
Virtual Filter for Non-duplicate Sampling
Chaoyi Ma∗ Haibo Wang∗ Olufemi O Odegbile Shigang Chen

Department of Computer & Information Science & Engineering,
University of Florida, Gainesville, FL 32611, USA,

Email: {ch.ma, wanghaibo, oodegbile}@ufl.edu, sgchen@cise.ufl.edu

Abstract—Sampling is key to handling mismatch between the
line rate and the throughput of a network traffic measurement
module. Flow-spread measurement requires non-duplicate sam-
pling, which only samples the elements (carried in packet header
or payload) in each flow when they appear for the first time
and blocks them for subsequent appearances. The only prior
work for non-duplicate sampling incurs considerable overhead,
and has two practical limitations: It lacks a mechanism to
set an appropriate sampling probability under dynamic traffic
conditions, and it cannot efficiently handle multiple concurrent
sampling tasks. This paper proposes a virtual filter design for
non-duplicate sampling, which reduces the processing overhead
by about half and reduces the memory overhead by an order
of magnitude or more under some practical settings. It has a
mechanism to automatically adapt its sampling probability to the
traffic dynamics. It can be extended to solve a new problem called
non-duplicate distribution sampling, which samples packets based
on a probability distribution to support multiple concurrent
measurement tasks.

I. INTRODUCTION

Traffic measurement is a fundamental function that pro-
vides crucial information about communication activities and
network states for an array of core network functions such
as traffic engineering, resource provision, threat monitoring,
adaptive routing decision [1], [2], [3]. The widely used tools,
including NetFlow [4] and sFlow [5], employ sampling to
deal with mismatch between the packet forwarding line rate
and the throughput of the traffic measurement module at
a router. The reason for the rate mismatch is that packet
forwarding, as the key function of a router, is given top
priority in resource allocation (e.g., processing circuitry and
on-die memory), while the traffic measurement module, as a
supporting function, is of lower priority.

NetFlow and sFlow measure per-flow statistics such as flow
size, i.e., the number of packets in each flow. Many sketches
have also been proposed to measure flow size with better
memory efficiency, including NitroSketch [6], Elastic Sketch
[7], SketchLearn [8], SketchVisor [9], UnivMon [10] and many
others [11], [12], [13], [14]. When there is a mismatch between
the line rate and the throughput of a flow-size measurement
module, we simply sample each packet independently with a
certain probability p and only forward the sampled packets to
the measurement module. Sampling can be easily implemented
by taking a random number r from a certain range [0, N), and

∗Co-first authors

a packet is sampled for further processing if r ≤ pN . This
approach is stateless, with negligible memory overhead.

Flow Spread and Non-duplicate Sampling: However,
more sophisticated traffic measurement will require sampling
to be done differently. Consider the problem of measuring the
flow spread, which is the number of distinct elements in each
flow [15], [16], [17], [18], [19], [20], where elements may
be chosen from the packet-header fields or payload based on
application need. With the flow spread information, we can
identify super spreaders [21], [22], [23], [24], [25] or detect
malicious activities [26], [27], [28]. As an example, we may
define a flow as all packets to a certain destination address,
and define the element to be measured as the source address
of each packet. The spread of a flow is the number of distinct
sources that have contacted the same destination. A flow with
unusually large spread signals crowd flush or DDoS attack,
either of which requires immediate attention from the system
admin team.

The uniqueness of spread measurement is that each distinct
element in a flow is counted only once regardless of the
number of occurrences. That is, duplicates in the flow should
be removed. If there is a mismatch between the line rate
and the throughput of a flow-spread measurement module, we
need non-duplicate sampling, which is defined as follows: If a
packet carries an element that appears in the flow for the first
time, we sample it with a probability p; if a packet carries an
element that has appeared in the flow before, we ignore it.

Challenge and Prior Art: To implement non-duplicate
sampling, the key is to determine whether a received element
(carried in a received packet) is new or has been seen before.
A Bloom filter [29] is easy to come in mind, which records
all received elements in a bit array and checks whether a
newly received one has already been recorded. However, using
a Bloom filter is too expensive both in processing overhead
and in memory usage. Each received element requires mul-
tiple hash operations and takes multiple bits to record. This
overhead happens on the packet-forwarding path of the data
plane where it is highly desired to keep processing as simple
as possible and keep on-die memory footprint as small as
possible.

The only prior work on non-duplicate sampling for traffic
measurement is a recent two-phase protocol [30]. Much more
efficient than a Bloom filter, it requires two hashes and uses
one bit to record each received element. However, its design
does not have a mechanism to handle dynamic traffic condi-
tions in real time, and therefore its performance will degrade978-1-6654-4131-5/21/$31.00 ©2021 IEEE

as traffic deviates from what its setting expects. It cannot
efficiently handle multiple sampling tasks and has to deal with
them individually, causing overhead to multiply. Moveover, its
sampling performance has significant room for improvement:
First, two hashes per packet are more expensive than gener-
ating a random number in traditional packet sampling. The
reason is that hashes in the two-phase protocol are required to
have good randomness in their outputs and therefore such a
hash could be used for generating a random number. Second,
the memory overhead of the two-phase protocol can be very
significant if there is a very large number of elements to be
recorded, as our experiments will show.

Contributions: First, this paper proposes a new virtual
filter algorithm that implements non-duplicate sampling with
one hash per packet and records only a fraction of the received
elements, with much smaller memory footprint than [30], es-
pecially when the sampling probability is small. We prove that
our algorithm correctly implements non-duplicate filtering.
We formally derive the optimal parameters that minimize the
memory requirement under any given sampling probability.
We also design a new mechanism for the virtual filter to
adapt its sampling probability automatically in real time under
dynamic traffic conditions.

Second, we extend the virtual filter algorithm to solve a new
problem that has not been investigated before: non-duplicate
distribution sampling, which performs non-duplicate sampling
on packets not based on a single probability but instead based
on a probability distribution defined by a number of probability
values. With the same processing overhead, distribution sam-
pling produces multiple output streams, each corresponding
to a different sampling probability, feeding to multiple traffic
measurement modules, some of which may be interested only
in large-spread flows (small sampling probabilities), while
other may be interested in broad-scoped measurement (large
sampling probabilities).

Third, we implement the new sampling algorithm and evalu-
ate it through trace-based experiments using real-world packet
streams. The experimental results show that the new algorithm
can operate at a line rate much higher than the prior two-
phase protocol, while using much smaller memory, oftentimes,
an order of magnitude smaller. We also perform a case
study of using non-duplicate sampling to support flow spread
measurement. It greatly improves the measurement throughput
and surprisingly also improves measurement accuracy even
when less memory is allocated.

