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Abstract—Recent years have witnessed rapid adoption of low-
power Wireless Sensor-Actuator Networks (WSANs) in process
industries. To meet the critical demand for reliable and real-time
communication in harsh industrial environments, the industrial
WSAN standards, such as WirelessHART, ISA100, WIA-FA, and
6TiSCH, make a set of specific design choices, such as employing
the Time Slotted Channel Hopping (TSCH) technique. Such
design choices distinguish industrial WSANs from traditional
Wireless Sensor Networks (WSNs), which were designed for
best-effort services. Recently, there has been increasing interest
in developing new methods to enable autonomous transmission
scheduling for industrial WSANs that run TSCH and the Routing
Protocol for Low-Power and Lossy Networks (RPL). Our study
shows that the current approaches fail to consider the traffic
loads of different devices when assigning time slots and channels,
which significantly compromises network performance when
facing high data rates. In this paper, we introduce ATRIA, a
novel Autonomous Traffic-Aware transmission scheduling method
for industrial WSANs. The device that runs ATRIA can detect
its traffic load based on its local routing information and
then schedule its transmissions accordingly without the need
to exchange information with neighboring devices. Experimental
results show that ATRIA provides significantly higher end-to-
end network reliability and lower end-to-end latency without
introducing additional overhead compared with a state-of-the-
art baseline.

Index Terms—Industrial Wireless Sensor-Actuator Networks,
IEEE 802.15.4, Transmission Scheduling, TSCH, RPL

I. INTRODUCTION

Industrial Internet of Things (IoT), which underlies the
Fourth Industrial Revolution (or Industry 4.0) [1], promises
one of the largest potential economic effects of IoT – up
to $47 trillion in added value globally by 2025, according
to the McKinsey report on future disruptive technologies [2].
Industrial networks, the underlying support of industrial IoT,
typically connect sensors, actuators, and controllers in indus-
trial facilities, such as manufacturing plants, steel mills, oil re-
fineries, and infrastructures that implement complex processes.
Industrial applications pose unique challenges to networking
because of their critical demand for real-time and reliable
communication in harsh industrial environments. Failure to
achieve such performance can lead to production inefficiency,
safety threats, and financial loss. These demands have been
traditionally met by specifically chosen wired solutions, such
as HART [3]. However, wired networks are often costly to

deploy and maintain in industrial environments and difficult
to reconfigure to accommodate new requirements.

IEEE 802.15.4-based Wireless Sensor-Actuator Networks
(WSANs) appeal to industrial network designers because they
do not require wired infrastructures and can be manufactured
inexpensively. Battery-powered wireless modules easily and
inexpensively retrofit existing sensors, actuators, and con-
trollers in industrial facilities without the need to run cables
for communication and power. To meet the stringent real-time
and reliability requirements, the industrial WSAN standards,
such as WirelessHART [4], ISA100 [5], WIA-FA [6], and
6TiSCH [7], make a set of specific design choices, such
as employing the Time Slotted Channel Hopping (TSCH)
technique. Such design choices distinguish industrial WSANs
from traditional Wireless Sensor Networks (WSNs), which
were designed for best-effort services [8]. A large number
of WSANs that implement those standards have been de-
ployed all over the world. For instance, Emerson Process
Management, a leading WirelessHART network supplier, has
deployed more than 54,835 WirelessHART networks globally
and gathered 19.7 billion operating hours of experience [9].
A decade of real-world deployments has demonstrated the
feasibility of employing WSANs to achieve reliable low-power
wireless communication in industrial facilities.

Recently, WSANs that run TSCH and the Routing Protocol
for Low-Power and Lossy Networks (RPL) [10] have been
deployed for various applications [11], [12]. Meanwhile, there
has been increasing interest in developing new methods, which
enable autonomous transmission scheduling for industrial
WSANs. For instance, Duquennoy et al. introduced Orches-
tra [13], which allows each network device to generate its
transmission schedule based on its local routing information,
and Kim et al. developed ALICE [14], which overcomes
Orchestra’s limitations and enables the use of all available
physical channels in each cell1 by replacing Orchestra’s node-
based scheduling with link-based scheduling. To understand
the performance of those autonomous transmission scheduling
methods, we have performed a series of experimental studies
on the FIT IoT-LAB testbed [15]. Our studies show that
the current approaches fail to consider the traffic loads of
different devices when assigning cells, which significantly
compromises network performance when facing high data

1A cell denotes the combination of a time slot and a physical channel.978-1-6654-4131-5/21/$31.00 ©2021 IEEE



(a) Network topology. (b) F table.

(c) Example transmission schedule.

Fig. 1. Example transmission schedule for a network of five devices, which
run TSCH and operate on four channels. One slotframe consists of three slots.

rates. Therefore, the autonomous scheduling solutions must
calculate the traffic loads and assign cells without introducing
additional communication. To address such challenges, we de-
velop ATRIA, a novel Autonomous Traffic-Aware transmission
scheduling method for industrial WSANs. The device that
runs ATRIA can schedule its transmissions to meet its traffic
demand without exchanging information with its neighboring
devices. Specifically, each device in the network can detect
its traffic load based on its local routing information, select
the best-suited slotframe2 length based on the performance
requirements specified by the application, and then schedule
one or more cells based on its specific traffic load. We have
implemented ATRIA under Contiki [16] and evaluated its
performance using a network that consists of 50 devices on the
FIT IoT-LAB testbed. Experimental results show that ATRIA
provides higher end-to-end network reliability and lower end-
to-end latency without introducing additional overhead com-
pared with a state-of-the-art baseline.

