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Abstract— Traffic Engineering (TE) is a basic building block of
the Internet. In this paper, we analyze whether modern Machine
Learning (ML) methods are ready to be used for TE optimization.
We address this open question through a comparative analysis
between the state of the art in ML and the state of the art in TE.
To this end, we first present a novel distributed system for TE that
leverages the latest advancements in ML. Our system implements
a novel architecture that combines Multi-Agent Reinforcement
Learning (MARL) and Graph Neural Networks (GNN) to min-
imize network congestion. In our evaluation, we compare our
MARL+GNN system with DEFO, a network optimizer based
on Constraint Programming that represents the state of the
art in TE. Our experimental results show that the proposed
MARL+GNN solution achieves equivalent performance to DEFO
in a wide variety of network scenarios including three real-world
network topologies. At the same time, we show that MARL+GNN
can achieve significant reductions in execution time (from the
scale of minutes with DEFO to a few seconds with our solution).

Index Terms—Traffic Engineering, Routing Optimization,
Multi-Agent Reinforcement Learning, Graph Neural Networks

I. INTRODUCTION

Traffic Engineering (TE) is a well-established mechanism
that plays a fundamental role in the performance of today’s
Internet [1]. Particularly, its main goal is to provide efficient
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and reliable network operations, while optimizing the network
resources [2]. As a result, there exists a rich body of propos-
als based on different technologies (e.g., flow-based routing,
link-state protocols, overlay networking) that target various
optimization goals and network scenarios [3], [4]. Beyond
this broad definition, a fundamental TE problem traditionally
addressed in the literature is intradomain TE, where the classic
optimization goal is to minimize the maximum link load within
a self-administered network domain (e.g., a carrier-grade net-
work) [5]-[7]. This is a well-known NP-hard problem [8].

The last few years have seen an increasing interest in the
application of Machine Learning (ML) to complex network
control and management problems [9]. Particularly, the out-
standing results of Deep Reinforcement Learning (DRL) in
other domains (see [10] and references therein) have awakened
the interest of the networking community in understanding
the true potential of this new technology for online network
optimization tasks, such as TE (e.g., [11]-[14]).

In this paper, we raise an open question: Is ML ready for
Traffic Engineering optimization? Here we refer to ready as
achieving -at least- comparable performance and speed to
state-of-the-art TE solutions based on classical optimization
methods. In order to answer this question, we seek to create a
TE solution leveraging the latest advancements in the ML field,
and then experimentally compare it to the best TE approach
available in the literature.

We present a novel TE optimizer based on a combination of
Multi-Agent Reinforcement Learning (MARL) [15] and Graph
Neural Networks (GNN) [16], which can be considered as
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Figure 1: Network Traffic Engineering scenario.

the most advanced ML technologies for online optimization
problems over graphs, such as TE. The proposed solution is
distributed over the network devices and is tasked to address
the intradomain TE problem. In particular, given a set of
estimated traffic demands, the distributed agents of our MARL
system cooperate to jointly optimize the link weights used by
OSPF [17], with the ultimate goal of minimizing the most
loaded link in the network. The proposed system is compatible
with any network running a link-state intradomain routing
protocol (e.g., OSPF, IS-IS, etc)!.

Unlike previous ML-based proposals for TE (e.g., [11], [12],
[18]), the combination of MARL and GNN allows us to handle
topologies of various sizes and structures in a distributed
fashion; and more importantly, to achieve combinatorial gen-
eralization over the information exchanged by agents in the
network, which is naturally represented as a graph [19], [20].

At the time of this writing, the most advanced proposals
for TE are based on refined optimization algorithms, such
as Constraint Programming [7], Local Search [21], Mixed
Integer Linear Programming [22] or Column Generation [23].
All these solutions offer significant performance improvements
with respect to traditional routing strategies, such as shortest
path routing or load balancing. In our evaluation, we focus
on DEFO [7] as a benchmark for comparison, which is
arguably among the best performing and most advanced TE
solutions available [24]. DEFO is a sophisticated proposal
that represents the result of decades of research in TE. One
of the main challenges in TE optimization is to reduce the
dimensionality of the vast search space. To this end, DEFO
proposes Middlepoint Routing (MR), a smart abstraction of
routing inspired by Segment Routing [25]. With this approach,
and leveraging the SDN paradigm to implement a fully
centralized optimization algorithm, the authors are able to
optimize a network with close-to-optimal performance within
few minutes, which allows for near real-time operation.

In our experimental evaluation, we benchmark the proposed
MARL system against DEFO across a wide variety of network
scenarios. We first evaluate the performance of our solution in
a set of real-world network topologies with realistic traffic
matrices, and report comparable performance to DEFO. Then,
we analyze the execution time (speed) of both solutions and
show that our MARL system only requires few seconds to
optimize a network, while DEFO operates at the scale of

IThe source code and all data needed to reproduce our experiments is
available at https://github.com/BNN-UPC/Papers/wiki/MARL-GNN-TE

minutes [7]. This improvement in terms of execution time
is a result of the inherent distributed nature of our MARL
system, which allows us to share the computation among the
network devices without requiring any centralized entity. This
enables for sub-minute real-time operation with comparable
performance to the state-of-the-art in TE.

