [13] and mLoRa [12]

use time-domain signal amplitude to identify collided packets.

Their methods can mainly work for high SNR (e.g., SNR > 0
dB). Further, CoLoRa [14] and NScale [15] propose to lever-

age features in frequency domain to identify collided packets.

However, they use a portion of a chirp instead of the entire one

for collision resolution, which introduces non-negligible SNR

loss. For example, as shown in Figure 4, CoLoRa partitions a

chirp into two parts and leverages the ratio of height between

those two parts to decode collisions. It proposes a method to

guarantee that both parts are larger than 1/3 of the entire chirp.

To decode a chirp, the peak after de-chirp should be higher

than noise. The height of a peak is mainly determined by the
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Fig. 5. Overall design of AlignTrack.

length of the chirp segment in a window. A long chirp segment

can lead to a high peak. When the peak of an entire chirp

is higher than the noise, the peak height in CoLoRa, which

corresponds to only a portion of the chirp, can be under the

noise. Thus, the peak cannot be identified, and the collision

cannot be decoded. Our approach leverages the entire chirp in

the aligned window to retain the peak height to the greatest

extent to avoid the SNR loss.

C. Summary

• Collisions result in multiple peaks in a window. The key

step in collision decoding is to separate those peaks into

different packets. The state-of-the-art collision decoding

approaches in LoRa have a high SNR loss as they use

parts of a chirp to separate peaks.

• For consecutive windows on the collided signal, the

peaks for the same chirp in different windows have peak

frequency offset proportional to window offset.

• The peak height reaches the highest when the chirp is

aligned with the window. For each peak in the window,

we can determine whether it corresponds to the aligned

chirp as follows. First, we find the peaks corresponding

to the same chirp in consecutive windows. Then, the peak

corresponds to the aligned chirp iff the peak is highest

compared with the peaks in the preceding window and

following window.

IV. ALIGNTRACK DESIGN

A. Overview

As shown in Figure 5, the design of AlignTrack mainly

consists of the following steps. (1) Start position detection:

For the received signal, we detect the number of collided

packets and the start position of each packet. (2) Collision

partition: Then, we apply a moving window to align with

each packet and extract peaks after de-chirp and FFT. (3)

Aligned chirp detection: By comparing the peak information

with adjacent windows, we find the peak of the chirp aligned

with each window. (4) Packet separation: We group peaks of

aligned chirps based on the position of each packet. (5) CFO

elimination: We eliminate the impact of CFO to decode peaks

of each packet.

B. Challenges

• How to find the accurate start for all collided packets?

• How to recover all peaks in each window as the chirps for

different collided packets will interfere with each other?

• How to find the peak of the aligned chirp in each

window?

C. Peak Extraction

Collision brings the following challenges in peak extraction.

1) Typically, peaks can be identified by a pre-determined

threshold. Due to the uncertainty of packet time offset

and the variation of signal strength and SNR, the height

of peaks for different packets can vary significantly. A

fixed pre-determined threshold cannot work.

2) Due to the limited resolution of FFT, the accurate

frequency of the peak is difficult to derive, and the height

for surrounding points of a peak is also high.

3) The sidelobes of a peak can distort the position and

height of other peaks. Even worse, the sidelobes of high

peaks may be mis-identified as peaks.

1) Iterative Peak Extraction: To address challenges 1 and

2, we propose an iterative peak extraction method by adopting

a dynamic threshold. Denote the result of FFT as H[i] (1 ≤
i ≤ N ) where H is the amplitude, and N is the total number

of points in FFT. In each iteration, we first find the highest

peak H[im] in H[·]. Then, we need to determine whether it

is a real peak based on the combination of mean(H) and

std(H), where std(H) is the standard deviation of H . In

traditional outlier detection algorithm, data points that exceed

mean(H)+ k · std(H) (k = 3) are considered as outliers. We

find that a larger k leads to more false negative peaks, and

a smaller k leads to more false positive peaks. We evaluate

the performance for different k and find that k = 6 leads to

the best performance in peak identification. Thus, we choose

r = mean(H) + 6 · std(H) as the threshold. If H[im] < r,

the iteration terminates. If H[im] ≥ r, we set the point at

im as a peak and add im to the peak array I . Due to limited

frequency resolution in FFT results, the points surrounding im
may also have a high height and can be mis-identified as peaks

in following iterations. We remove those surrounding points

as follows. We find the closest local minimum before and after

im, i.e., H[im−a] and H[im+b]. Then, we remove all points

between im − a and im + b from H . In the next iteration, we

update r based on the remaining points in H .