The remainder of the paper is organized as follows. Sec-
tion II introduces the background of TSCH, RPL, and AL-
ICE. Section III presents our experimental study. Section IV
introduces our design of ATRIA. Section V presents our
experimental evaluation. Section VI reviews the related work.
Section VII concludes the paper.

II. BACKGROUND

In this section, we introduce the background of TSCH, RPL,
and ALICE.

A. TSCH

TSCH was amended into the IEEE 802.15.4e standard [17]
in 2012 as a mode to support industrial and embedded
applications with stringent performance requirements. TSCH
combines time-slotted medium access, multi-channel commu-
nication, and channel hopping to provide time-deterministic
packet deliveries and combat narrow-band interference and
multi-path fading. In a network that runs TSCH, time is
divided into slices of fixed length (time slots) that are grouped
in a slotframe. All devices are time synchronized using the

2A slotframe consists of a group of successive time slots, which repeats
over time.

beacons flooded across the network (e.g., Keep-Alive mes-
sages in WirelessHART) and share the notion of a slotframe
that repeats over time. Each time slot is long enough to
deliver a packet and an acknowledgment between a pair of
devices. In each time slot, a set of physical channels can
be used, resulting in a matrix-like combination as shown in
Figure 1(c). Each cell in Figure 1(c) is identified by its time
slot offset and channel offset coordinates. The time slot offset
of a cell indicates its position in a slotframe and the channel
offset is an index, which maps to one of available physical
channels. For a link that is defined as the pairwise assignment
of directional communication between two devices, channel
hopping is achieved by sending successive packets on different
channels in different time slots. A pair of devices identify their
communicating channel by computing the following function:

channel = F [(ASN + ChannelOffset)%LC ] (1)

where ASN is the absolute slot number, defined as the total
number of slots elapsed since the network started, and “%”
is the modulo operator. F is the lookup table that maps the
channel offsets to their corresponding channels, and LC is
the length of a sequence of available physical channels. In
a conventional network that runs TSCH, each device learns
the current ASN and the channels used in the network from
its neighbors upon joining the network and then uses such
information to compute the channel used in each cell.

Figure 1(b) shows an example with four pairs of channel
offsets (0, 1, 2, and 3) and channels (channel 20, channel 24,
channel 25, and channel 26). Figure 1(c) shows an example
transmission schedule, which allows device a in Figure 1(a)
to collect data from the rest of the devices every three time
slots. For example, device d and e are scheduled to use channel
24 (channel offset 1) and 26 (channel offset 3) to transmit a
packet in the first time slot, respectively, while device c and b
are scheduled to forward the data in the second and third time
slots. The transmission schedule is generated by the scheduling
algorithm, which runs on top of TSCH.

B. RPL

RPL was developed to support IPv6 and provide resource-
constrained devices with multi-hop routing. To address the
low-power constraint, RPL constructs a Destination-Oriented
Directed Acyclic Graph (DODAG) anchored at a root, typi-
cally a border router to external networks. In a DODAG, a
device computes its RANK (the logical distance to the root)
according to its Objective Function (OF). Minimum Rank with
Hysteresis Objective Function (MRHOF) [18] is one of the
commonly used OFs, which adopts the Expected Transmission
Count (ETX) metric [19] to compute RANK. The routing
information including RANK is exchanged by broadcasting
DODAG Information Object (DIO) messages. After receiving
DIO messages from neighbors, a device can update its RANK
and set or change its preferred parent device by sending
a Destination Advertisement Object (DAO) message to its
selected parent to reduce the logical distance to the router.
RPL provides Destination Advertisement Object Acknowl-



edgment (DAO-ACK) as an optional function to enable a
device to resend a DAO message to its parent if it does not
receive a DAO-ACK from its parent in case of transmission
failures. By broadcasting DODAG Information Solicitation
(DIS) messages, a device requests routing information from
its neighbors. By exchanging DIO and DAO messages, each
device sets up its downward and upward routes in the DODAG.
RPL supports two modes of operation: storing and non-storing.
In the storing mode, devices maintain routing tables for routes
locally in a distributed fashion. In the non-storing mode,
devices do not maintain the routing states locally.

C. ALICE

ALICE schedules transmissions for the networks that run
TSCH and RPL and defines three types of slotframes to deliver
time synchronization, routing, and application traffic [14]. En-
hanced Beacons (EBs) are broadcast by all devices in the time
synchronization slotframes and RPL messages are scheduled
in the routing slotframes. The unicast upward and downward
application traffic uses the application slotframes. When a
device is scheduled for multiple types of traffic in a time slot,
the device chooses a packet for transmission in this order: time
synchronization, routing, and application. The device that runs
ALICE can schedule its transmissions autonomously based
on its local routing information. Specifically, ALICE assigns
one cell for each directional link, uses all available channels,
and reschedules transmissions in every application slotframe.
Under ALICE, the slot offset T k

m,n of the cell assigned to
link m → n (from device m to device n) in the k-th unicast
slotframe (k = ASN/LS) is calculated as

T k
m,n = mod(Hash(αID(m) + ID(n) + k), LS) (2)

where Hash(x) is a HASH function used to randomize the
input value to reduce the conflict between different directional
links [20], the coefficient α is used to differentiate traffic
directions, e.g., link m → n and link n → m, k is used to
provide different input values in different slotframes to avoid
the same conflict from happening repeatedly in successive
slotframes, and LS denotes the length of the unicast slotframe.
Similarly, the channel offset Ck

m,n of this cell is calculated as

Ck
m,n = mod(Hash(αID(m)+ID(n)+k), LC−1)+1 (3)

where LC − 1 is used because ALICE reserves a physical
channel with offset 0 for the time synchronization slotframe
and the routing slotframe. To allocate a unique cell for each
directional link in a network that consists of N devices and
operates on M physical channels, ALICE suggests that the
slotframe length should be larger than (2N − 2)/(M − 1).