II. PRELIMINARIES

A. Problem Statement

We make the problem statement based on a generic data
stream model for general applicability. A data stream is a
continuous sequence of data items. Each item x may appear
in the stream for an arbitrary number of times, resulting in
duplicates. We will show how to map packets to data items in
this model shortly.

The problem of non-duplicate sampling is defined as fol-
lows: Given a sampling probability p, for the next received

item x, if it is the first time that x shows up in the stream, we
output x with probability p; otherwise, we ignore it.

Any algorithm that solves the above problem will need a
data structure to remember the data items that have been seen.
Any data structure will have a limited capacity: the expected
number of distinct items that it can record is determined by
the amount of memory allocated. We define a sampling period
as the expected number n of distinct items that an algorithm
can process before its data structure is so saturated that it can
no longer ensure non-duplicate sampling. After a period, we
will have to start a new period and initialize the data structure.
Therefore, non-duplicate sampling is achieved for data stream
within each period.

Beside correctness, the performance of a non-duplicate
sampling algorithm will be judged by three metrics: (1) Given
a period n, it should use as little on-die memory as possible;
(2) given a memory allocation, it should work for a period as
long as possible; (3) its processing overhead per item should
be as little as possible, so as to support a line rate as large as
possible.

B. Spread Measurement

non-duplicate

sampling

packet

stream

processing

at line rate

sampled elements spread

measurement
(no duplicates)

processing at

reduced rate

Fig. 1: System Model
We will apply non-duplicate sampling on network traffic

measurement, as illustrated in Figure 1. A non-duplicate
sampling module processes the arrival packet stream at line
rate. Its output, which is a sub-stream of sampled packets, is
sent to a traffic measurement module for spread measurement
at a reduced rate that the module can handle.

We can model network traffic as a data stream. Each packet
is abstracted as a data item x = 〈f, e〉, where f is a flow label
and e is an element. We define a flow f as the set of packets
that carry the same flow label f , which may be TCP flow
identifier, source address (for per-source flow), destination
address (for per-destination flow), destination address/port (for
per-service flow), URL (for per-content flow considering http
traffic only), etc. We define an element e as a value or a
value combination from the packet headers or the payload.
Take a few examples: For per-source flows, we may measure
the number of distinct destination addresses in each flow,
which helps us track network reconnaissance activities, worm-
infected hosts, botnet communications and malicious scanners
[27], [28]. For per-destination flows, we may measure the
number of distinct source addresses in each flow, which helps
us track potential botnet-based denial-of-service or denial-
of-quality attacks, service hotspots, or congested network
activities [26], [31]. For per-URL flows, we may measure the
number of distinct source/port pairs, which shows the interest
in the content across the Internet.

We stress that, based on the generic data streaming model,
our non-duplicate sampling algorithm has broader applications

beyond the networking area. For example, consider an Internet
search engine and the stream of search requests (data items)
that it receives. We may use the new algorithm from this paper
to filter duplicate searches. In another example, consider an e-
commerce company and the web visits to its products. We may
use the algorithm to filter repeated visits of the same product
by the same user.

III. NON-DUPLICATE SAMPLING AND VIRTUAL FILTER

We begin with a naive approach based on Bloom filter and
then move to the existing two-phase protocol, which helps
motivate for our new solution.

A. Sampling with Bloom Filter

A Bloom filter is a bitmap B of m bits, with two operations.
• Recording: We record an item x by hashing x to d bit

indexes, Hi(x) ∈ [0,m), 0 ≤ i < d, and setting those bits to
ones, i.e., B[Hi(x)] = 1.
• Look-up: Given a data item x, we check whether the d

bits, B[Hi(x)], 0 ≤ i < d, are all ones. If so, we claim that x
is in the filter; otherwise, we claim that x is not in the filter.

Each time when we receive a data item x, we first look
up in B to see if it is already recorded. If so, we ignore x.
Otherwise, we record x in B and pass x through as output.
This approach makes sure that any data item can pass the filter
only once and there will be no duplicate in the items that have
passed through. However, a Bloom filter has false positives,
which means that some data items may not pass the filter
even for their first appearances. The probability Pfp of false
positive increases as we record more and more items in the
filter — essentially, the sampling probability, 1−Pfp, changes
over time. It does not enforce a given, constant sampling
probability. Moreover, a Bloom filter has other disadvantages:
(1) Each arrival data item requires d hashes and O(d) memory
accesses (read and write); (2) it takes d bits to record an item
for duplicate filtering.

B. Two-phase Protocol (TP)

Sun et al. proposed a two-phase protocol (TP) for non-
duplicate sampling [30]. It also uses a bitmap B of m bits but
records every received item x by setting a single bit, B[h(x)],
to one, where h(x) = H(x) mod m and H(x) is a uniform
hash function whose range is larger than m. More specifically,
each time when it receives a data item x, its first phase is
a traditional packet sampling of probability m

z p, where z is
the current number of zeros in the bitmap. The second phase
checks if B[h(x)] is one. If so, we ignore the item; otherwise,
we set B[h(x)] = 1 and pass x through the second phase. TP
outputs x if it passes both phases.

For any item x that appears for the first time, the probability
for it to be sampled in the first phase is m

z p, and the probability
to find B[h(x)] = 0 in the second phase is z

m . Therefore, the
probability for the item to pass through as output is m

z p×
z
m =

p. For any item x that appears for additional times, because
B[h(x)] = 1, those appearances will be ignored.

TP records each item by setting one bit. While this is more
memory-efficient than a Bloom filter, it will still take a large

amount of space over an extended sampling period. We may
look at this issue from a different angle: Suppose that we are
given a fixed memory allocation of m bits. One bit per item
allows a sampling period to contain at most m distinct items. If
a better sampling algorithm somehow only requires to record
a small percentage, say 10%, of all items that have been seen,
then the period can be enlarged 10 folds, containing up to 10m
distinct items, before the m-bit memory is exhausted. Such an
algorithm will be able to perform non-duplicate sampling for
a much larger data stream, for example, up to 10m distinct
items instead m items by TP in the above example.

Moreover, TP takes two hashes to process each data item,
one in each phase. If we can reduce that number to one, we
can potentially double the line rate that the sampling module
can maximally support.

TP lacks a mechanism to automatically adapt to the evolv-
ing traffic dynamics in real time, which is serious practical
limitation.

Finally TP does not consider non-duplicate distribution
sampling that operates with multiple sampling probabilities
at the same overhead, which our algorithm will consider later.