2) Sidelobe Elimination: To address challenge 3, a straight-

forward method is to apply a Hamming filter to the received

signal to reduce the amplitude for the sidelobes of each peak.

However, the remaining high sidelobes (e.g., sidelobes of very

high peaks) can still be mis-identified as peaks. We find that

sidelobes are symmetric around a certain peak in terms of

frequency and height. Based on this, we design the following

method to remove sidelobes. In practice, due to the impact of

noise and limited FFT bin resolution, the frequency (height)

of two symmetric sidelobes cannot be exactly the same.

Therefore, we derive symmetric sidelobes as follows: If two
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Fig. 6. Preamble detection process: the peaks of baseline up-chirps in
preamble appear at the same frequency.

peaks have similar height and frequency, we consider them as

symmetric peaks. We sort the peak array I in ascending order

of height. For each peak i in I , we find if there exist symmetric

peaks centered at i. If yes, we remove those symmetric peaks

from I . Finally, we use the remaining peaks in I as the

extracted peaks. The detailed algorithm of peak extraction is

shown in Algorithm 1.

Algorithm 1 Peak Extraction

Input: H: the amplitude result of FFT
Output: I: the index array for peaks after removing sidelobes

1: while true do
2: im = argimax(H);
3: r = mean(H) + 6 · std(H); //in each iteration, recalculate

im and r according to a new H
4: if H[im] > r then
5: add H[im] to I
6: find closest local minimum before and after im, i.e.,im−a

and im + b;
7: remove points between im − a and im + b from H; //H

is changed after each iteration
8: else
9: break;

10: end if
11: end while
12: sort I by ascending order of their peak height;
13: while i < I.length do
14: for j = i+ 1; j++; j < I.length do
15: find k such that I[j] − I[i] == I[i] − I[k]; //frequency

symmetric at i
16: if H[I[k]] == H[I[j]] //height symmetric then
17: set isSidelobe[k] and isSidelobe[j] to TRUE;
18: end if
19: end for
20: i = i+ 1;
21: end while
22: I = I[isSidelobe�= TRUE];

D. Packet Start Detection

We leverage the structure of the LoRa packet to detect

the accurate start position of each packet in a collision. The

preamble of a LoRa packet consists of Np (6∼65535) baseline

up-chirps with fs = 0. As shown in Figure 6, we apply a non-
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Fig. 7. Calculate CFO by combining preamble and SFD.

overlapped moving window to the received signal with moving

step Tchirp. In each window, we multiply it with a baseline

down-chirp and calculate the FFT result. For the preamble, we

should have Np peaks of the same frequency in Np consecutive

windows.

In Figure 6, assume the time offset between the start of the

moving window and the start of the packet is τ . Given two

windows w1 and w2, the peak for the segment of a chirp c1
in w1 is f1 = fs − kτ , and the peak for the segment of chirp

c1 in w2 is f2 = fs + k(Tchirp − τ). kTchirp = BW and the

frequency of peak varies from 0 to BW . Thus, f2 should be

f2 = fs − kτ . Similarly, for chirp c2 and other baseline up-

chirps in a LoRa preamble, the frequency of each peak should

be f = fs − kτ .

By finding Np consecutive peaks at the same frequency f ,

we can find the preamble and calculate the start of the packet.

When there are multiple collided packets, we can find multiple

groups of peaks, each group corresponding to a packet. Then

we can calculate the start of each packet.

In practice, the existence of CFO introduces errors in packet

start detection. Thus, we need to estimate the CFO under

collision. We use both the preamble (baseline up-chirps) and

SFD (baseline down-chirps) in each LoRa packet to estimate

CFO [14]. Figure 7 shows a pair of baseline up-chirp and

down-chirp without CFO (blue line) and with CFO (yellow

line). For the baseline up-chirp in the first window with time

offset τ , it results in a peak at position f1 = fcfo − kτ . For

the baseline down-chirp in the second window, it results in a

peak at position f2 = fcfo + kτ . We can see the time offset

leads to the opposite shift to the peak frequency shift centered

at CFO. Therefore, CFO can be calculated as fcfo = f1+f2
2

and the time offset can be calculated as τ = f2−f1
2k .