III. EXPERIMENTAL STUDY

We have performed a series of experimental studies to
understand the performance of ALICE when the network
faces different data rates. We select 50 M3 devices [21] from
the FIT IoT-LAB testbed [15] to form a mesh network and
run the ALICE implementation provided by Kim et al. [22].
Figure 2 plots the device deployment for our studies. All

Fig. 2. Testbed used for our studies. All 50 devices are deployed on the same
floor in an office building. One device serves as the border router (Root) and
the rest are end devices.

devices operate on four channels (by default in ALICE) and
send packets using the transmission power of -17dBm. We
set the routing slotframe length and the time synchronization
slotframe length to 19slots and 397slots, respectively.

A. ALICE’s Performance

We first examine the network performance when we in-
crease the data generation interval of each device from 2s
to 14s for both upward traffic and downward traffic, typical
data rates for industrial applications [23], [24], [25]. We set
the length of the unicast slotframe to 43slots (by default in
ALICE). Figure 3 plots the end-to-end Packet Delivery Ratio
(PDR), the end-to-end latency, and the radio duty cycle under
different traffic loads. As Figure 3(a) shows, the PDRs of
both upward and downward traffic are 100% when the data
generation interval is 11s or 14s. The PDRs drop to 82.2%
(upward) and 70.3% (downward), when the data generation
interval decreases to 8s. The PDRs further decrease to 36.4%
(upward) and 16.4% (downward) when a packet is generated
every 2s. These results show that ALICE performs well at
low data rates but cannot deliver all packets at high data
rates. As Figure 3(b) shows, the end-to-end latency increases
significantly when the data generation interval decreases. For
example, the latency of the upward traffic increases from
112ms to 1,251ms when the data interval decreases from 14s
to 2s. The duty cycle of the Root and the end devices also
increases when the traffic load increases, as Figure 3(c) shows.

We also investigate the causes of low reliability and long
latency when the network has to deliver data at high rates.
Figure 5 plots the Cumulative Distribution Function (CDF) of
the cell utilization for all devices when the slotframe length
is 43slots and the data generation interval is 2s. As Figure 5
shows, 62.0% of devices use only 21.5% of the cells that are
scheduled for upward traffic, while 20.0% of devices have
used 86% or more of their allocated cells. Similarly, 26.3%
of devices use only 21.5% of the cells that are scheduled for
downward traffic, while 42.1% of devices have used 86.0% or
more of their allocated cells. These results clearly show that
many devices with heavy traffic do not have enough cells for
packet transmission and retransmission, while the rest have
many unused ones. The reason behind that is ALICE fails to
consider the traffic demand of each device when scheduling
transmissions and assigns a single cell for every directional



(a) PDR. (b) Latency. (c) Duty Cycle.

Fig. 3. Performance when the network has different traffic loads.

(a) PDR. (b) Latency. (c) Duty cycle.

Fig. 4. Performance when the network uses different slotframe lengths.

Fig. 5. Cell utilization for upward and downward traffic.

link in each unicast slotframe. Some devices with high traffic
demand do not have enough cells to transmit their data, which
results in packet losses and high latency, while some devices
with light traffic waste many unused ones.

Observation 1: Scheduling transmissions without consider-
ing the traffic demand of each device leads to poor network
performance when the devices generate data at high rates.

B. Impact of Slotframe Length

The slotframe length is a configurable parameter in ALICE.
To study the impact of the slotframe length on network per-
formance, we vary the unicast slotframe length and repeat the
experiments five times. The data generation interval of all de-
vices is set to 2s for both upward traffic and downward traffic
in all experiments. Figure 4 plots the end-to-end PDR, the end-
to-end latency, and the radio duty cycle when the slotframe
lengths are 7slots, 11slots, 23slots, 31slots, and 43slots (the
five default values in ALICE), respectively. As Figure 4(a)
shows, the PDRs increase from 36.4% (upward) and 16.4%
(downward) to 70.8% (upward) and 54.6% (downward), when
the slotframe length decreases from 43slots to 11slots. This
is because ALICE provides more cells for each link in a fixed

time period when it uses a smaller slotframe. However, the
PDRs of both upward and downward traffic do not continue
to increase when the slotframe length further decreases. The
PDRs are 70.7% (upward) and 54.5% (downward) when the
slotframe length is 7slots. This is because the contention
for available time slots becomes so severe that many cell
allocation failures occur when the slotframe is too small.
Figure 4(b) and 4(c) plot the end-to-end latency and the radio
duty cycle when the network uses different slotframe lengths.
The latency of the upward traffic decreases from 1,251ms
to 438ms and the duty cycle of the Root increases sharply
from 9.19% to 24.69% when the slotframe length decreases
from 43slots to 7slots. The results show the tradeoffs between
latency and energy efficiency. The reliability and latency can
be improved to a certain degree by reducing the slotframe
length at the cost of increasing energy consumption.

Observation 2: Using a smaller slotframe can improve
network reliability and latency at the cost of increased energy
consumption. However, tuning the slotframe length cannot
always help the network achieve desirable performance.

IV. OUR DESIGN OF ATRIA

In this section, we first present an overview of ATRIA and
then introduce each of its modules in detail.