II. NETWORK TRAFFIC ENGINEERING SCENARIO

In this section, we describe the network scenario considered
in this paper. Particularly, we address the intradomain TE
problem, where network traffic is measured and routed to
optimize the network resources. Typically, IP networks run
link-state Interior Gateway Protocols (IGP), such as Open
Shortest Path First (OSPF) [17], that choose paths using the
Dijkstra’s algorithm over some pre-defined link weights.

TE can be achieved through different approaches. Network
operators use commercial tools [26], [27] to fine-tune link
weights. Other mechanisms propose to add extra routing
entries [28] or end-to-end tunnels (e.g., RSVP-TE [29]) to
perform source-destination routing, expanding the solution
space. In the literature, we can find a wide range of proposed
architectures and algorithms for TE [30].

Our proposed ML solution is a fully distributed architecture
that optimizes link weights (similar to existing commercial
solutions [26], [27]) and interfaces with standard OSPF. It does
not require any changes to OSPF, while it can be implemented
with a software update on the routers where it is deployed.
Relying on well-known link-state routing protocols, such as
OSPF, also offers the advantage that the network is easier to
manage compared to finer-grained alternatives, such as flow-
based routing [31].

In what follows, we describe the three operational steps of
our solution (see Fig. 1):

1) Traffic Measurement: In step (1), a traffic measurement
platform deployed over the network identifies a new Traffic
Matrix (TM). This new TM needs to be communicated to all
participating routers, which upon reception will start the next
step and optimize the routing for this TM. We leave out of the
scope of this paper the details of this process, as TM estimation
is an extensive research field with many established proposals.
For instance, this process can be done periodically (e.g, each 5-
10 minutes as in [32]), where the TM is first estimated and then
optimized. Some proposals trigger the optimization process
when a relevant change is detected in the TM [33], while
others use prediction techniques to optimize it in advance [34].
Finally, some real-world operators make estimates considering



their customers’ subscriptions and operate based on a static
TM. Our proposal is flexible and can operate with any of
these approaches.

2) Proposed MARL+GNN TE optimization system:
Upon reception of the TM, routers run the MARL+GNN
optimization process (step (2)), which eventually computes the
per-link weights that optimize OSPF routing in the subsequent
step. Particularly, we set the goal to minimize the maximum
link load (MinMaxLoad), which is a classic TE goal in carrier-
grade networks [5]—[7]. This problem is known to be NP-hard,
and even good settings of the weights can deviate significantly
from the optimal configuration [6], [31]. Our MARL optimiza-
tion system is built using a distributed Graph Neural Network
(GNN) that exchanges messages over the physical network
topology. Messages are sent between routers and their directly
attached neighbors. The content of such messages are hidden
states that are produced and consumed by artificial neural
networks and do not have a human-understandable meaning.
The GNN makes several message iterations and, during this
phase, local configuration of the router remains unchanged,
thus having no impact on the current traffic. More details about
the inner workings, performance, communication overhead,
and computational cost can be found in Sections IV and V.

3) OSPF convergence: Finally, step (3) is the standard
OSPF convergence process based on the new per-link weights
computed by the MARL+GNN system. Specifically, each
agent has computed the optimal weigths for its locally attached
links. For OSPF to recompute the new forwarding tables, it
needs to broadcast the new link weights; this is done using
the standard OSPF Link-State Advertisements (LSAs) [17].
Once the routers have an identical view of the network, they
compute locally their new forwarding tables, and traffic is
routed following the optimization goal. Convergence time of
OSPF is a well-studied subject. For instance, routing tables
can converge in the order of a few seconds in networks with
thousands of links [35].

III. BACKGROUND

The solution proposed in this paper incorporates two ML-
based mechanisms: GNNs and MARL. In this section, we
provide some background on these technologies.

A. Graph Neural Networks

GNNs are a novel family of neural networks designed
to operate over graphs. They were introduced in [16], and
numerous variants have been developed since [36]. In their
basic form, they consist in associating some initial states to
the different elements of an input graph, and combine them
considering how these elements are connected in that graph.
The resulting state representations, which now may encode
some topological awareness, are then used to produce the
final output of the GNN, which can be at the level of graph
elements, or at a global graph level.

In particular, we will focus on Message Passing Neural
Networks (MPNN) [37], which is a well-known type of GNN
whose operation is based on an iterative message-passing

algorithm that propagates information between the selected
elements of the graph —for simplicity, let us assume that we
consider as elements the nodes of such graph. First, each node
v initializes its hidden state h using some initial features
already included in the input graph. At every message-passing
step k, each node v receives via messages the current hidden
state of all the nodes in its neighborhood B(v), and processes
them individually by applying a message function my(:) to-
gether with its own internal state h¥. Then, the processed
messages are combined by an aggregation function af(-):

My = a({m(h¥, b)) }icnw) (1)

Finally, an update function u(-) is applied to each node v;
taking as input the aggregated messages M?” and its current
hidden state h¥, it outputs a new hidden state for the next step
(k+1):

htt = u(hy, MY). )

After a certain number of message passing steps K, a readout
function r(-) takes as input the final node states A% to produce
the final output of the GNN model. This readout function can
predict either features of individual elements (e.g., a node’s
class) or global properties of the graph.