C. Virtual Filter (VF)

We now present virtual filter algorithm (VF) for non-
duplicate sampling which performs exactly one hash per data
item and records only a fraction of all data items in its memory.
The operation of our virtual filter algorithm is simple but we
stress that this is an advantage, as the sampling module that
processes packet stream at line rate cannot afford complicated
computations.
• Data Structure and Algorithm: The main data structure is
a virtual filter, which is a bitmap B of m′ bits, but only its
first m bits are real. We call B[0]...B[m− 1] the real part of
the filter and B[m]...B[m′ − 1] the virtual part of the filter.
Each time when we receive a data item x, we perform hash
h(x) = H(x) mod m′, where H(x) is a hash function whose
range is larger than m′. We do the following three steps:

Step 1: If h(x) ≥ m, it falls in the virtual part of the filter,
we ignore the data item, which does not cause any memory
overhead or any further processing overhead as recording does
not happen for this item. If h(x) < m, it falls in the real part
of the filter and we continue with the next step.

Step 2: If B[h(x)] is one, we do nothing further and the
item is blocked; otherwise, set B[h(x)] = 1 and move to the
next step.

Step 3: If h(x) < mm′p
z where z is the number of zeros

in the real part of the filter before x is recorded, we pass x
through as output; otherwise, we block the item.

Step 1 is designed to avoid having to record every item
received, so as to save memory space. Step 2 is to filter
duplicates. Its sampling rate however changes over time as the
bits in the filter are set to ones. Step 3 is designed to counter
the rate change in Step 2 so that the overall sampling rate
remains the same over time. We will show that sampling is
actually performed at all steps, though for different purposes.
The trick is to implement them with a single hash operation

under progressive conditional probabilities, which together
ensure non-duplicate sampling with memory and processing
efficiencies.

Step 1 performs sampling with probability m
m′ . Only when

item x is hashed to the first m bits in the real part of the
filter, it passes onto Step 2. Otherwise, the item is ignored.
Therefore, a fraction m′−m

m′ of all distinct items will never be
recorded, which saves memory, in contrast to TP’s recording
of all items.

Under the condition that item x passes the previous step,
Step 2 checks the bit that x is hashed to. Even if x appears
for the first time, it may be hashed to a bit that is already
set to one by another item. In this case, x will be blocked.
Only when the bit is zero, x passes Step 2 and the bit is set to
one. Therefore, Step 2 does sampling too, with a probability
that decreases over time as fewer and fewer bits in the real
part remain zeros. The purpose of Step 2 is to filter duplicates
since subsequent appearances of x will all be hashed to the
same bit that is one. Its sampling with decreasing probability
is a by-product of the filtering design. We need to deal with
it in Step 3.

Under the condition that item x passes the first two steps,
Step 3 performs another sampling, with a probability that
increases over time to compensate the sampling probability
that decreases over time in Step 2. Because h(x) < m

after passing Step 2, this probability is
mm′p

z

m = m′p
z , which

increases over time because z decreases over time as more
bits in the real part are set to ones by new arrival items. The
choice of such a probability is by design to make sure that
when we combine the three samplings over the three steps,
the final sampling probability is exactly p for any item when
it is received for the first time. This will be proved shortly.

We know that z ≤ m because the number of zeros in the
real part cannot be more than the number of bits there. The
value of z starts at m and decreases as bits in the real part
are set to ones, which in turn causes the bound mm′p

z in Step
3 increases. Since h(x) < m after passing Step 1, for Step
3 to perform sampling, the bound should satisfy mm′p

z < m.
The current sampling period will terminate when mm′p

z = m,
i.e., z = m′p. This termination condition is needed for the
correctness of our sampling algorithm and for the proof of the
theorems (to be given). Because z ≤ m, it implies a constraint
that m ≥ m′p when we set the optimal values of m and m′.
The pseudo-code of the algorithm is given in Alg. 1.
• Example: Consider a data stream in Fig. 2, whose first 10
distinct data items are x1 through x10 with x2 appearing twice.
The virtual filter consists of m bits in its real part and m′ −
m bits in its virtual part. Suppose p = 0.1. We set m

m′ =
1
pe ≈ 3.6, which is optimal as our analytical results will show
shortly. That means the size of the virtual part is almost 2.6
times that of the real part. As items are hashed to the bits in
the filter uniformly at random in Step 1, about 28% of them
are hashed to the real part and 78% to the virtual part. In this
example, suppose that x2, x5 and x6 are hashed to the real
part and other items are hashed to the virtual part. Below we

Algorithm 1 Non-duplicate sampling using VF with proba-
bility p

1: Input: sampling probability p, number of distinct items
tend to process in a period: n, data stream

2: Action: perform non-duplicate sampling
3: // setting m,m′ according to Theorem 2
4: if p < 1

e then
5: m = npe,m′ = n
6: else
7: m = − n

ln p ,m
′ = − n

ln p
8: create a bitmap B of m bits, set z = m
9: for each data item x do

10: i = h(x) = H(x) mod m′

11: if i < m then
12: if B[i] = 0 then
13: B[i] = 1

14: if i < mm′p
z then

15: x is sampled
16: z = z − 1
17: if z ≤ m′p then
18: break //end the period

x1

0 0 1

x2 x3 x4 x5 x6 x7 x8 x9 x10 x2

m m’

1 10VF

Real Part Virtual Part

Fig. 2: Among the items of the data stream, x2, x5 and x6 are
hashed to the real part of the filter. Other items are hashed to
the virtual part and thus blocked. The second appearance of
x2 is blocked by Step 2 because the bit it hashes to has been
set to one by the first appearance of x2. The condition in Step
3 means that only some of the items hashed to the real part
can pass this step.

walk through the example, item by item.
When x1 arrives, it is hashed in Step 1 to the virtual part

and is thus ignored without incurring further overhead. When
x2 arrives for the first time, it is hashed in Step 1 to a bit in the
real part. The bit is set in Step 2 from zero to one. Suppose it
passes the condition in Step 3. Then it passes the whole filter.
When x3 arrives, it is hashed in Step 1 to the virtual part.

When x2 arrives for the second time, it is hashed in Step 1
to the same bit that it was hashed to before. That bit is already
one, and thus the item is blocked.