A. Overview

As Figure 6 shows, operating between RPL and TSCH,
ATRIA takes the routing information from RPL and the param-
eters specified by the application as inputs and generates the
transmission schedule for TSCH to execute at runtime. ATRIA
inherits the basic slotframe designs for time synchronization,
routing, and application traffic and the scheduling priority
from ALICE. To avoid introducing additional communication



Fig. 6. Overview of ATRIA.

overhead, ATRIA adopts the storing mode of RPL to make
use of the local routing information. Therefore, each device
that runs ATRIA can generate its transmission schedule and
allocate cells for each link based on the medium access control
(MAC) addresses stored in the local routing table. There is
no need to exchange information with neighbors. Our study
in Section III-A shows that scheduling transmissions without
considering the traffic demand of each link leads to poor
network performance when the devices generate data at high
rates. Therefore, ATRIA is designed to allocate one or more
cells to each link based on its specific traffic demand. To
achieve this goal, each device that runs ATRIA first detects the
traffic demand of each link, selects the best-suited slotframe
length, and then schedules one or more cells to each directional
link with three modules:

• Topology Identifier is responsible for learning the cur-
rent network topology from the local routing information.

• Slotframe Selector computes the best-suited slotframe
length based on the network topology learned by Topol-
ogy Identifier and the application specified parameters
including the data generation interval T of each device
and the maximum transmission attempts per packet NR.

• Cell Allocator leverages our dual-slotframe design to
allocate cells to each directional link.

We will present our designs of those three modules next.

B. Topology Identifier

Topology Identifier runs on each device and identifies
the number of descendant nodes it has and the number
of descendant nodes belonging to each of its child nodes.
Such information is used to select the slotframe length (See
Section IV-C) and allocate cells (See Section IV-D).

To collect such information, ATRIA enables the DAO-ACK
option in RPL where each device keeps updating its route list
that stores the routes to its descendants and the neighbor list
that stores its child nodes and their descendants3. Topology
Identifier detects the descendants of a device by checking its
route list and identifies the child nodes of a device and the
descendants belonging to each of its child nodes by scanning
the neighbor list. Topology Identifier is executed by each
device in every slotframe to address the routing list updates
resulted from network topology changes.

3The route list is implemented as routelist and the neighbor list is imple-
mented as nbr routes in Contiki 3.0.

C. Slotframe Selector

Our experimental study in Section III-B shows that the
selection of the slotframe length significantly affects network
performance. As Figure 4 shows, the network that uses a large
slotframe suffers poor reliability and large latency. Blindly
reducing the slotframe length not only cannot keep improving
the reliability but also significantly compromises the energy
efficiency. This is because the slot conflict, where a cell is
allocated to more than one link, happens frequently when the
slotframe length is too small. Slotframe Selector is designed
to identify the best-suited slotframe length that allows the net-
work to achieve high reliability with low energy consumption.

Slotframe Selector runs on each device and takes the
topology information provided by Topology Identifier and the
application specified parameters (the data generation interval
T of each device and the maximum transmission attempts
per packet NR) as inputs. For a network that consists of N
end devices and the Root, Slotframe Selector first detects the
traffic loads by calculating the number of packets, which are
scheduled to be transmitted in a specified time duration. We
define the length of such time duration as D and set it to the
least common multiple of all data generation intervals used
in the network. Please note that all devices in the network
derive the same value for D, because they use the same set
of data intervals as their input. The number of packets Pj that
are scheduled to be transmitted through a directional link j
during D is calculated as

Pj =

m+1∑
i=1

D

Ti
(4)

where Ti denotes the data generation interval of the device i
and m denotes the number of the end devices, each of which
is the descendant of the sender or the receiver of this link.
When m is equal to N − 1, the directional link is responsible
for forwarding the packets between the Root and the rest N−1
end devices. Under this extreme topology case, this directional
link j is expected to transmit the maximum number of packets
Pm
j during D, which is expressed as

Pm
j =

N∑
i=1

D

Ti
(5)

Meanwhile, the end device that forwards the traffic between
the Root and the N − 1 end devices is responsible for
transmitting the maximum number of packets during D. The
maximum traffic load of a device Pmax is

Pmax ' 2 ∗ (
N∑
i=1

D

Tu
i

+

N∑
i=1

D

T d
i

) (6)

where Tu
i denotes the interval of the upward data flow from

the device i to the Root, and T d
i denotes the interval of the

downward data flow from the Root to the device i.
For a given D, the maximum length of the slotframe is D/S

(S denoted as the duration of a time slot). If D/S is no less
than Pmax, the transmission is schedulable by ATRIA. For
a given slotframe length, the success rate of allocating cells
without introducing any slot conflict depends on the specific



Fig. 7. Example slot conflicts. A slotframe consists of 18 slots. The numbers
of cells scheduled for link c→ b, b→ c, e→ c, and c→ e are three, three,
one, and one, respectively.

cell allocation algorithm. While taking the success rate, D/S,
and NR into account, the following equation can be used to
compute the best-suited slotframe length:

LS = R×D/S ÷NR =
R ·D
NR · S

(7)

where R denotes the success rate of the chosen cell allocation
algorithm. We will introduce our cell allocation algorithm in
Section IV-D. Because all devices share the same R, D, NR,
and S, they select the same value for LS , which should be no
less than Pmax to provide enough cells even under the extreme
topology case. Then, Slotframe Selector decides the number
of cells scheduled for each link according to the number of
packets during D. For example, Pj cells are scheduled for the
directional link j in each slotframe to deliver Pj packets during
D. When the network topology changes, Slotframe Selector
only needs to adjust the number of scheduled cells according
to the updates of Topology Identifier.