We note that a MPNN model generates a single set of
message, aggregation, update, and readout functions that are
replicated at each selected graph element. This means that
these functions should be generic and flexible enough to
adapt their behaviour to different scenarios, which is why they
are usually modeled as traditional neural networks —specially
fully connected and recursive neural networks, with the only
exception of the aggregation function that is commonly an
element-wise summation.

B. (Multi-Agent) Reinforcement Learning

In the standard Reinforcement Learning (RL) setting [38],
an agent interacts with the environment in the following way:
at each step ¢, the agent selects an action a; based on its current
state s;, to which the environment responds with a reward
r¢ and then moves to the next state s,y;. This interaction is
modeled as an episodic, time-homogeneous Markov Decision
Process (MDP) (S, A,r, P,v), where S and A are the state
and action spaces, respectively; P is the transition kernel,
St41 ~ P(+|s¢, at); r represents the immediate reward given
by the environment after taking action a; being in state s;; and
v € (0,1] is the discount factor used to compute the return G,
defined as the —discounted— cumulative reward from a certain
time-step ¢ to the end of the episode T: G; = ZtT:o yr;. The
behavior of the agent is described by a policy 7 : S — A,
which maps each state to a probability distribution over the
action space, and the goal of an RL agent is to find the
optimal policy in the sense that, given any considered state
s € S, it always selects an action that maximizes the expected
return Gy.

In this work, we focus on model-free Policy Gradient
Optimization methods [39], where the agent learns an explicit
policy representation 7y with some parameters 6 —typically



a neural network. In most cases, during the training process,
they involve learning as well a function approximator Vy(s)
of the state value function V™ (s), defined as the expected
discounted return from a given state s by following policy 7y:

VT(G (S) = T]E [Gt|8t = S] (3)

This defines the so-called Actor-Critic family of Policy Gra-
dient algorithms [39], where actions are selected from the
function that estimates the policy (i.e., the actor), and the
training of such policy is guided by the estimated value
function to assess the consequences of the actions taken (i.e.,
the critic). Our solution is precisely based on an Actor-Critic
method named Proximal Policy Optimization (PPO) [40],
which offers a favorable balance between reliability, sample
complexity, and simplicity; we refer the reader to the original
paper [40] for further details.

Contrary to a single-agent RL setting, in a Multi-Agent
Reinforcement Learning (MARL) framework there is a set
of agents V interacting with a common environment that
have to learn how to cooperate to pursue a common goal.
Such a setting is generally formulated as a Decentralized
Partially Observable MDP (Dec-POMDP) [15] where, besides
the global state space S and action space A, it distinguishes
local state and action spaces for every agent —i.e., S, and A,
for v € V. At each time step ¢ of an episode, each agent may
choose an action ay € A, based on local observations of the
environment encoded in its current state s; € S,. Then, the
environment produces individual rewards ry (and/or a global
one 7;), and it evolves to a next global state s;4+1 € S —
i.e., each agent v turn into the following state sy, € S,.
Typically, a MARL system seeks for the optimal global policy
by learning a set of local policies {my,}»ey. For doing so,
most state-of-the-art MARL solutions implement traditional
(single-agent) RL algorithms on each distributed agent, while
incorporating some kind of cooperation mechanism between
them [15]. The standard approach for obtaining a robust
decentralized execution, however, is based on a centralized
training where extra information can be used to guide agents’
learning [41].

IV. MARL+GNN ARCHITECTURE

The TE scenario described in Section II is implemented
through a MARL architecture that, thanks to the use of GNN,
yields good generalization properties over networks [19], [20].
We will first introduce our generic MARL+GNN framework,
which is especially designed for distributed networking tasks,
and then we will provide details on how it is adapted to the
intradomain TE use case addressed in this paper.

A. Framework Formulation

We model a networked MARL environment as a graph
G = (N,€&), with some nodes n € N and edges e € &,
where a set of agents V control some of the graph entities
(nodes or edges). Our architecture extends the single-agent
PPO method [40] to accommodate the distributed multi-agent
environment.

In contrast to the standard MARL setting described in Sec-
tion III-B, where a policy 7y, is learned for each agent v € V),
we propose to directly learn a global policy 7y : S — A in
a distributed fashion over the global state and action spaces,
defined as the joint and union of the respective agents’ local
spaces — i.e., S = [[, ¢y Sv and A = |J, ¢y, A, This allows
us to formulate the problem as a classic MDP, thus avoiding
the more complex Dec-POMDP scenario.

An important novelty of our design is that all agents v € V
are able to internally construct the global policy representation
mp mainly through message communications with their direct
neighboring agents B(v) and their local computations. Thus,
we no longer need a centralized entity responsible for col-
lecting and processing all the global information together to
provide my. Such a decentralized, message-based generation of
the global policy can be achieved by modeling the actor with
a MPNN (see Sec. III-A), so that my is now encoded as a
GNN rather than as a classical, non-relational neural network
(e.g., fully-connected NN). In particular, this implies that all
agents ) deployed in the network are actually elements of
a larger-scale mechanism —orchestrated by the MPNN- that
requires them to perform regular message exchanges with their
neighbors. Algorithm 1 summarizes the full execution pipeline
of our solution.