For the rest of the stream, item x4 is hashed to the virtual
part; x5 and x6 are hashed to the real part, setting their bits to
ones but failing the condition in Step 3 to pass the filter; items
x7 through x10 are hashed to the virtual part. In the end, only
x2 passes the filter when it appears for the first time.
• Correctness Proof, Setting Optimal Parameter, and
Performance Comparison: For correctness, any data item
will pass the filter with probability p at its first appearance
and will be blocked for subsequent appearances, which is
proved in Theorem 1. For optimal parameter setting, given

the length of a sampling period (which is specified as the
expected number n of distinct items in the period), we show
what the minimum memory m′ is and how to set the value
of m in Theorem 2. Given an allocated memory m, we show
that what the maximum sampling period will be in Theorem
3. The issue of setting the sampling probability under dynamic
traffic conditions will be addressed later in Section III-D. For
performance, VF only requires one hash operation to process
each data item. The average number of memory accesses made
for each data item includes m

m′ reads and m
m′ writes, which

are both smaller than one as many items are hashed to the
virtual part of the filter and do not incur any actual memory
access. We compare VF with TP in Corollaries 1 and 2, which
show that VF will never perform worse than TP. It performs
better than the latter when p ≤ 1

e , and the gap increases
when p decreases. Our numerical analysis demonstrates very
significant improvement when p is small.

Theorem 1: Any data item passes the filter with probability
p at its first appearance. It is blocked for further appearances.

Proof: For any item x that appears for the first time, the
probability for it to move through Step 1 to Step 2 is m

m′ .
The probability for it to move through Step 2 to Step 3 is
z
m . For Step 3, because we already know that h(x) < m as

it passes Step 1, the probability to pass Step 3 is
mm′p

z

m =
m′p
z . Hence, the probability for x to pass through the filter is
m
m′ ×

z
m ×

m′p
z = p. For any item x that appears for additional

times, it will be blocked in the second step as B[h(x)] = 1.
Therefore, all those appearances will not pass the filter.

Theorem 2: Let n be the expected number of distinct
items to be processed in each sampling period. The optimal
parameter setting of VF is

m′ =

{
n, p < 1

e
− n

ln p ,
1
e ≤ p < 1

m =

{
npe, p < 1

e
− n

ln p ,
1
e ≤ p < 1

(1)

which minimizes the size m for the real part of the filter, under
a given non-duplicate sampling probability p.

Proof: Among the n distinct data items, the expected
number of items recorded in the real part is n m

m′ , when
the number of zeros in the real part of bitmap is z. Ac-
cording to [17], the expected number of items recorded in
the bitmap is −m ln z

m , under the assumption that n and
m are sufficiently large and n/m is close to an arbitrary
constant. In this paper, n and m satisfy this assumption
as the number of distinct items n and the number of bits
m are usually very large and n/m is a constant by (1).
According to Alg. 1, a sampling period ends when z = m′p.
At that time, the expected number of items recoded in the
bitmap should not be less than n m

m′ . Therefore, we have
n m
m′ ≤ −m ln m′p

m ⇒ ln m′p
m ≤ − n

m′ ⇒ m ≥ m′pe
n
m′ .

The minimum value of m is achieved when m = m′pe
n
m′ .

Taking the first-order derivative on the right side, we have
dm
dm′ =

dm′pe
n
m′

dm′ = pe
n
m′ − np

m′ e
n
m′ = e

n
m′ p(1− n

m′)
Setting dm

dm′ = 0, we have m′ = n. Besides, when m′ < n,
dm
dm′ < 0; when m′ > n, dm

dm′ > 0. Therefore, the minimum

value of m, is npe which achieves when m′ = n. However,
since m ≤ m′, this parameter setting is valid only when p ≤ 1

e .
For p > 1

e , we always have m′ > n from (1) and dm
dm′ >

0, which means the optimal setting is m′ = m. Under this
condition, we have m′ = m = m′pe

n
m′ ⇒ 1 = pe

n
m′ ⇒

m′ = −n/ ln p In this case, we have m′ = − n
ln p .

Let Mv be the minimum number of bits required by VF to
perform non-duplicate sampling. Note that Mv is the size of
the real part of the virtual bitmap used by VF. Let Mt be the
minimum number of bits required by TP, which is the size of
the bitmap used in TP. The following corollary shows that Mv

is upper-bounded by Mt. More detailed analysis shows that
Mv is much smaller than Mt when the sampling probability
p is small.

Corollary 1: VF requires no more memory than TP, i.e.,
Mv ≤Mt.

Proof: According to [30], the minimum size of the
bitmap for the two-phase protocol is Mt = −n/ln p, for any
non-duplicate sampling probability p. From Theorem 2, the
minimum size of the real part in the bitmap of VF is

Mv =

{
npe, p < 1

e
− n

ln p ,
1
e ≤ p < 1

(2)

Comparing Mt and Mv , we have Mv ≤Mt.
Note that when p ≥ 1

e , VF takes the same memory as TP
does, i.e., Mv = Mt. When p < 1

e , let’s consider their ratio
α =Mv/Mt =

npe
− n

ln p
= −pe ln p. By computing its first-order

derivative with respect to p, we have dα
dp = −e(ln p+1) > 0.

When p = 1
e , the derivative is zero and α reaches its

maximum value 1. When p < 1
e , the derivative is positive and

we must have α < 1, i.e., Mv < Mt. We plot α with respect
to p in Figure 3, which suggests that VF consumes much
less bits than TP, especially when p is small. For example,
when p = 0.01, α = 0.12, which means that TP’s memory
requirement is 8.3 times VF’s requirement for the same data
stream. (The value of β in the figure is related to the length
of the sampling period, which will be discussed shortly.)

Theorem 3: Given a non-duplicate sampling probability p
and a memory allocation of m bits, the expected number of
distinct data items that can be recorded in VF before starting
the next sampling period is

Nv =

{ m
pe , p < 1

e

−m ln p, 1
e ≤ p < 1

(3)

The proof is trivial and thus omitted. It can be derived easily
from (1).

Corollary 2: Let p be the non-duplicate sampling probabil-
ity, m be the size of memory allocation, Nv be the expected
number of distinct data items that can be recorded by VF in
a sampling period, and Nt be the expected number of distinct
items that can be recorded by TP in a sampling period. It holds
true that Nv ≥ Nt.

Proof: For the two-phase protocol [30], Nt = −m ln p.
Comparing it with (3), we can find that for p ≥ 1

e , Nv = Nt.
As for p < 1

e , let β = Nv

Nt
, we have β = − 1

ep ln p . Computing

(a) p ∈ (0, 1/e] (b) p ∈ (0, 0.05]

Fig. 3: Value of α and β w.r.t. p in different ranges.

its first-order derivative of p, we have dβ
dp = ln p+1

ep2 ln2 p
. When

p < 1
e , dβ

dp < 0, and when p = 1
e , β = 1. Therefore, when

p < 1
e , we have Nv

Nt
= β > 1, which means Nv > Nt.