Then, we consider the case with collision. The key challenge

here is that there are multiple peaks in each window, and

we need to find the preamble and SFD to the same packet

to calculate CFO. When multiple packets collide, we first

find the preamble for each packet by finding Np peaks at

the same frequency. Meanwhile, as shown in Figure 8, there

are multiple peaks of SFDs as SFDs of different packets are

mixed together, leading to difficulty in calculating CFO. Given

a peak P of a preamble PRE, we find the peak of SFD

corresponding to the same packet pkt as follows. For a peak

PSFDi
of SFDi in the mixed peaks of SFDs, we calculate

the CFO and τ by combining PSFDi
with P . We then check

whether PSFDi and P are from the same packet based on

the CFO and τ as shown in Figure 9. We shift the moving
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Fig. 8. Peaks for preambles and SFDs in a collision. Given a peak for a
preamble, there are multiple peaks for collided SFDs.

window by a time offset τ to align with the packet pkt. If

SFDi is from pkt, SFDi should be accurately aligned with

the window, and the height of its peak Halign should reach

its highest height; otherwise, SFDi should not be aligned

with the window. Thus, we slightly shift the moving window

by δ to the left and right, and then calculate the height of

peaks corresponding to SFDi. Denote the peak height in the

left window and right window as Hl and Hr, respectively.

SFDi is from packet pkt iff Hl < Halign and Hr < Halign.

Otherwise, SFDi is not from the packet pkt, and we should

test other SFDs. Note that the value of δ should be smaller

than abs(fclosest−fSFDi
)/k to guarantee that only SFDi can

be aligned with the window, where fclosest is the frequency

of the closest SFD peak to SFDi, fSFDi is the frequency of

PSFDi , and k is the frequency changing rate of a chirp.

E. Aligned Chirp Detection

After detecting the exact start of each packet in the received

signal, the positions of all chirps are known. We use a collision

moving window to align all chirps in the received signal. In

each window, we extract all peaks after de-chirp and FFT.

Then, we identify the peak of the chirp aligned with the

window. When there is no collision, the only peak in the

window is the peak of the chirp aligned with the window.

Then, we consider the case with collision. Given a window

wi aligned with chirp ci in the payload of packet A, assume

wi−1 and wi+1 are the preceding and following window in

the moving window sequence. We calculate all peaks in those

three windows. As shown in Figure 10, there should be 2N−1
peaks for N collided packets in each window. We first group

peaks belonging to the same chirp based on the frequency

constraint. For all groups of peaks, we need to identify the

peak corresponding to the aligned chirp (i.e., ci) based on the

height constraint. For example, assume pi−1, pi and pi+1 are

three peaks in the same group and Hi−1, Hi and Hi+1 are their

height, respectively. The peak pi corresponds to the aligned

chirp ci iff the height constraint is satisfied, i.e., Hi−1 ≤ Hi

and Hi ≥ Hi+1.

We start decoding from the first window to the last window

in the collision moving window sequence based on the above
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Fig. 9. Calculate CFO in packet collisions.

process. For the first (last) window in the sequence, there is

no preceding (following) window. Thus, we should find the

aligned chirp only based on two windows. Note when there

are multiple consecutive identical chirps in a collided packet

and the position of the moving window is after the start of

these chirps, there will be two peaks satisfying the frequency

and height constraint. One is the peak Pa of the aligned chirp,

and the other is the peak Pm of multiple consecutive identical

chirps. However, we have already find the peak Pm in the last

window. And thus we can remove Pm in the current window

and correctly find the peak of the aligned chirp.

Ideally, the above process assumes that peaks of segments

in wi−1, wi, wi+1 should be higher than noise. However, when

the SNR is low, or the length of chirp segments in wi−1 or

wi+1 is short, the peak height can be lower than the noise.

In this case, existing approaches such as CoLoRa and NScale

cannot work as they require to identify all peaks. AlignTrack

can deal with this case as follows. For an N-packet collision

with chirp ci aligned with wi, assume we can extract pi but

cannot extract pi−1 and pi+1 in wi−1 and wi+1, as pi−1 and

pi+1 corresponds to a segment of of ci. There should be 2N−1
chirp segments in wi. The peak pi corresponds to ci, and other

2N − 2 peaks correspond to segments of the other 2N − 2
chirps, of which N − 1 chirps cbl (1 ≤ l ≤ N − 1)) are before

ci and N − 1 chirps cal (1 ≤ l ≤ N − 1) are after ci. Assume

pb
′

l and pbl (1 ≤ l ≤ N − 1) are peaks of cbl in wi−1 and

wi, and Hb′
l and Hb

l are their height. As the length of the

chirp segment of cbl in wi−1 must be longer than that in wi,

we have Hb′
l > Hb

l . If pbl can be extracted in wi, p
b′
l can be

extracted in wi−1. However, Hb′
l and Hb

l do not satisfy the

height constraint. Thus, pbl are not the peak corresponding to

the aligned chirp ci and can be removed. Similarly, We can

remove peaks of cal . After removing peaks of those unaligned

chirps, the remaining peak is one corresponding to aligned

chirp ci.