D. Cell Allocator

The existing autonomous allocation methods such as ALICE
usually assign the slot offsets completely randomly by using
HASH functions. Such methods may introduce many slot
conflicts. Figure 7 shows example slot conflicts when using
ALICE to allocate one or more cells randomly for each link
of device c in the network plotted in Figure 1(a). We assume
that LS is 18. The numbers of cells scheduled for link c→ b,
b → c, e → c, and c → e are three, three, one, and one,
respectively. For the second cell scheduled for link c → b
and the first cell scheduled for link b → c, we assume that
the return values of the HASH operation are 185 and 77,
respectively. However, the modulo operation returns the same
remainder five for those different inputs when using 18 as the
modulus, leading to the conflict for the slot with the offset five.
We define such slot conflict between the links that connect
the same pair of devices as intra-link conflict. Link b → c
and e → c do not connect the same pair of devices and the
cells scheduled for them are assigned with the same slot offset
10. We define such slot conflict as inter-link conflict. The
abovementioned slot conflicts result in an allocation success
rate of 75.0%. Cell Allocator runs on each device in every
slotframe to enhance the success rate while allocating one or
more cells to each directional link.

Instead of allocating cells randomly, Cell Allocator first
intends to allocate the cells that are scheduled for the two
directional links between two devices, e.g., link a→ b and link
b→ a, sequentially in a slotframe. This process is designed to
eliminate the intra-link conflict by allocating the cells for the
same pair of links one after another. In addition, Cell Allocator

Fig. 8. Example slot allocations. A slotframe that consists of 18 slots is
divided into eight subslotframes. Seven cells distribute among eight subslot-
frames uniformly. Each cell is allocated to a slot in its subslotframe.

reduces the inter-link conflicts by employing a novel dual-
slotframe design and performing the following three steps:

1) Dividing slotframe: The slotframe is divided equally
into a number of subslotframes. The number (2Pm

j ) is
enough to provide each cell with a unique subslotframe;

2) Allocating subslotframes: The cells for the directional
link of upward data flows are distributed among the sub-
slotframes, with similar distances between each other.
Similarly, the cells for downward data flows are dis-
tributed among the remaining unoccupied subslotframes;

3) Allocating cells: A pair of random functions is used to
generate the slot offset and the channel offset of each
cell in its subslotframe.

We illustrate this process in Figure 8. We assume that
a network is composed of device a and b. According to
Slotframe Selector, LS is 18 and Pm

j is four. Four cells are
scheduled for link b→ a and three cells are scheduled for link
a→ b, resulting from the unbalanced traffic loads. As Figure 8
shows, the slotframe is first divided into eight subslotframes.
The length of six subslotframes is two slots, while the fourth
and eighth subslotframes include three slots because of the
remainder (Step 1). Then, seven cells scheduled for link b→ a
and a → b are sequentially allocated to the subslotframes
except the last one (Step 2). In Step 3, Cell Allocator assigns
the slot and channel offsets by revising Eq. 2 and Eq. 3.
Specifically, the slot offset T k,i

a,b of the i-th cell for the link
from device a to device b, in the j-th subslotframe of the k-th
slotframe since the network started is calculated as

T k,i
a,b = mod(Hash(αID(a) + ID(b) + k × i), Lj

SS) (8)

where the coefficient α4 is used to differentiate traffic direc-
tions, e.g., link a → b vs. link b → a. The product of k
and i is used to differentiate the inputs of the HASH function
in different slotframes to prevent the contention for the same
slot from happening repeatedly in successive slotframes. Lj

SS

denotes the length of the j-th subslotframe. Similarly, the
channel offset Ck,i

a,b is calculated as

Ck,i
a,b = mod(Hash(αID(a)+ID(b)+k×i), LC−1)+1 (9)

where LC is the length of the sequence of physical channels.
In the end, Cell Allocator maps the slot offset T k,i

a,b in the

4We set α to 256, the maximum value of the last byte of MAC address.



Fig. 9. Example cell allocations to four pairs of bidirectional links in
Figure 1(a). A slotframe that consists of 18 slots is divided into eight
subslotframes.

subslotframe to the slot offset in the unicast slotframe for
TSCH operations. Figure 9 plots example cell allocations for
the network plotted in Figure 1(a). We assume that LS is
18 and Pm

j is four. The numbers of cells scheduled for link
b → a, a → b, c → b, b → c, d → b, b → d, e → c,
and c → e are four, three, three, two, one, one, two, and
one, respectively. As Figure 9 shows, the cells scheduled for
the same pair of links are allocated uniformly, without any
intra-link conflict. Cell Allocator also significantly reduces the
inter-link conflicts, only one conflict in slot 16.

We now prove that using our dual-slotframe design can pro-
vide a device with more cells without slot conflict compared to
the random allocation methods. We start from a case where a
given device has a parent and a child node. We assume that x
cells are scheduled to the pair of links between the device and
its parent in a slotframe that consists of z slots. Meanwhile, y
cells are scheduled to the pair of links between the device and
its child. Let E(x, y, z) and R(x, y, z) denote the numbers of
allocated cells while executing Cell Allocator and the random
allocation method.

Proposition 1: For any x ∈ N+ and y ∈ N+ such that
x > y and x+ y < z, we have E(x, y, z) > R(x, y, z).

Proof: We prove this inequality by constructing the
expressions for E(x, y, z) and R(x, y, z) according to each
allocation algorithm and comparing them.