Inherently, at each step ¢ of the episodic MDP, the MPNN-
driven process of estimating the policy 7y (+|s;) first requires
engineering a meaningful hidden state h, for each agent
v € V. Each hidden state h, basically depends on the hidden
representations of the neighboring agents B(v), and its initial-
ization hY is a function of the current agent state s!, which is
in turn based on some pre-defined internal agent features z¢.
Those representations are shaped during K message-passing
steps, where hidden states are iteratively propagated through
the graph via messages between direct neighbors. In particular,
successive hidden states hﬁ, where k refers to the message-
passing step, are computed by the message, aggregation and
update functions of the MPNN, as described in Section III-A.

Once agents generate their final hidden representation, a
readout function —following the MPNN nomenclature— is
applied to each agent to finally obtain the global policy
distribution 7y. Particularly, in our system the readout is
divided into two steps: first, each agent v € )V implements
a local readout that takes as input the final representation
hX, and produces as output the unnormalized log probability
(i.e., logit) of every possible action in the agent’s space A,.
The second and last step involves a communication layer
that propagates the logits among agents, so that all of them
can internally construct the global policy 7y for the overall
network state s; = [[,,, . To ensure that all the distributed
agents sample the same actions along the message-passing
process al, ~ mg(:|st), v € V, they share a common seed
before initiating this process. Consequently, only the agent v’
whose action has been selected does execute an action at each
time-step t.

For each step of an episode — of length 7" — our solution runs
the MPNN-based actor model described above, after applying



Algorithm 1: MARL+GNN execution pipeline.

Require: A graph G = (N, £) with a set of agents ),
MPNN trained parameters 6 = {0; }ic(m,a,u,r}

Input: Initial graph configuration X, episode length T,
number of message passing steps K

1 Agents initialize their states s) based on Xg

2 for t <~ 0 to 7" do

3 Agents initialize their hidden states
hY « (s¢,0,...,0)

4 for k£ < 0 to K do

Agents share their current hidden state h” to

neighboring agents B(v)

W

6 Agents process the received messages
Mql)c < ag, ({mg‘m (hm h,u)}MEB U))
7 Agents update their hidden state
hy e u(hy, M)
8 end for
9 Agents compute their actions’ logits
{logit, (a)}aca, ¢ 70, (h)

10 Agents receive the actions’ logits of the rest of
agents and compute the global policy

my <— CategoricalDist ({{logit, (a) }aca, }vev)

11 Using the same probabilistic seed, agents sample
an action a; € A,, for v/ € V, from policy gy
12 Agent v’ executes action a;, and the environment

updates the graph configuration X bl
13 Agents update their states s! ! based on X bl
14 end for
Output: New graph configuration X that optimizes
some pre-defined objective or metric

the action selected in the previous step. Note that each action
could modify one or several agent’s internal states, which
would vary their hidden state initializations, hence leading to
a completely new optimization process. During training, each
agent stores the global trajectory {s;, a;, s;11}7_g, from which
they can learn the configuration that leads to better global
performance at the end of the episode.

One especial characteristic of the proposed system with
respect to common MARL settings emerges from the internal
implementation of a MPNN model. As a result, rather than
having independent functions for each agent as in the standard
MARL setting [15], in our system all agents implement the
same functions (i.e., message, aggregation, update, and read-
out) with the same parameters 6. Hence, all agents run exactly
the same processing pipeline, and their outcome depends on
both their initialization and the local information received from
their neighbors.

Indeed, our solution produces a single universal agent
implementation that builds upon the inner functions of the
MPNN, which are jointly learned during training across all the
agents instances in the network (see Sec. III-A for more de-
tails). Thus, after training, each agent v € V can be interpreted
as a replica of this universal agent that behaves based on its
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Figure 2: Description of the message passing and action
selection process of our MARL+GNN solution in a time-
step. The full procedure is repeated 7' times, which is the
pre-defined episode length.

local environment. This so-called parameter sharing feature
provides compelling generalization and scalability properties,
which can be beneficial to effectively deploy the solution in
networks with topologies of different size and structure, not
necessarily seen during the training phase [20], [42].

B. Application to Traffic Engineering

A straightforward approach to map the previously described
MARL+GNN setting to the intradomain TE problem is to
associate agents to each element of the physical topology
—i.e., given a network topology, each agent can control in-
dividually the configuration of a network device, or some
configuration parameters of a link connecting two devices. In
the network scenario described in Section II, we consider that
each agent controls a link (i.e., V = &). In practice, these
link-based agents are executed in the adjacent device of the
link (e.g., router). Figure 2 shows a visual representation of
our distributed MARL+GNN system adapted to the TE use
case, particularly with the goal of minimizing the most loaded
link [5]-[7]. Taking this figure as a reference, we describe the
particular adaptations of our MARL framework to be applied
to the selected intradomain TE scenario:

1) Environment: In the traditional MDP setting, we con-
sider episodes of a fixed number of time-steps 7. At the
beginning of each episode, the environment provides with a
set of traffic demands between all source-destination pairs (i.e.,
an estimated traffic matrix [32]—-[34]). Each link e € £ has an



associated capacity c., and it is initialized with a certain link
weight w?. These link weights are in turn used to compute the
routers’ forwarding tables (via standard OSPF convergence).
Each agent v, € V has access to its associated link features,
which in our case are the current weight, its capacity, and
also the estimated traffic matrix and the weights of the other
links. This can be achieved with standard procedures in OSPF
environments (see Sec. II).