We plot β with respect to p in Figure 3. It shows that Nv is
larger than Nt, especially when p is very small. For example,
when p = 0.01, β = 0.065, which means the number Nv
of distinct items that VF can sample before resetting for the
next period is 15.4 times that of TP, given the same amount
of memory allocation.

D. Sampling Probability Adaptation

How do we determine the value of the sampling prob-
ability p? That will be application-dependent. We provide
a mechanism and explain it through a network example as
shown in Figure 1, where an arrival packet stream is sampled
to avoid overrunning the processing capacity of the spread
measurement module, where a data item is extracted from each
packet — the item may be a packet header field, a combination
of several fields or even data from packet payload. Suppose we
set an initial sampling probability empirically. Due to traffic
dynamics, the rate of sampled items that go into the module
may evolve over time as the arrival packet rate changes.

First, consider the case where the sampling probability
becomes too high. The consequence is that too many items are
sampled, beyond what the measurement module can process
in time. To deal with transient overloading, we place sampled
items in a queue, which will be reduced or even emptied when
the overloading condition eases. For persistent overloading,
however, the queue length will keep increasing. When it passes
a threshold, we will need to reduce the sampling probability
to prevent overflow of the queue.

The design of VF can be modified to support real-time
decrease of sampling probability by always setting m and m′

to the powers of 2. With Theorem 2, we choose the expected
sampling period n to a power of 2, which makes m a power
of 2, assuming p < 1

e . Even for p ≥ 1
e , we can round m

down to the closest power of 2. Similarly, we round m′ up to
the closest power of 2. Such sub-optimal values of m and m′

can in fact support a larger period than n. While it requires
more bits (m) than the minimum specified in Theorem 2, it
can now support dynamic decrease of sampling probability p
as follows: Suppose m′ = 2l1 and m = 2l2 with l1 ≥ l2. If
we want to reduce the sampling probability from p to p

2 , we
simply change m′ = 2l1+1 and change the condition in Step 3
to h(x) < mm′p

2z . The probabilities of passing Steps 1, 2 and

3 are m
m′ ,

z
m and

mm′p
2z

m , respectively, and their product is p
2 ,

which is sampling probability of the whole filter. The reason
for m′ and m to be powers of 2 is to ensure duplicate filtering
upon change in the sampling probability: Suppose that item x
first appears before decrease of the sampling probability. Its
bit index, h(x) = H(x) mod m′, is simply the last l1 bits of
H(x). There are two cases:

1) If h(x) is in the virtual part, h(x) > m and item x is
filtered. Now consider a subsequent appearance of x after
decrease of the sampling probability, i.e., l1 is increased
by one, which adds a leading bit to h(x). Thus, we still
have h(x) > m. Item x remains filtered.

2) If h(x) is in the real part, its first l1 − l2 bits must be
zeros. For example, h(x) = 0001011 with l1 = 7 and
l2 = 4. Now consider a subsequent appearance of x after
decrease of the sampling probability, i.e., l1 is increased
by one. The increased bit may be 0 or 1. Following the
above example, h(x) is now 0001011 or 1001011. If h(x)
is 0001011, the index is in the real part and we know
that B[1011] is already set to one earlier due to the first
appearance of x. If h(x) is 1001011, the index is in the
virtual part. In both cases, this subsequent appearance of
x will be filtered out.

If cutting p by half does not stop the growth of the queue,
the above process of reducing the sampling probability is
repeated.

Second, consider the case where the sampling probability
becomes too small, which is signalled when the queue to the
measurement module remains empty. Unlike the previous case
of queue overflow (which needs to be handled immediately),
lower sampling rate does not cause any correctness problem
but may affect the measurement accuracy. VF may wait until
the next sampling period to increase the sampling probability.

In practice, for quick convergence to an appropriate sam-
pling probability, we can begin with a relatively high value
and decrease it in real time towards a value that does not
overrun the measurement module. After that, VF will adapt
the sampling probability to the arrival traffic dynamics based
on the methods described above.

E. Non-duplicate Distribution Sampling

We consider a new problem, non-duplicate distribution
sampling, which is defined as follows: Given a series of k
probabilities, pi, 1 ≤ i ≤ k, with

∑
i∈[1,k] pi ≤ 1, for the

next received item x, if it is the first time that x appears in
the stream, we let x pass the filter and output index i with
probability pi, 1 ≤ i ≤ k; if it is not the first time, we block
x. For example, if k = 2, p1 = 10% and p2 = 20%, at the first
appearance of item x, it has a probability of 10% to pass the
filter with index 1, a probability of 20% to pass the filter with
index 2, and a probability of 70% to be blocked. The non-
duplicate distribution problem has not been studied before.
Below we first give several applications for non-duplicate
distribution sampling.

Consider a traffic measurement system where multiple
measurement tasks are implemented. Some of them, such

as super spreader detection [21], [32], [25], [33], only care
about flows with large spreads, and we can use low sampling
probabilities to feed into these tasks so as to reduce overhead.
Other measurement tasks may need information about flows
of medium or small spreads for broader-scoped studies, and
we use larger sampling probabilities. Instead of repeating the
sampling operation for each task, we can perform it once,
with the same overhead of a single sampling operation, to
implement non-duplicate distribution sampling, which ensures
that each item is selected at most once among all tasks
with their designated probabilities, as long as the sum of all
sampling probabilities does not exceed one.

Even for a single task that requires non-duplicate items, if it
is executed on a multi-core processor, we can still perform the
above non-duplicate distribution sampling to filter out dupli-
cates and select items for different cores to process, with the
same sampling probabilities for equal loads. Still consider a
multi-core processor. If there are multiple different tasks, each
assigned to a different core, then the sampling probabilities
will be different, depending on the relative complexities of
the tasks and their sampling requirements, as explained in the
previous paragraph.

We now extend the virtual filter algorithm to support non-
duplicate distribution sampling. Let m be the size of allocated
memory and p∗ =

∑
1≤i≤k pi. As usual, we set m′ to m

p∗e if
p∗ ≤ 1

e , and to −m ln p∗ otherwise. Steps 1 and 2 of the VF
algorithm remain the same. Step 3 changes as follows.

Step 3: Let p0 = 0. We check whether ∃i ∈ [1, k],
mm′

∑
0≤j≤i−1 pj

z ≤ h(x) <
mm′

∑
0≤j≤i pj

z . If so, we pass
x through with index i as output; otherwise, we block it.

Theorem 4: Any data item will have a probability of pi
to pass the filter with index i at its first appearance, where
1 ≤ i ≤ k. It is blocked for further appearances. No data item
will pass the filter more than once.