Example. Figure 10 shows a 3-packet collision, and w1,w2

and w3 are three windows aligned with three chirps. Chirp

c2 is aligned with w2 and we can derive p2 from w2. p1, p2
and p3 are peaks of c2 in w1, w2 and w3. Suppose p1 and

p3 can not be extracted in w1 and w3 due to the impact of

noise. In w2, there are five chirp segments from three LoRa

packets and assume we can extract all those five peaks, where

p2 corresponds to c2, pb1 and pb2 correspond to cb1 from packet
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Fig. 10. Aligned chirp detection when peaks of chirp segments cannot be
detected: we can remove the peaks of unaligned chirps to derive the right one

1 and cb2 from packet 3, pa1 and pa2 correspond to ca1 from

packet 1 and ca2 from packet 3. cb1 and cb2 are before c2 while

ca1 and ca2 are after c2.

pb
′

1 and pb1 are peaks corresponding to cb1 in w1 and w2.

Hb′
1 and Hb

1 denote their height. The segment of cb1 in w1 is

longer than that in w2, i.e.,Hb′
1 > Hb

1 . pb1 can be extracted in

w2. Thus, pb
′

1 can be extracted in w1. However, Hb′
1 and Hb

1

do not satisfy the height constraint. Thus, we can identify pb1
as a peak for unaligned chirp and then remove it. Similarly,

pb2, pa1 , and pa2 can be removed.

Therefore, we can remove all peaks for unaligned chirps

from w2, and the remaining peak is the one for the aligned

chirp. Note that in a very low SNR, the peak height of a

complete chirp is close to noise amplitude. The peak height

of any chirp segment (i.e., a portion of a chirp) can be lower

than noise. Thus, only pi corresponding to ci in wi can be

extracted. AlignTrack can work in this scenario by removing

unaligned chirps. Thus it can work at the same SNR as that

of LoRa.

The above method mainly works for collisions with a

time offset among packets. In practice, the probability for

concurrent transmission with no time offset should be very

low. Thus, our method can address most of the cases in

practice. Even in the case of concurrent transmission, we

can extend our method by leveraging existing techniques. For

example, we can leverage the small frequency distortion due to

hardware imperfection [16]. Thus, we can divide those peaks

according to the fractional part of the frequency distortion and

then separate into different packets.

F. Packet Separation and CFO Elimination

Till now, we have detected 1) the aligned chirp in each

window and 2) the exact start position of each packet. Then,

we can group chirps into different packets. We can obtain the

length of different collided packets. When there is no peak

satisfying the frequency and height constraint, it means there

is no chirp aligned with the window. Thus, the corresponding

collided packet ends in the last window aligned with the

packet. And we can obtain the length of this packet by

calculating the position of the last window. Then we can
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Fig. 11. Experiment setup. Fig. 12. SER and BER with differ-
ent number of overlapping packets.

decode chirps for each packet. Then, we chirps belong to the

same packet, we first compensate the CFO and then decode

the packet. Assume the demodulated frequency for a chirp fs
∗,

then the real modulated data after remove CFO is

fs = (fs
∗ − fcfo) mod 2SF (7)

V. IMPLEMENTATION AND EVALUATION

A. Implementation

Hardware: We implement our gateway on the HackRF One

platform. The HackRF One can run at a frequency range of

30 MHz-6 GHz. and supports the use of GNURadio. The

maximum sampling rate is 20 M samples per second (Msps),

and We only use 1 Msps due to the limited bandwidth. In

order to better control the LoRa nodes, we implement the

function of LoRa nodes on HackRF one. Therefore, we can

use GNURadio+HackRF One as a LoRa transceiver to create

packet collisions.

Software: The HackRF One can provide PHY layer samples

of the received signal. We implement AlignTrack in MATLAB

on a PC to process LoRa PHY samples. We implement the

LoRa encoder and decoder using Matlab. In our experiment,

each LoRa packet consists of a preamble with 10 up-chirps, of

which eight are baseline up-chirps, an SFD with 2.25 baseline

down-chirps, and a payload with 36 up-chirps. We use SF =
12 and BW = 125 kHz. The sampling rate is set to 1 MHz,

and the central frequency is set to 471.3 MHz.