E(x, y, z)=

x items︷ ︸︸ ︷
1+...+1+

y items︷ ︸︸ ︷
z−x
z

+...+
z−x
z

=x+
(z−x)y
z

R(x, y, z)=1+
z−1
z

+...+(
z−1
z

)
x+y−1

=z(1−(z−1
z

)
x+y

)

To prove E(x, y, z)−R(x, y, z)> 0, it suffices to prove the
equality: (E(x, y, z)−R(x, y, z))zx+y−1 > 0. After expanding
(E(x, y, z)−R(x, y, z))zx+y−1 and merging similar items, we
have:
3(x2+y2−x−y)z−(x2+y2+2xy−3x−3y+2)(x+y)

6
zx+y−3

+
(
x+y
4

)
zx+y−4 −

(
x+y
5

)
zx+y−5...+

(
x+y
x+y

)
(−1)x+yz0

Because x, y ∈ N+ and x + y < z, it is easy to derive that
the coefficient of zx+y−3 is positive. Therefore, to prove the
above inequality, it suffices to prove the following inequality:(

x+y
4

)
zx+y−4 −

(
x+y
5

)
zx+y−5...+

(
x+y
x+y

)
(−1)x+yz0 > 0

We separate the following proof into two cases: (1) x + y is
odd and (2) x+ y is even.
Case 1: In this polynomial, each positive term is followed by
a negative term. After merging similar items in each pair of
terms, we observe that the absolute value of the former term

is always larger than that of the latter term. The sum of these
pair of terms is positive, we have E(x, y, z) > R(x, y, z).
Case 2: In this polynomial, each positive term is followed by
a negative term, except the last term, which is positive. It is
easy to derive that the sum of these terms is positive according
to Case 1. So we have E(x, y, z) > R(x, y, z). �

When a given device has one more child node and q cells
are scheduled for the pair of links between the device and
its second child, we construct the expressions for E(x, y, q, z)
and R(x, y, q, z) and compare them.

E(x, y, q, z)=x+
(z−x)y
z

+
(z2−zx−zy+xy)q

z2

R(x, y, q, z)=z(1−(z−1
z

)
x+y+q

)

After expanding and merging similar items by following the
similar process, we have E(x, y, q, z) > R(x, y, q, z). Simi-
larly, under the case where a device has a parent and N child
nodes, we construct the expressions for E(x1, x2 · · ·xN+1, z)
and R(x1, x2 · · ·xN+1, z) and compare them to prove that
our dual-slotframe design provides more cells without slot
conflict. We derive the success rate of allocating cells without
introducing slot conflict by comparing E(x1, x2 · · ·xN+1, z)
to the number of scheduled cells and use the success rate as
R in Eq. 7. After repeating the dual-slotframe design for each
device, Cell Allocator provides the network with more cells
without slot conflict.

V. EVALUATION

To validate the effectiveness of ATRIA in improving net-
work performance at high data rates, we perform a series
of experiments on the FIT IoT-LAB testbed [15]. We first
examine the performance of ATRIA when all devices generate
data at the same rate. We then evaluate the capability of
ATRIA to provide high network reliability when the devices
have different data rates. Finally, we vary the ratio of up-
ward traffic to downward traffic and study its impact on
network performance. We let one device serve as the Root
and configure 49 end devices to generate periodic upward
traffic. To study the data dissemination performance, we also
configure the Root to generate packets periodically (downward
traffic). Figure 2 plots the testbed deployment. To compare the
performance of ATRIA and ALICE, all devices operate on
four channels and send packets using the transmission power
of -17dBm (the default values in the ALICE implementation).
We also compare their performance against that of the optimal
scheduling method (Optimal) with the objective of maximizing
the end-to-end reliability. Please note that Optimal is based
on backward data analysis and cannot be implemented at
runtime. We set the slotframe lengths for routing and time
synchronization to 19slots and 397slots, respectively. Each
slot lasts 10ms.

A. Performance with A Single Data Generation Interval

In this set of experiments, we configure all devices to
generate data at the same rate and vary the data interval from
2s to 14s. We vary NR from 1 to 7. Leveraging Eq. 7, the



(a) End-to-end PDR averaged among 49 data
flows.

(b) End-to-end latency averaged among 49
data flows.

(c) Energy consumption averaged among 50
devices.

Fig. 10. Network performance when we vary the data generation interval from 2s to 14s. In each experiment, all devices generate data at the same rate.

(a) CDF of end-to-end PDR of data flows. (b) CDF of end-to-end latency of data flows. (c) CDF of energy consumption of devices.

Fig. 11. Network performance when the data generation interval is 5s.

devices that run ATRIA always select 200slots as the length.
We use the default length (43slots) for ALICE and 100slots
for Optimal.

Figure 10 plots the network performance when we vary the
data generation interval. As Figure 10(a) shows, the PDRs
of the upward and downward data flows are 100% when the
data generation interval is no less than 12s. As expected, all
methods perform well when the data is generated at low rates.
The PDRs of the upward and downward data flows under
ALICE decrease rapidly when the data rate increases. For
instance, the PDR of the upward traffic drops from 97.2%
to 74.6% and the PDR of the downward traffic drops from
94.9% to 54.9% when the data generation interval decreases
from 11s to 6s. As a comparison, both ATRIA and Optimal
provide 100% PDR at those rates. When we further reduce
the data generation interval to 4s, the PDRs provided by
ATRIA are 94.0% (upward) and 82.1% (downward), while
the PDRs provided by ALICE are 57.7% (upward) and 32.5%
(downward). The PDRs under Optimal are 100%, because it
can always allocate enough cells for transmission resulting
from the backward data analysis. The results clearly show
the effectiveness of ATRIA in enhancing network reliability at
high data rates by allocating cells based on the traffic demands.