2) State Space and Message Passing: At each time-step ¢
of an episode, each link-based agent v, € V, feeds its MPNN
module with its input features x! to generate its respective
initial hidden state h? (Figure 2-a). In particular, agents con-
sider as input features the current weight w! and the utilization
ul [0,1] of the link, and construct their initial link hidden
representations h? as a fixed-size vector where the first two
components are the input features and the rest is zero-padded.
Note that the link utilization can be easily computed by the
agent with the information of the estimated traffic matrix and
the global link weights locally maintained. Then, the algorithm
performs K message-passing steps (Figures 2-b and 2-c). At
each step k, the algorithm is executed in a distributed fashion
over all the links of the network. Particularly, for each link,
the corresponding agent receives the hidden states of its
neighboring agents (i.e., adjacent links), and combines them
individually with its own state h¥ (message function), using
a fully-connected NN. Then, all the messages computed in
each link (with its neighbors) are aggregated using an element-
wise sum, producing an aggregated message MF. Afterwards,
another fully-connected NN is used as update function, which
combines the link hidden state h* with the new aggregated
information MP*, and produces a new hidden state represen-
tation for that link (h’;*l). As mentioned above, this process
is repeated K times, leading to some final link hidden state
representations hX. In short, during this K message-passing
process, agents increasingly transform their initial link hidden
states (initialized with the link weight and utilization) based on
their local communications with adjacent agents (i.e., links).

3) Action Space: In our TE approach, the possible action
of each agent e € £ is to modify the weight of its associated
link w.. Due to parameter sharing, all of them share the same
action space A.. In our specific implementation each agent has
only one possible action at each time-step: to increase the link
weight in one unit. Note that the same agent can increment
more than once its weight along an episode, thus providing
enough expressiveness to generate potentially any combination
of link weights at the end of the episode. In particular, the
agent’s action selection (Figure 2-d) is done as follows: first,
every agent applies a local readout function —implemented
with a fully-connected NN- to its final hidden state hf , from
which it obtains the global logit estimate of choosing its action
(i.e., increase its link weight) over the actions of the other
agents. Then, as previously described in Section IV-A, these
logits are shared among agents in the network, so that each
of them can construct the global policy distribution 7g. By
sharing the same probabilistic seed (from the beginning of the
episode), all the agents sample locally the same action a’,

from 7y, thus selecting the agent v.r € V that will increase
its weight and, consequently, each agent increases by one the
weight of the selected link in its internal global state copy,
which is then used to initialize its hidden state representation
in the next time-step t 4 1; particularly, to compute the new
link utilization u’*! under this new weight setting.

4) Reward Function: During training, a reward function is
computed at each step ¢ of the optimization episode. In our
case, as the optimization goal is to minimize link congestion,
we define the reward r; as the difference of the global
maximum link utilization between steps ¢ and ¢ 4+ 1. Note
that this reward can be computed locally in each agent from
its global state copy, which is incrementally updated with the
new actions applied at each time-step a’,.

C. Training Phase

Formally, during training the goal is to optimize the param-
eters {60, ¢} so that:
o The previously described GNN-based actor 7y becomes
a good estimator of the optimal global policy;
e The critic V; learns to approximate the state value
function of any global state?.

In particular, the training pipeline is done as follows: An
episode of length T is generated by following the current
policy g, while at the same time the critic’s value function Vy
evaluates each visited global state; thus, the episode defines
a trajectory {s, at, ¢, Pr, Vi, st+1}tT:_01, where p; = mg(a¢|st)
and V; := V,(s;). When the episode ends, this trajectory is
used to update the model parameters —through several epochs
of minibatch Stochastic Gradient Descent— by maximizing the
global PPO objective LFF9 (6, ¢) described in [40].

V. EVALUATION

In this section we make an extensive set of experiments —
over real-world network topologies— to evaluate the proposed
MARL+GNN architecture (Sec. IV). We particularly focus on
comparing the proposed solution with DEFO [7], which is
arguably among the best performing and most advanced TE
solutions available at the time of this writing [24].

A. Experimental Setup

Along the evaluation section, we consider three real-world
network topologies for training and evaluation of our model:
42-link NSFNet, 54-link GBN, and 72-link GEANT2 [43].
The length T of the training and evaluation episodes is pre-
defined, and it varies from 100 to 200 steps, depending on the
network topology size (see more details later in Sec. V-F). At
the beginning of each episode, the link weights are randomly
selected as an integer in the range [1,4], so our system is
evaluated over a wide variety of scenarios with random routing
initializations. From that point on, at each step of an episode
a single agent can modify its weight by increasing it in one

2The critic is exclusively used for training, it is no longer needed at runtime.
We have implemented it as an independent link-based MPNN, similar to
the actor, in order to exploit the relational reasoning provided with GNNs.
However, other alternative designs would be valid as well.



unit, thus chaining the selected actions on the T time-steps of
an episode.