Note that AlignTrack does not depend on the specific

hardware platform. It can decode collision packets as long

as the PHY samples of a received signal are provided. Align-

Track sits at the gateway for collision decoding. It can work

for existing COTS LoRa nodes without any modification in

software and hardware.

B. Evaluation

We use a HackRF One as the receiver and multiple HackRF

One nodes as transmitters. We mainly measure the following

metrics: (1) symbol error rate (SER), the error rate of decoding

a chirp, (2) bit error rate (BER), the error rate after translating

symbols to bits, and (3) throughput, the total receiving symbol

rate (symbols/second) at the receiver. Note that, in LoRa the

BER is usually lower than SER as it uses error correcting

codes at the symbol level.

Based on those metrics, we mainly evaluate the performance

of AlignTrack under (1) different number of overlapping
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Fig. 13. SER and BER under different SNR: (a) SER under different SNR.
(b) BER under different SNR.

packets, (2) different SNR, (3) different time offset, and

(4) different spreading factors among packets. Further, we

compare AlignTrack with the following state-of-the-arts.

• mLoRa [12], a LoRa collision decoding approach based

on SIC in the time domain.

• FTrack [13], time-domain frequency continuity based

LoRa collision decoding.

• CoLoRa [14], a LoRa collision decoding approach based

on the height difference of different packets in the fre-

quency domain.

• NScale [15], a LoRa collision decoding approach leverag-

ing a non-linear scaling function in the frequency domain.

• Choir [16], a LoRa collision decoding approach based on

frequency shift due to imperfection hardware.

Packets sent by each transmitter are known in advance to

calculate the SER, BER, and throughput. In order to show the

collision decoding performance in real LoRa environments,

our experiments are conducted in the scenario of SNR < 0
dB and the collision can appear at different positions, such as

preamble-preamble, preamble-SFD, preamble-payload, etc.

1) Impact of the number of packets: We evaluate the perfor-

mance of AlignTrack at the different number of overlapping

packets. We use a HackRF One as the receiver and use 12

HackRF Ones as transmitters. We use GNURadio to control

the transmit time of each transmitter to create collisions.

Figure 12 shows the averaged SER and BER with the

different number of overlapping packets. We can see that the

overall SER is under 4% and BER is under 2% when the

overlapping number is under 6, the SER is under 10% and the

BER is under 6% when the overlapping number is under 10.

The maximum number of overlapping packets is 12 with BER

< 6.5%, which is acceptable in the LoRa network. Both SER

and BER increase as the overlapping number increases from

1 to 12. It is because the time offset among packets decreases

when the overlapping number increases. A smaller time offset

leads to less height change among different windows and thus

degrades the decoding performance.

2) Impact of SNR: We evaluate the impact of the signal-

to-noise ratio (SNR) on the performance of AlignTrack. Due

to the collisions of multiple packets, the actual interference

intensity is higher than the ambient noise intensity. We use

3 ∼ 5 HackRF Ones, of which one is the receiver and the

others are transmitters. To accurately control the SNR, we add

(a) (b)

Fig. 14. SER and throughput comparison under different SNR: (a) Averaged
SER. (b) Network Throughput.

additive white Gaussian noise (AWGN) to the received signal.

AlignTrack multiplies the entire up-chirp with baseline

down-chirp in each moving window, which is the same as

traditional LoRa. Figure 13 shows the averaged SER and BER

of AlignTrack when SNR varies from -20 to 0. The SER and

BER decrease with the increase of SNR. When SNR ≈ −20
dB, the SER of 2-packet collision is 6.79%, and the BER is

3.64%, i.e., AlignTrack can decode most 2-packets collision

successfully at an extremely low SNR. When SNR = 0 dB,

the SER and BER of 2-packet collision are 0.25% and 0.022%.

For 4-packet collisions, the SER is still lower than 10%, and

BER is lower than 6% even at SNR ≈ −15 dB. In all,

AlignTrack can decode packets collision in an extremely low

SNR as traditional LoRa. This also validates that AlignTrack

introduces very small SNR loss.

Figure 14 shows averaged SER and throughput of different

methods with the SNR varies from -20 to 0. We compare

AlignTrack with mLoRa, FTrack, CoLoRa, NScale, and Choir.