Proof: The probability of an item x passing the first two
steps for its first appearance is z

m′ , where z is number of zero
bits in real part of bitmap in VF. Besides, we know h(x) < m.
Therefore, probability of x being sampled with index i is

z

m′
×

mm′(
∑

0≤j≤i pj−
∑

0≤j≤i−1 pj)

z

m
=

z

m′
×

mm′pi
z

m
= pi (4)

For the further appearances, it will be blocked by second step
since B[h(x)] has been set to 1. The range of h(x) for index
i is (

mm′
∑

0≤j≤i−1 pj

z ,
mm′

∑
0≤j≤i pj

z) which does not have
overlap with other ranges. Therefore, if an item x passed the
first two steps, it can only be sampled with one index.
Our experimental results will confirm that, through non-
duplicate distribution sampling, the sampled data items are
split into k output streams, each having a different index, with
a sampling rate of pi, 1 ≤ i ≤ k.

F. Spread Measurement with Non-duplicate Sampling

We now apply non-duplicate sampling to flow spread mea-
surement [15], [16], which produces the spread estimates for
each flow in the data stream. Note that our non-duplicate

sampling can remove duplicates while sampling on distinct
items with the same probability p. It can actually turn spread
measurement into size measurement. The size of a flow f after
our non-duplicate sampling is approximately p ∗ sf , where sf
is spread of f . Therefore, we can easily estimate flow spread
sf by measuring flow size after non-duplicate sampling using
any algorithm for flow size measurement. In experiments, we
choose Counter-Min with Conservative Update (CU) [12] as
the algorithm for flow size measurement because it is accurate
and memory/time efficient.

The data structure in CU is d counter arrays of length l,
denoted as Ci, 0 ≤ i < d. To record a sampled packet of
flow f , we use d independent hash functions Hi(·) to map
it to d counters Ci[Hi(f)] and increase the counters with the
minimum value by 1. The query operation produces spread
estimate of f as ŝf = min{Ci[Hi(f)], 0 ≤ i < d}/p.

Most existing algorithms, e.g, vHLL [34] and vSketch [16],
for flow spread measurement [16], [15] rely on specially
designed data structures like HLL [19] to remove duplicates,
which require more computations when recording and query-
ing. By comparison, CU only needs d hash functions for
recording and querying. We compare the performance of VF
combined with CU with existing flow spread measurement
solutions in Section IV.

IV. EXPERIMENTAL EVALUATION

We evaluate the performance of the proposed VF through
experiments based on real-word data traces. We also com-
pare VF with the only non-duplicate sampling work, TP. In
addition, we perform two application case studies on flow
spread estimation and super spreader detection, respectively,
in comparison with the best prior art.

A. Experimental Setting

We have implemented (1) the proposed VF; (2) the only
prior work on non-duplicate sampling, TP [30]; (3) the state-
of-the-art prior work that performs flow spread estimation,
vHLL [34] and vSkt(HLL) [16]; and (4) the state-of-the-art
prior work that performs super spreader detection, SpreadS-
ketch (SS) [25]. vHLL and vSkt use HyperLogLog registers
[35] and SS uses multi-resolution bitmaps [36], [37]. VF under
different sampling probability p is denoted as VF(p). The
experiments are performed on a computer with Inter Core
Xeon W-2135 3.7GHz and 32 GB memory.

The data traces used in our evaluation are real Internet
traffic traces downloaded from CAIDA [38]. We use 10 traces,
each containing around 20M packets. Each experiment is
performed over 10 traces and we present the average results.
Flow label is defined as destination address and element
is the source address, both carried in each packet’s header,
which has the application of DDoS detection. Flow spread
is the number of distinct sources that communicate with a
destination. Packets will be distinct if they possess different
flow labels or elements. Each trace contains around 430k
distinct packets, i.e., n ≈430k.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

R
ea

l
S

am
p

li
n

g
 R

at
e

Subset Index

p=0.5

(a) p=0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 2 3 4 5 6 7 8 9 10

R
ea

l
S

am
p

li
n

g
 R

at
e

Subset Index

p=0.25

(b) p=0.25

 0

 0.04

 0.08

 0.12

 0.16

 0.2

 1 2 3 4 5 6 7 8 9 10

R
ea

l
S

am
p

li
n

g
 R

at
e

Subset Index

p=0.10

(c) p=0.1

 0

 0.004

 0.008

 0.012

 0.016

 0.02

 1 2 3 4 5 6 7 8 9 10

R
ea

l
S

am
p

li
n

g
 R

at
e

Subset Index

p=0.01

(d) p=0.01
Fig. 4: Actual sampling rate w.r.t. subset index, under different given sampling probability p. The difference between actual
sampling rate and p is within 0.02p, when p ≥ 0.1, and within 0.05p when p = 0.01.

 0

 20

 40

 60

 80

 100

0.01 0.1 0.25 0.5M
ax

.
S

u
p
p
.
L

in
e

R
at

e(
M

p
p
s)

Sampling Probability p

VF

TP

Fig. 5: Maximum supported line rate of VF in comparison
with TP, under different sampling probabilities p. VF improves
maximum supported line rate by over 64%, compared to TP.

The parameters of VF, i.e., m′ and m are set when n
and p given. n can be obtained from the real traffic traces
and p will be given in each specific figure. We stress that
m is the size of the real part of bitmap in VF, while m′ is
size of the whole bitmap in VF, including the virtual part.
Therefore, we use m to denote the memory allocation of VF.
We follow the parameter settings of TP, vHLL and vSkt(HLL)
in the original papers. Specifically, the bitmap length of TP
can be obtained according to the equations in the Performance
Analysis Section of [30] when n and p are given. The HLL
register is 5bits and each flow is mapped to 128 registers for
vHLL and vSkt(HLL).

The evaluation is separated into four categories. The first
compares the sampling performance of VF with TP. The
second evaluates the performance of sampling probability
adaptation. The third demonstrates the performance of non-
duplicate distribution sampling of VF. The fourth compares
the performance of VF for flow spread measurement with the
state of the art.

B. Sampling Performance

To the best of our knowledge, TP is the only prior work
that can do non-duplicate sampling, which cannot be done
by traditional sampling methods. Therefore, we evaluate the
sampling performance of VF in comparison with TP. The
metrics are listed as follows.
• Actual sampling rate. We compare the actual sampling

rate with the given sampling probability p.
• Maximum supported line rate. We measure the maximum

line rate the non-duplicate sampling can catch up when
processing packet streams. The unit is million packets per
second, abbreviated as Mpps. Mpps is changed to Gbps
if multiplying the average packet size (kbits) in the trace

p 0.5 0.25 0.1 0.05 0.01 0.005
m(VF)/m(TP) 1 0.94 0.64 0.40 0.12 0.07

TABLE I: Ratio of memory requirement of VF m(VF) over
that of TP m (TP) under different p, regardless of n.