Figure 10(b) plots the averaged end-to-end latency. All
methods provide low latency (around 130ms) when the data
generation interval is no less than 12s. As the data rate in-
creases, ATRIA and Optimal outperform ALICE. For example,
when the data interval decreases from 11s to 6s, the latency
of the upward data flows under ATRIA and Optimal increases
slightly from 157ms to 207ms and from 114ms to 130ms,
respectively, while the one under ALICE increases sharply

from 292ms to 693ms. When the data interval is less than
5s, both ATRIA and ALICE suffer high latency. The results
demonstrate the effectiveness of ATRIA in keeping the latency
low at high data rates.

Figure 10(c) plots energy consumption5 averaged among
all 50 devices. As Figure 10(c) shows, the averaged energy
consumption under ATRIA is consistently the lowest. For
instance, when the data interval decreases from 14s to 2s,
the energy consumption under ATRIA increases from 10.2J
to 11.2J , while the one under ALICE increases from 10.7J
to 11.6J . This is because all devices that run ATRIA allocate
cells based on their specific traffic loads and wake up accord-
ingly, resulting in lower energy consumption. The devices that
run Optimal consume more energy, because Optimal schedules
more cells to ensure high reliability.

Figure 11 provides a detailed look at the network perfor-
mance when the data generation interval is 5s. Figure 11(a)
plots the CDF of the end-to-end PDR of each data flow. When
the devices run ATRIA, 45.0% of the data flows achieve 100%
PDR. The median and minimum PDRs are 98.9% and 94.4%,
respectively. As a comparison, the maximum, median, and
minimum PDRs under ALICE are 76.7%, 42.0%, and 24.0%,
respectively. Figure 11(b) plots the CDF of the end-to-end
latency of each data flow. Under ATRIA, the minimum, upper
quartile, and maximum latency values are 124ms, 455ms, and
645ms, respectively. As a comparison, when the devices run
ALICE, the minimum, upper quartile, and maximum latency
values are 37ms, 1372ms, and 1548ms, respectively. The
results clearly show that ATRIA can enhance the reliability

5Energy consumption is calculated based on the measured duty cycles and
the M3 device datasheet [21].



(a) CDF of end-to-end PDR of data flows. (b) CDF of end-to-end latency of data flows. (c) CDF of energy consumption of devices.

Fig. 12. Network performance when the devices generate data at multiple rates.

(a) CDF of end-to-end PDR of data flows. (b) CDF of end-to-end latency of data flows. (c) CDF of energy consumption of devices.

Fig. 13. Network performance when upward traffic and downward traffic are under different data rates.

and reduce the latency by scheduling cells based on the traffic
demands. As Figure 11(c) shows, ATRIA and ALICE provide
comparable performance on energy consumption. The energy
consumption varies from 9.2J to 21.6J under ATRIA, while
it ranges from 10.0J to 16.4J under ALICE. The devices with
different traffic demands are scheduled to use different num-
bers of cells in each slotframe, leading to larger variations on
energy consumption among devices under ATRIA. The slight
increases in energy consumption variations are in exchange
for a proportionally much-larger enhancement in reliability
and reduction in latency. As Figure 10 and Figure 11 show,
compared to ALICE, ATRIA provides significantly higher
reliability and lower latency without introducing additional
energy overhead at high data rates, while it consumes less
energy to achieve comparable performance on the network
reliability and latency at low data rates.

B. Performance with Multiple Data Generation Intervals

In this set of experiments, we evaluate the capability of
ATRIA to provide high network reliability when the devices
have different data rates, leading to more unbalanced traffic.
We configure 15 devices to generate a packet every 3s and
let 15 devices generate a packet every 6s. The rest of the
devices generate data with an interval of 12s. Figure 12(a)
plots the CDF of the end-to-end PDR of each data flow.
The performance provided by ATRIA is close to Optimal’s.
When the devices run ATRIA, the minimum PDR is 94.8%,
while the maximum, median, and minimum PDRs under
ALICE are 71.7%, 49.2%, and 15.0%, respectively. The results
show the benefit of providing more cells to those devices
with heavier traffic loads. Figure 12(b) plots the CDF of
the end-to-end latency of each data flow. When the devices
run ATRIA, the minimum, median, and maximum latency

values are 93ms, 311ms, and 584ms, respectively. Under
ALICE, the minimum, median, and maximum latency values
are 32ms, 253ms, and 1,875ms, respectively. Many devices
that generate data with small intervals do not have enough cells
to deliver their data, resulting in the long tail under ALICE. As
a comparison, those values under Optimal are 62ms, 137ms,
and 189ms, respectively. Figure 12(c) plots the CDF of energy
consumption. As Figure 12(c) shows, 88.0% of the devices
have the lowest energy consumption when they run ATRIA.
The minimum, median, and maximum values under ATRIA
are 9.5J , 9.7J , and 21.2J , respectively. As a comparison,
those values are 10.0J , 10.2J , and 16.8J , respectively, when
they run ALICE. The devices consume more energy to allocate
more cells to provide higher reliability under Optimal. By
observing the results, we can conclude that ATRIA can better
handle packet deliveries across the network when the devices
generate data at different rates.