Figure 14(a) shows that the SER of AlignTrack is much lower

than that of the other methods. When SNR ≈ 0 dB, the

SER of mLoRa reaches 77.8%, and the SER of FTrack and

Choir is about 50%, while that of AlignTrack is even lower

than 0.3%. When SNR ≈ −20 dB, the SER of AlignTrack

is still lower than 7%, while the SER of NScale is 44.25%

and the SER of CoLoRa and Choir is about 70%. This is

because AlignTrack transforms time domain information to

frequency domain information and uses the entire up-chirp

to demodulate. AlignTrack can concentrate the energy of the

entire chirp to resist interference from other packets and noise.

mLoRa and FTrack only use time-domain information and

cannot work at a low SNR. The hardware offset in Choir

is also hard to find in a low SNR. CoLoRa and NScale

separate the entire chirp into two segments, which reduces the

concentration of energy. Thus, AlignTrack introduces much

less SNR loss than other approaches that are using parts of a

chirp.

Figure 14(b) shows the network throughput. When SNR ≈
−20 dB, the network throughput of AlignTrack is 57 sps,

which is 1.68× of NScale (34sps), 3.35× of Choir (17sps)

and 3× of CoLoRa (19sps).

3) Impact of symbol time offset: The height of a peak

is impacted by chirp segment length in the current window.

A small symbol time offset among packets leads to a small



Fig. 15. BER under different sym-
bol time offsets in collisions.

Fig. 16. Normalized time con-
sumption under different number
of overlapping packets.

difference of segment length between two windows. This leads

to a very small height change of a peak. Thus, we evaluate how

symbol time offset can impact the performance of AlignTrack.

We create different symbol time offsets of a 2-packet

collision. Figure 15 shows the averaged BER under the impact

of symbol time offset and SNR. The BER decreases with

the increase of the symbol time offset, which coincides with

our analysis. When the time offset is larger, it is easier for

AlignTrack to find the unique peak corresponding to the

aligned chirp. The smallest symbol time offset is 10% of

symbol duration when BER < 0.2% and SNR = −10 dB.

This means that AlignTrack can decode almost all overlapping

packets under a very small time offset. The collision packets

that cannot be decoded when the time offset is too small can

be retransmitted.

4) Time consumption: AlignTrack adopts a moving window

to align with all chirps in the received signal, which means

the time consumption is influenced by the number of chirps.

Figure 16 shows the normalized time consumption under dif-

ferent SF and number of overlapping packets. The normalized

time consumption increases when the number of overlapping

packets increases. The normalized time consumption of decod-

ing 12 packets is 12× and 15× of decoding 1 packet when

SF = 10 and SF = 12. The time consumption increases

faster when the SF increases. This is due to the reason that

when the SF increases, the chirp length increases, and it will

spend more time on Peak Extraction. In the future, we will

further work on how to reduce time consumption.

5) Performance in an outdoor network: We evaluate the

performance of AlignTrack in a real outdoor LoRa network.

We use COTS LoRa nodes with chip SX1278 as transmitters

and a HackRF One as the receiver. As shown in Figure 17,

we deploy LoRa nodes in 12 different places. Figure 18 shows

the averaged SER and throughput of four methods when the

number of overlapping packets varies from 1 to 12.

Figure 18(a) shows the averaged SER. The SER increases

with the increasing number of overlapping packets. The SER

of NScale, CoLoRa, and Choir increase faster than that of

AlignTrack, and the SER of Choir increases the fastest. This

is because Choir uses hardware imperfection which is difficult

to find under low SNR, and NScale and CoLoRa partition a

chirp to segments and use the height difference among packets

to decode collisions. When the number of overlapping packets

increases, the height difference among chirps in different LoRa

Sensor
Gateway

230m

14
0m

Fig. 17. Outdoor LoRa Network: LoRa nodes with radio chip SX1278 as
transmitters and HackRF One as the receiver (gateway) in a campus.
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Fig. 18. Performance in real outdoor deployed LoRa networks:(a) Averaged
SER. (b) Network Throughput.

packets decreases, and the features of different packets are

more likely to be similar, i.e., not distinguishable enough

to separate packets. For AlignTrack, we only focus on the

peak frequency and height change of the aligned chirp at the

current moving window. Thus, our approach introduces more

robust features to distinguish packets. When the number of

overlapping packets reaches 7, the SER of Choir is more than

40%, the SER of NScale and CoLoRa are almost 30% while

the SER of AlignTrack is still lower than 10%. When the

number of overlapping packets reaches 12, the SER of NScale

is more than 40%, which is 3.1× of AlignTrack (12.9%). And

the SER of CoLoRa (48%) and Choir (60%) are 3.72× and

4.65× of AlignTrack. Figure 18(a) shows that when there is

no collision, there are still decoding errors in Choir. This is

because Choir separates packets by grouping peaks with the

same fractional part of the frequency of peaks. The fractional

part is mainly determined by the CFO due to the hardware

imperfection. However, the CFO changes with time, and the

fractional part changes with time. And thus, peaks for the same

packet will be divided into different packets. AlignTrack uses

the integer part of the frequency of peaks, and thus can be

more robust to distinguish packets.