— if the average packet size is 1kbits, 1Mpps and 1Gbps
represent the same maximum supported line rate.

• Memory requirement. It is defined as the least memory
VF/TP need in order to support non-duplicate sampling
of p on traffic trace with n distinct packets.

• Maximum supported n. It is defined as the maximum
number of distinct packets VF/TP can support under
given sampling probability p and memory allocation m.
Large maximum n means longer sampling period.

Actual sampling rate: We evaluate the actual sampling rate of
ten random chosen subsets, each containing around 5k distinct
packets, under given sampling probability p= 0.01, 0.1, 0.25
and 0.5, respectively. The results in Figure 4 show that the
actual sampling rate is close to p, especially when p is large.
Maximum supported line rate: We compare VF with TP and
plot the results in Figure 5. VF achieves higher maximum line
rate, especially when p is small, e.g. 0.01. Compared to TP,
VF improves the maximum line rate by 64%-125% when p
decreases from 0.5 to 0.01.
Memory requirement: Table I shows the ratios of memory
requirement of VF over that of TP under different p. We
stress that the ratios are not affected by n. When p = 0.5
(≥ 1/e), VF and TP need the same amount of memory. When
p decreases, the ratio decreases. For instance, when p=0.01,
VF only needs 12% of the memory that TP needs.
Maximum supported n: Table II shows the maximum n VF
and TP can support under given sampling probability p and
m. As we can see, VF can support sampling data streams
with larger n. For instance, when p = 0.01 and m = 1Mbits,
maximum n for VF is 36.78M and for TP is 4.60M. In
practical scenarios, larger n means longer sampling period.

C. Performance of Sampling Probability Adaptation

Recall that VF supports sampling probability adaptation,
which is described in Section III-D. Specifically, VF can
decrease the sampling probability by half immediately, while
maintaining the non-duplicate sampling function. To evaluate
the sampling performance when the sampling probability is
cutting by half, we adopt the actual sampling rate as the metric.

m(Mbits) 0.1 0.5 1 5 10 50

p
Alg. VF TP VF TP VF TP VF TP VF TP VF TP

0.5 0.07 0.07 0.35 0.35 0.69 0.69 3.47 3.47 6.93 6.93 34.66 34.66
0.25 0.15 0.14 0.74 0.69 1.47 1.39 7.36 6.93 14.72 13.86 73.58 69.31
0.10 0.37 0.23 1.84 1.15 3.68 2.30 18.39 11.51 36.79 23.03 183.94 115.13
0.05 0.74 0.30 3.68 1.50 7.36 3.00 36.79 14.98 73.58 29.96 367.88 149.79
0.01 3.67 0.46 18.39 2.30 36.78 4.60 183.93 23.02 367.87 46.05 1839.39 230.02
0.005 7.36 0.53 36.79 2.65 73.58 5.30 367.88 26.49 735.76 52.98 3678.79 264.92

TABLE II: Maximum supported n(×106) of VF and TP under different sampling probability p, and memory allocation m. VF
supports much larger n compared to TP, especially when p is small.

Round Round 0 Round 1 Round 2 Round 3
Initial p p p̂ p p̂ p p̂ p p̂
0.4 0.40 0.4005 0.20 0.2018 0.1 0.0997 0.05 0.0500
0.5 0.50 0.5002 0.25 0.2517 0.125 0.1242 0.0625 0.0624
0.6 0.60 0.5981 0.30 0.3015 0.15 0.1496 0.075 0.0752
0.7 0.70 0.6978 0.35 0.3501 0.175 0.1746 0.0875 0.0879

TABLE III: Actual sampling rate p̂ v.s. given sampling probability p for each round of cutting the sampling probability by
half under different initial sampling probabilities. p̂ in each round is very close to p for each initial sampling probability.
In the experiment, every time the number of distinct processed
packets reaches a certain amount, i.e, 100k, VF adjusts the
sampling probability by half. The initial sampling probability
has been cut by half for three times. The measurement period
can be segmented to four rounds by the value of sampling
probability, i.e., round 0, round 1, round 2 and round 3. We
list the actual sampling probability of each round for VF under
different initial sampling probabilities in Table III. As we can
see, VF can do sampling precisely for each round regardless
of the initial sampling probability.

D. Performance of Non-duplicate Distribution Sampling

To investigate the sampling performance, we adopt the
actual sampling rate and maximum supported line rate as the
metrics. The number of probabilities k is set as 5. In practice,
each probability may vary and follow different distributions.
Here, we consider two distributions, even distribution and geo-
metric distribution. Under even distribution, each probability is
p∗/k. Under geometric distribution, The probability for each
index is {p

∗

21 ,
p∗

22 , ...,
p∗

2k−2 ,
p∗

2k−1 ,
p∗

2k−1 }, respectively. We list
the actual sampling probability of each index for VF under
different p∗ in Table IV. As we can see, VF can do sampling
precisely for each index of probability pi.

We also evaluate how non-duplicate distribution sampling
can help to reduce the processing overhead. Without non-
duplicate distribution sampling, k VFs are required for non-
duplicate sampling operations for k probabilities. In contrast,
with non-duplicate distribution sampling, a single VF can do
sampling operations for k probabilities. We list the maximum
supported line rates of these two approaches in Table V,
which shows that with non-duplicate distribution sampling,
the maximum supported line rate will be approximately 3− 4
times that when sampling operations are executed separately.
The reason is that k separate VFs require k hash operations
to process a packet while a single VF for non-duplicate
distribution sampling only need one.

E. Case Study: Flow Spread Estimation

We now expand the evaluation to a case study of flow spread
measurement. Since VF can remove duplicates, we only need
a sketch to store the flow size, which is simpler compared
to traditional sketches for spread measurement. Here, we use
the classical and accurate one, i.e, CU [12]. Without loss of
generality, we also abbreviate our method as VF or VF(p)
under a specific sampling probability p. The spread produced
by VF is the size stored in CU divided over p. Although TP
also does non-duplicate sampling, it uses a hashmap to store
the flow key and its size without memory limitation. Therefore,
we only compare VF with the best sketches for flow spread
measurement, i.e., vHLL [15] and vSkt(HLL) [16]. We adopt
the number of arrays d=3 for CU. For VF itself, we take
p=0.01,0.1,0.25,0.5 as representative sampling probabilities.
For fair comparison all the sketch data structures are allocated
the same memory. We use three metrics for evaluation.
• Absolute error. The average absolute error is defined as∑

|sf − ŝf |/N , where ŝf and sf are the estimated and
actual spread of flow f , respectively, and N is the number
of flows in the flow set.