Taking [44] as a reference for defining the hyperparame-
ters’ values of the solution, we ran several grid searches to
appropriately fine-tune the model. The implemented optimizer
is Adam with a learning rate of 3 - 1074, 5=0.9, and €=0.9.
Regarding the PPO setting, the number of epochs for each
training episode is set to 3 with batches of size 25, the discount
factor v is set to 0.97, and the clipping parameter to 0.25.
We implement the Generalized Advantage Estimate (GAE), to
estimate the advantage function with A=0.9. In addition, we
multiply the critic loss by a factor of 0.5, and we implement
an entropy loss weighted by a factor of 0.001. Finally, links’
hidden states h. are encoded as 16-element vectors, and in
each MPNN forward propagation K=8 message passing steps
are executed.

We consider two different traffic profiles: (i) uniform dis-
tribution of source-destination traffic demands, and (ii) traffic
distributions following a gravity model [45], which produces
more realistic Internet traffic matrices. For each set of experi-
ments, the training process of our MARL+GNN system took
about 24 hours running in a machine with a single CPU of
2.20 GHz (~1M training steps).

B. Baselines

This section describes the baselines we use to benchmark
our MARL+GNN system in our experiments. We particularly
consider two well-known TE alternatives:

o Default OSPF: We consider the routing configuration ob-
tained by applying the OSPF protocol with the common
assumption that link weights are inversely proportional
to their capacities. We consider traffic splitting over
multiple paths (OSPF with ECMP), which is a standard
recommended best practice.

o Declarative and Expressive Forwarding Optimizer
(DEFO) [7]: A centralized network optimizer that
translates high-level goals of operators into network
configurations in real-time (in the order of minutes).
DEFO starts from a routing configuration already
optimized with a commercial TE tool [26], and it uses
Constraint Programming [46] and Segment Routing [25]
to further optimize it. To this end, DEFO reroutes traffic
paths through a sequence of middlepoints, spreading their
traffic over multiple ECMP paths. DEFO obtains close-
to-optimal performance considering several network
optimization goals, one of them being our intradomain
TE goal of minimizing the most loaded link. We use
the code publicly shared by the authors of DEFO?. For
the sake of comparison, we also use OSPF-ECMP in
the evaluation of our system (MARL+GNN), although it
can also operate in scenarios without ECMP support.

C. Performance Evaluation over different Traffic Matrices

In this subsection we present the results of our first ex-
periment, which evaluates the performance of our proposed

3https://sites.uclouvain.be/defo/
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Figure 3: Evaluation results of Minimum Maximum Link
Utilization with uniform traffic profiles in the NSFNet and
GEANT?2 network topologies. The evaluation is done over 100
traffic matrices unseen during training.

MARL solution over traffic matrices that have not been seen
during the training process. More in detail, we consider a fixed
network topology and a set of traffic matrices; then our model
is trained in that single topology using a subset of traffic
matrices, and finally the trained system is evaluated over a
different set with unseen traffic.

In particular, we analyze two different traffic profiles (uni-
form and gravity model), each of them in two network topolo-
gies (NSFNet and GEANT?). In total we run four independent
experiments, one for each combination of traffic profile and
topology. At each experiment, we stop the training when
the system has observed around 100 different traffic matrices
(TM), and the model is evaluated over 100 new TMs. During
training, TMs change every 50 training episodes.

Figure 3 shows the evaluation result considering a uniform
traffic profile. For the sake of readability, these plots show both
the raw Minimum Maximum Link Utilization values obtained
for each TM, and the Cumulative Distribution Function (CDF)
of these results. In this case, we can observe that our proposed
MARL+GNN solution performs significantly better than de-
fault OSPF in both topologies (on average, ~23% better in
NSFNet and 42% in GEANT?2) and stays near to the close-to-
optimal solutions produced by DEFO algorithm (in GEANT?2,
it even improves it by 11%).

Analogously, Figure 4 presents the evaluation results in
scenarios with the gravity traffic profile. Again, our proposed
MARL+GNN solution outperforms default OSPF in both
topologies (on average, ~25% better in NSFNet and 17% in
GEANT?2) and attains a comparable performance to DEFO.
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D. Generalization over other Network Topologies

While traditional TE optimizers are typically designed to
operate on arbitrary networks, current state-of-the-art ML-
based solutions for TE suffer from a lack of topology gen-
eralization, partly explained by the fixed-size input scheme of
most ML models (fully-connected NNs, convolutional NNs).
That is, previous ML solutions could only operate on those
toplogies seen during the training phase. Therefore, achieving
generalization over different topologies is an essential step
towards the versatility of state-of-the-art classical TE methods.

Given that our distributed GNN-based proposal naturally
allows variable-size network scenarios, as well as relational
reasoning [20], [42], we are particularly interested in eval-
uating the generalization potential of our MARL+GNN so-
lution over other networks not considered in training. For
these experiments, we train our model in both NSFNet and
GEANT?2 topologies, and then evaluate it in a never-seen
network (GBN). In this case, we stop the training when the
system observes a total of 100 TMs —alternating NSFNet and
GEANT?2 instances every 50 training episodes— and evaluate
it over 100 TMs in GBN.

Figure 5 presents the evaluation results of this experiment,
showing the Minimum Maximum Link Utilization values
obtained at each sample, as well as the CDF of these results.
Here we can observe that the proposed solution significantly
outperforms default OSPF (35% better on average) and it is
very close -only within a 2% difference- to DEFO.