Figure 18(b) shows the network throughput of AlignTrack,

NScale, CoLoRa and Choir. When the number of overlapping

packets reaches 12, the throughput of AlignTrack is 320 sps,

which is 1.52× of NScale (210 sps), 1.68× of CoLoRa (190

sps), and 2.16× of Choir (148 sps).



VI. RELATED WORK

Collision resolution in LoRa. There are many works

to decode collisions for LoRa. mLoRa [12] adopts SIC to

separate packets and can decode collision from three nodes.

FTrack [13] separates collided packets by calculating the

continuity of instantaneous frequency and concentrates on

the time domain features, which needs a high SNR (e.g.,

SNR > 0 dB). Choir [16] exploits the frequency shift of

imperfect hardware to separate packets. CoLoRa [14] con-

siders the height relationship of peaks in adjacent windows.

NScale [15] multiples the chirp segment with a non-stationary

scaled down-chirp and leverages peaks of different segments

to distinguish different packets. CoLoRa and NScale need to

partition a chirp and introduce inevitable SNR loss in practice.

AlignTrack leverages the entire chirp in LoRa and introduces

a very small SNR loss. The SNR loss introduced by CoLoRa

and NScale requires LoRa nodes to transmit LoRa packets

with higher strength, while AlignTrack does not need to do

any redundant operations.

General methods for collision resolution. There are many

traditional methods for collision resolution. One is to use mul-

tiple antennas, such as Multi Input Multi Output(MIMO) [17],

[18]. MIMO uses multiple antennas to form a transceiver

system with multiple channels. However, MIMO is not suit-

able for a single antenna device like the LoRa node. The

other is to perform channel detection to avoid collision, such

as CSMA/CA [19] [20] and RTS-CTS [21] [22]. However,

CSMA/CA needs to detect the channel status, and RSSI based

channel detect method does not work in a very low SNR like

the LoRa network. Channel Activity Detection (CAD) method

introduced by LoRa needs to detect the LoRa preamble,

which introduces a high overhead and power consumption.

Meanwhile, CSMA/CA significantly reduces the transmission

efficiency especially considering the dense deployment of

LoRa nodes and the long communication distance. The impact

of the hidden/exposed terminal problems is exacerbated and

will significantly reduce the network efficiency. SIC [23] is

also a general method for collision resolution. SIC iteratively

finds and reconstructs coding information based on different

signal strengths and some known coding information. How-

ever, it does not utilize the features of LoRa.

Improvement on LPWANs. A variety of works have been

proposed to improve the performance of LPWANs. OPR [24]

uses multiple gateways to recover packets subject to CRC

and/or FEC errors. Chime [25] analyzes the path signals tra-

verse from the client to distributed and coordinated gateways

to choose the optimal frequency of the LPWAN client. Lite-

Nap [26] enables sub-Nyquist sampling and packet decoding

to improve energy efficiency. EF-LoRa [27] allocates different

network resources to achieve fair energy consumption among

end devices. The work [28] conducts a series of experiments

to verify the claims made by Semtech on LoRa.

VII. CONCLUSION

LoRa has been one of the key technologies to connect

millions of devices in the Internet of Things. However, the col-

lision of LoRa packets significantly degrades its performance

in practice. Existing collision decoding approaches introduce

non-negligible SNR loss in collision decoding. We present

AlignTrack, the first LoRa collision decoding approach that

incurs negligible SNR loss and can decode collisions under

a very low SNR. Unlike state-of-the-arts that leverage partial

chirps to separate collided packets, AlignTrack aligns windows

to each packet and leverages the aligned chirps in each window

to separate packets. We address practical challenges in the

implementation. We propose a method to accurately find the

start of each packet under interference and CFO. We show

how to accurately find the aligned chirps in each window and

recover accurate peak information. We implement AlignTrack

on the HackRF One platform and evaluate its performance

extensively. AlignTrack totally sits at the server side without

any modification to the LoRa end nodes and can be applied

to existing LoRa networks. The evaluation results show that

AlignTrack improves network throughput by 1.68× compared

with NScale and 3× compared with CoLoRa.