C. Impact of Traffic Patterns

In this set of experiments, we create unbalanced traffic loads
by varying the ratio of the upward traffic to the downward
traffic and study its impact on network performance. We
first create a network that mainly collects data by setting
the data generation intervals for the upward and downward
traffic to 4s and 8s. We then create a network that mainly
disseminates data by setting data intervals for the upward
and downward traffic to 8s and 4s. Leveraging Eq. 7, the
devices that run ATRIA set the slotframe length to 300slots.
Figure 13(a) plots the CDF of the end-to-end PDR of each
data flow under different traffic ratios. When the network
mainly collects data, ATRIA provides the performance close
to Optimal’s. The minimum PDR is 95.0% and 72% of the
data flows achieve 100% PDR. As a comparison, while the



devices run ALICE, the maximum, median, and minimum
PDRs are 98.0%, 58.7%, and 26.2%, respectively. When
the network mainly disseminates data, ATRIA also performs
better than ALICE. These results demonstrate the benefit of
scheduling cells based on the traffic loads. Figure 13(b) plots
the CDF of the end-to-end latency of each data flow. When the
network runs mainly to disseminate data, it takes more time
to deliver packets under ALICE. For example, the minimum,
median, and maximum values under ALICE are 42ms, 319ms,
and 2,070ms, respectively. As a comparison, the minimum,
median, and maximum values are 63ms, 216ms, and 552ms,
respectively, when the devices run ATRIA. When the network
mainly collects data, we observe similar results. Figure 13(c)
presents the CDF of energy consumption. When the network
mainly disseminates data, ATRIA and ALICE provide com-
parable performance on energy efficiency. For example, the
minimum, median, and maximum energy consumption values
under ATRIA are 9.5J , 9.7J , and 21.4J , while those values
under ALICE are 10.0J , 10.2J , and 16.8J , respectively. As a
comparison, the devices consume more energy when allocating
more cells under Optimal to achieve 100% PDR. We observe
similar results when the network runs mainly to collect data. In
summary, ATRIA provides higher reliability and lower latency
without additional energy overhead, when upward traffic and
downward traffic are under different data rates.

VI. RELATED WORK

Traffic-aware scheduling for Time Division Multiple Ac-
cess (TDMA) based networks has been studied in the lit-
erature [26]. For example, Wang et al. proposed to use a
general weighted link coloring model to estimate the traffic
and schedule transmissions accordingly [27] and Gobriel et
al. proposed to enable slot stealing and sleeping to adjust the
slot assignments when facing different traffic loads [28]. Un-
fortunately, the existing solutions developed for TDMA based
networks are not directly applicable to the TSCH networks,
because they neither consider multi-channel communication
nor support channel hopping.

In recent years, there has been increasing interest in de-
veloping new transmission scheduling solutions for TSCH
networks. Many centralized scheduling algorithms have been
developed in the literature. For instance, Jin et al. proposed
a method that enables sequential multi-hop scheduling and
allocates more resources to the vulnerable links [29] and
Palattella et al. proposed to allocate the minimum number
of needed cells to each device based on its traffic [30].
The centralized scheduling algorithm simplifies network man-
agement at the cost of poor network scalability. Significant
efforts have been made to develop decentralized scheduling
algorithms to enhance network scalability. For example, Tinka
et al. introduced a distributed scheduling algorithm that lets
all devices continuously advertise their presences and allows
neighbors to discover and contact one another [31]. Palattella
et al. presented an algorithm that dynamically matches the
scheduled bandwidth between pairs of devices to their actual
traffic loads [32]. Those decentralized scheduling methods

require neighboring devices to exchange information at run-
time. More recently, autonomous scheduling methods have
been proposed for TSCH networks to eliminate the negotiation
overhead between neighbors [33], [34], [35], [36], [37]. For
example, Duquennoy et al. developed Orchestra [13], which
allows each device to generate its transmission schedule
based on the local routing information. Kim et al. developed
ALICE [14], which allocates a unique cell to each link and
uses all available channels for communication. Unfortunately,
the existing autonomous methods fail to consider the traffic
loads of different devices, resulting in compromised network
performance at high data rates. There exist some traffic-
aware scheduling solutions recently developed for TSCH
networks. For example, Jeong et al. developed TESLA [38],
which enables devices to dynamically self-adjust the slot-
frame length based on the traffic by exchanging information.
Jung et al. proposed a parameterized algorithm that works
adaptively to traffic intensity, slotframe length, and reliability
requirements [39]. However, the existing traffic-aware meth-
ods depend on exchanging information between neighbors
and introduce communication overhead. Although e-TSCH-
Orch [40] allows devices to dynamically add a number of
consecutive slots based on the number of queued packets,
without the need to exchange information, it may ruin the
Orchestra priority setting and result in severe slot conflicts.
In contrast to the existing traffic-aware solutions, ATRIA does
not require neighboring device to exchange information and
can significantly reduce slot conflicts.

The security aspects of industrial networks have been
studied recently and many enhancements have been devel-
oped [41], [42], [43], [44], [45], [46], [47], [48]. For example,
Rajakaruna et.al proposed to use a mobile edge server to
enable end-to-end secure connectivity [45] and Cheng et
al. identified the vulnerabilities of the TSCH channel hop-
ping [49].

VII. CONCLUSIONS

In this paper, we present ATRIA, a novel autonomous
traffic-aware transmission scheduling method for industrial
WSANs. The device that runs ATRIA can detect its traffic
load based on its local routing information and then schedule
its transmissions accordingly. We have implemented ATRIA
under Contiki and evaluated its performance using a network
that consists of 50 devices on the FIT IoT-LAB testbed.
Experimental results show that ATRIA provides significantly
higher end-to-end network reliability and lower end-to-end
latency without introducing additional overhead compared to
the existing method.
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