E. Robustness against Link Failures

The ability to generalize over different network topologies
opens the door to address other uses cases that could not be
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Figure 5: Evaluation results of Minimum Maximum Link
Utilization for 100 different configurations in GBN after
training the model using exclusively with samples of NSFNet
and GEANT2.
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Figure 6: Performance degradation with increasing link fail-
ures for our NSFNet+GEANT?2 model (applied to GBN), and
DEFO. The plot shows the mean and standard deviation for
5 different TMs; for each TM we average the results on 10
scenarios with n random link failures.

solved with previous ML-based solutions. For example, in
this section we assess how our solution performs when the
network experiences link failures, which inevitably result in
changes in the topology. To this end, we design the following
experiment: given a traffic matrix and a topology, our model
previously trained in Section V-D is applied in networks with
increasing number of random link failures —up to a maximum
of 9 failures. We repeat this experiment 10 times for a given
number of failures n, exploring at each iteration different
combinations of link failures.

Figure 6 shows the mean and standard deviation of the
performance degradation —w.r.t. the original network scenario
with all the links— over 5 different traffic matrices, using the
model trained exclusively in NSFNet and GEANT?2 (Sec. V-D)
and applying it over the GBN network topology. These results
are compared against DEFO, which is evaluated under the
same conditions (i.e., same TMs and network scenarios). As
we can observe, the performance decays gracefully as the num-
ber of removed links increases, showing an almost identical
behavior to that of the state-of-the-art DEFO technique.

F. Performance vs. Message Passing Iterations

Previous experiments have shown that the proposed solution
achieves comparable performance to DEFO across a wide
variety of scenarios. However, there are still another important
feature: the execution cost, which can be a crucial aspect to



NSFNet GBN GEANT2  SYNTH500 SYNTH1000
Episode Length 100 150 200 5,250 9,600
Execution Time (s) 9.98-10"2 1.33-10~! 2.12.10°1 8.40 19.2
Average MPNN-based Link Overhead® (MB/s) 1.20 1.32 1.20 1.60 1.41

*It includes a 20% extra cost per message considering headers and metadata.

Table I: Cost of our solution — Execution time and average link overhead. Applied to variable-sized network topologies, and
assuming that hidden states are encoded as 16-element vectors of floats, and each Message Passing runs K=8 steps.
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Figure 7: Evolution of the MinMax link load so far
along an episode when applying our model (trained in
NSFNet+GEANT?2) respectively to NSFNet, GBN, and
GEANT?2. Plots show the mean and std. dev. over 5 runs,
each considering a different TM.

assess whether the proposed ML-based solution can achieve
reasonable execution times for near real-time operation, as in
DEFO.

With the above objective in mind, in this section we first
analyze the impact of one main hyperparameter of our MARL
system, which is the episode length 7'. This is the maximum
number of optimization steps that the MARL system needs to
execute before producing a good set of link weights. Given
that in our framework only one of the agents selects an
action (i.e., increase its link weight) at each time-step of
the episode, we expect a straightforward correlation between
the number of steps and the total amount of links in the
network: the larger the number of links, the larger should
potentially be the episode explorations to achieve a good
configuration. Finding the exact relation, though, depends on
multiple complex factors (e.g., the distribution of links, the
initialization of weights, the estimated traffic demands).

By exploring systematically a variable number of steps
in the three topologies considered above (NSFNet, GBN,
GEANT?2), we have empirically found that with an episode
length ~2-3 times the number of links in the network, our
system reaches its best performance —which is comparable to
the near-optimal results of DEFO, as observed in previous
sections. For instance, in our experiments it is sufficient to
define T=100 for NSFNet, T'=150 for GBN, and 7'=200 for
GEANT2. This can be observed in Figure 7, which shows
the evolution of the maximum link utilization achieved by
our MARL system along an episode in the three network
topologies.

G. Cost Evaluation

Considering the previous evaluation on the episode length
(Sec. V-F), in this section we aim to evaluate the execution
time of our solution to reach its best optimization potential.
This is probably the main advantage that we can expect
from ML-based solutions w.r.t. to near-optimal state-of-the-
art TE techniques, such as DEFO. Indeed, if we analyze
the main breakthroughs of DRL in other fields (e.g., [10]),
we can observe they have been mainly achieved in complex
online decision-making and automated control problems. Note
also that, after training, our multi-agent system is deployed
in a distributed way over the network, thus distributing the
computation of the global TE optimization process.

Table I shows the execution time of our MARL+GNN
trained system for the three real-world topologies used in
our evaluation: NSFNet, GBN and GEANT2. Moreover,
we also simulated executions over two synthetic networks
—SYNTHS500 (500 nodes, 1750 links) and SYNTH1000 (1000
nodes, 3200 links)- in order to analyze the cost of our
distributed system in larger networks. As we can see, the
execution time of our solution scales in a very cost-effective
way with respect to the size of the network; from the order
of milliseconds in NSFNet, GBN and GEANT2, to the tens
of seconds in the SYNTH1000 network, with thousands of
nodes and links. In contrast, DEFO requires 3 minutes for
optimizing networks of several hundreds of nodes [7]. This
shows an important reduction in the execution cost of our
solution; particularly it represents a one-order-of-magnitude
improvement in the case of the largest network (SYNTH1000).