ACKNOWLEDGMENT

We thank our shepherd I-Hong Hou and anonymous review-

ers for their insightful comments to improve the quality of our

work. This work is in part supported by NSFC No. 61932013

and Tsinghua-Foshan Innovation Special Fund (TFISF). Jil-

iang Wang is the corresponding author.

REFERENCES

[1] Kais Mekki, Eddy Bajic, Frederic Chaxel, and Fernand Meyer. Overview
of cellular LPWAN technologies for IoT deployment: Sigfox, Lo-
RaWAN, and NB-IoT. In 2018 IEEE International Conference on Perva-
sive Computing and Communications Workshops (PerCom Workshops),
2018.

[2] Oratile Khutsoane, Bassey Isong, and Adnan M. Abu-Mahfouz. IoT
devices and applications based on LoRa/LoRaWAN. In IECON 2017-
43rd Annual Conference of the IEEE Industrial Electronics Society,
2017.

[3] Afef Mdhaffar, Tarak Chaari, Kaouthar Larbi, Mohamed Jmaiel, and
Bernd Freisleben. IoT-based health monitoring via LoRaWAN. In IEEE
EUROCON 2017-17th International Conference on Smart Technologies,
2017.

[4] Danco Davcev, Kosta Mitreski, Stefan Trajkovic, Viktor Nikolovski, and
Nikola Koteli. IoT agriculture system based on LoRaWAN. In 2018
14th IEEE International Workshop on Factory Communication Systems
(WFCS), 2018.

[5] Ruhaizan Fazrren Ashraff Mohd Nor, Fadhlan HK Zaman, and Shamry
Mubdi. Smart traffic light for congestion monitoring using LoRaWAN.
In 2017 IEEE 8th Control and System Graduate Research Colloquium
(ICSGRC), 2017.

[6] Saifil Allif A’ssri, Fadhlan HK Zaman, and Shamry Mubdi. The efficient
parking bay allocation and management system using LoRaWAN. In
2017 IEEE 8th Control and System Graduate Research Colloquium
(ICSGRC), 2017.

[7] Yao Peng, Longfei Shangguan, Yue Hu, Yujie Qian, Xianshang Lin,
Xiaojiang Chen, Dingyi Fang, and Kyle Jamieson. PLoRa: A passive
long-range data network from ambient LoRa transmissions. In Proceed-
ings of the 2018 Conference of the ACM Special Interest Group on Data
Communication, 2018.

[8] Vamsi Talla, Mehrdad Hessar, Bryce Kellogg, Ali Najafi, Joshua R.
Smith, and Shyamnath Gollakota. Lora backscatter: Enabling the vision
of ubiquitous connectivity. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, 1(3):1–24, 2017.

[9] Norman Abramson. THE ALOHA SYSTEM: another alternative for
computer communications. In Proceedings of the November 17-19,
1970, fall joint computer conference, 1970.



[10] Jonathan de Carvalho Silva, Joel JPC Rodrigues, Antonio M Alberti,
Petar Solic, and Andre LL Aquino. Lorawan—a low power wan
protocol for internet of things: A review and opportunities. In 2017 2nd
International Multidisciplinary Conference on Computer and Energy
Science (SpliTech), 2017.

[11] Ferran Adelantado, Xavier Vilajosana, Pere Tuset-Peiro, Borja Martinez,
Joan Melia-Segui, and Thomas Watteyne. Understanding the limits of
LoRaWAN. IEEE Communications magazine, 55(9):34–40, 2017.

[12] Xiong Wang, Linghe Kong, Liang He, and Guihai Chen. mLoRa: A
Multi-Packet Reception Protocol in LoRa networks. In 2019 IEEE 27th
International Conference on Network Protocols (ICNP), 2019.

[13] Xianjin Xia, Yuanqing Zheng, and Tao Gu. FTrack: parallel decoding
for LoRa transmissions. In Proceedings of the 17th Conference on
Embedded Networked Sensor Systems, 2019.

[14] Shuai Tong, Zhenqiang Xu, and Jiliang Wang. Colora: Enabling multi-
packet reception in lora. In IEEE INFOCOM 2020-IEEE Conference on
Computer Communications, 2020.

[15] Shuai Tong, Jiliang Wang, and Yunhao Liu. Combating packet collisions
using non-stationary signal scaling in lpwans. In Proceedings of the 18th
International Conference on Mobile Systems, Applications, and Services,
2020.

[16] Rashad Eletreby, Diana Zhang, Swarun Kumar, and Osman Yağan.
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