We note, though, that this improvement is achieved at the
expense of exchanging additional GNN messages between
nodes (MPNN). We show in Table I the MPNN communica-
tion cost in terms of the average link overhead resulting from
such extra messages. As expected, the cost is quite similar in
all topologies, as the messaging overhead of our distributed
protocol is directly proportional to the average node degree
(i.e., number of neighbors) of the network, and computations
are distributed among all nodes. In particular, we can see
that the average link overhead only involves a bandwidth
of few MB/s per link independently of its capacity, which
can reasonably have a negligible impact in today’s real-world
networks with 10G/40G (or even more) interfaces.

VI. RELATED WORK

Network optimization is a well-known and established
topic whose fundamental goal is to operate networks ef-
ficiently. Most of the work in the literature uses classical



methods to optimize the network state (e.g., ILP). During
the last decade a plethora of algorithms have been pro-
posed, exploring a wide spectrum of techniques and network
abstractions [7], [21]-[23].

Some works have previously attempted to apply DRL [11],
[12], [47] or MARL [14], [18] to TE. However, they were
unable to report a performance comparable to the state of the
art, as they were compared to simpler routing schemes, such
as SP routing (e.g., [12], [18], [48]), SP+ECMP (e.g., [14]),
Load Balancing (e.g., [12], [47]) or oblivious routing (e.g.,
[11]). Our work is the first to be benchmarked against a state-
of-the-art optimizer —i.e., DEFO [7]- and to provide enough
evidence to address the open question posed in this paper.

Moreover, most of the current state-of-the-art (MA)RL-
based TE solutions [11], [12], [18] suffer from another limita-
tion: they fail to generalize to unseen scenarios (e.g., different
network topologies) as the implemented traditional neural
networks (e.g., fully connected, convolutional) are not well-
suited to learn and generalize over data that is inherently
structured as graphs. One exception is the work of [14], a
different MARL approach that addresses an inter-region TE
network scenario.

GNNs [16], [49], and in particular MPNNSs [37], precisely
emerged as specialized methods for dealing with graph-
structured data; for the first time, there was an Al-based
technology able to provide with topology-aware systems. In
fact, GNNs have recently attracted a larger interest in the
computer networks field for addressing the aforementioned
generalization limitations. The work from [43] proposed the
use of GNNs to predict network performance metrics (e.g.,
average delay). Authors of [47] proposed a novel architecture
for routing optimization in Optical Transport Networks that
embeds a GNN into a centralized, single-agent RL setting that
is compared against Load Balancing routing.

Arguably, the closest work to this paper is [48], whose
premise is similar to ours: the generation of easily-scalable,
automated distributed protocols for intradomain TE. For doing
so, the authors of this work also make use of a GNN, but unlike
our unsupervised RL-based solution, their approach is limited
to learn already existing protocols (e.g., shortest path routing).
Particularly, they use a semi-supervised learning algorithm that
requires labeled data. In fact, there are very few works that
have combined GNN with a DRL framework [50], [51], and
they are theoretical proposals from the ML community that
do not apply to the field of networking.

VII. DISCUSSION & CONCLUDING REMARKS

This paper started asking an open question: Is ML ready for
Traffic Engineering Optimization? To answer it, we proposed a
novel distributed GNN-based MARL architecture —which rep-
resents the state-of-the-art in ML— and compared it against the
state-of-the-art in TE. From our qualitative and experimental
analysis, we derive the following conclusions:

Performance: ML can attain comparable performance to
the state-of-the-art in TE over unseen traffic and topologies.
While previous ML-based solutions for TE (see Section VI)

have shown significant improvements over basic routing meth-
ods —such as shortest path, SP+ECMP or load balancing— they
have not been compared yet to advanced TE solutions —like
DEFO [7]-. We present for the first time a ML-based system
that obtains similar performance —and even better in some
scenarios— to state-of-the-art TE optimizers.

Speed and Hardware: ML can obtain close-to-optimal
results much faster than the state-of-the-art in TE. While our
MARL+GNN solution can optimize a network in the scale of
seconds, DEFO operates in the range of few minutes. This
is mainly due to the fact that our distributed architecture
naturally parallelizes the global optimization process among
all network devices (i.e., routers). In contrast, DEFO and other
advanced TE optimizers [21]-[23] use a centralized approach
that cannot benefit from this. Moreover, since network devices
would need to run a GNN, our proposal could also profit from
the use of specialized Al chips. Substantial research efforts are
currently being devoted into designing custom GNN hardware
accelerators [52] that aim for 10x speed improvements over
current GPUs.

Refined Goals: Our results suggests that current ML tech-
nologies are becoming mature enough to deal with complex
networking scenarios. However, we acknowledge that Al-
based methods still lack the versatility of traditional TE
optimizers to face very different scenarios and/or several
objectives at the same time. As an example, state-of-the-art
TE optimizers can operate at the ingress-egress or even at flow
granularities, producing TE configurations that can optimize
the network resources while fulfilling SLA requirements for
specific connections. Our ongoing work is focused on the
design of objective-agnostic MARL agents that can handle
multiple, arbitrary TE goals using meta-learning methods.
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