• Relative error. The average relative error is defined as∑ |sf−ŝf |
Nsf

.
• Maximum supported line rate. It has been defined before.

Estimation Accuracy: We first present the absolute error and
relative error of all algorithms under 2Mb memory, shown
in Figures 6(a) and 6(b), respectively. The flows are placed in
bins based on their actual spreads (which can be found directly
from the traffic traces). The spread bins are [2i, 2i+1), i ≥ 0.
We average the absolute/relative error of flows in each bin and
plot a point in the figure. The results show that the accuracy
of VF(p) improves as we increase p due to smaller sampling
error. The average absolute error of VF(p) is much smaller
than that of vHLL or vSkt(HLL) when p = 0.1, 0.25, 0.5. For
example, VF(0.5) reduces average relative error by up to 80%
and 78%, respectively, compared to vHLL and vSkt(HLL).
The performances of vHLL and vSkt(HLL) are generally
comparable for small/medium flows. Similar conclusions can

p∗ 0.5 0.25 0.1
Distrib. Even Geo. Even Geo. Even Geo.
i p p̂ p p̂ p p̂ p p̂ p p̂ p p̂
1 0.10 0.1007 0.25 0.24948 0.05 0.04942 0.125 0.12462 0.02 0.01982 0.05000 0.04950
2 0.10 0.09963 0.125 0.12522 0.05 0.04979 0.0625 0.06238 0.02 0.01991 0.02500 0.02515
3 0.10 0.09999 0.0625 0.06262 0.05 0.05046 0.03125 0.03134 0.02 0.01991 0.01250 0.01230
4 0.10 0.01033 0.03125 0.03132 0.05 0.04970 0.01563 0.01552 0.02 0.01995 0.00625 0.00618
5 0.10 0.01001 0.03125 0.03142 0.05 0.04985 0.01563 0.01535 0.02 0.01983 0.00625 0.00626

TABLE IV: Actual sampling rate p̂ v.s. given sampling probability p for each index under different distributions, p∗ and k=5.
The actual sampling rate for each index i is very close to the given sampling probability for each index.

p∗ 0.5 0.25 0.1
Dist. Type Even Geo. Even Geo. Even Geo.
Separate Sampling 15.4 15.3 16.3 15.9 18.3 17.9
Dist. Sampling 48.3 47.1 50.1 49.5 56.1 54.9

TABLE V: Maximum supported line rate (Mpps) comparison
of VF for a given sampling probability distribution under
two different approaches. One is that sampling operations are
executed using k separate VFs while the other is that sampling
operations are executed by non-duplicate distribution sampling
using a single VF.

 0

 2

 4

 6

 8

 10

 0 5 10 15 20

A
b
so

lu
te

 E
rr

o
r

(1
0

2
)

Flow Spread (10
3
)

VF(0.01)
VF(0.1)

VF(0.25)
VF(0.5)

vHLL
vSkt(HLL)

(a) absolute errors

 0

 0.1

 0.2

 0.3

 0 5 10 15 20

R
el

at
iv

e
E

rr
o
r

Flow Spread (10
3
)

VF(0.01)
VF(0.1)

VF(0.25)
VF(0.5)

vHLL
vSkt(HLL)

(b) relative errors
Fig. 6: Estimation accuracy of VF(p), vHLL, and vSkt(HLL)
when all algorithms are allocated 2Mb memory. The algorithm
of VF(0.5) reduces average relative error by up to 80% and
78%, respectively, compared to vHLL and vSkt(HLL). When
p is very small, the error of VF(p) becomes worse due to its
increasing sampling error.

be drawn from Figure 6(b), which compares all the algorithms
in terms of the average relative errors.

We evaluate the impact of memory allocation on estimation
accuracy of VF, by cutting the memory of VF by half (1Mb)
and keeping the memory of vHLL and vSkt(HLL) as 2Mb.
The results in Figure 7 show that even if VF is allocated 1Mb
memory, its measurement accuracy is very similar to that under
2Mb. Therefore, similar conclusion can be drawn here as well.
The reason is that VF transforms flow spread measurement to
flow size measurement, which can be well handled by CU
even in a tight memory.
Maximum supported line rate: We compare maximum sup-
ported line rates of VF(0.01), VF(0.1), VF(0.25), VF(0.5), CU,
vHLL and vSkt(HLL) in Figure 8. CU can only measure flow
size. It cannot measure flow spread. VF, vHLL and vSkt(HLL)
can measure flow spread. We stress that our VF for flow
spread measurement uses CU to process the sampled packets.
The results reveal two points. The first point is that flow size
measurement is simpler than flow spread measurement. Specif-
ically, the maximum supported line rate of CU is much larger

 0

 2

 4

 6

 8

 10

 0 5 10 15 20

A
b
so

lu
te

 E
rr

o
r

(1
0

2
)

Flow Spread (10
3
)

VF(0.01)
VF(0.1)

VF(0.25)
VF(0.5)

vHLL
vSkt(HLL)

(a) absolute errors

 0

 0.1

 0.2

 0.3

 0 5 10 15 20

R
el

at
iv

e
E

rr
o
r

Flow Spread (10
3
)

VF(0.01)
VF(0.1)

VF(0.25)
VF(0.5)

vHLL
vSkt(HLL)

(b) relative errors
Fig. 7: Estimation accuracy of VF(p), vHLL, and vSkt(HLL),
when cutting the memory of VF by half and keeping the
memories of vHLL and vSkt(HLL) as 2Mb memory. The error
of VF under 1 Mb is very close to that under 2Mb.

 0

 20

 40

 60

 80

 100

M
ax

.
S

u
p

p
.

L
in

e
R

at
e(

M
p

p
s)

VF(0.01)
VF(0.1)

VF(0.25)
VF(0.5)

CU
vHLL

vSkt(HLL)

Fig. 8: Maximum supported line rate of VF(p) in comparison
with CU, vHLL and vSkt(HLL). The maximum supported line
rate of CU is 50% larger than vHLL and vSkt(HLL), and VF
can improve the maximum supported line rate by over 2.29
times on the basis of CU.
than vHLL and vSkt(HLL), which enhances our motivation
that we use VF to turn flow spread measurement to flow size
measurement by removing duplicate. The second is that with
the help of non-duplicate sampling done by VF, the maximum
supported line rate can be much improved further.

V. CONCLUSION

This paper proposes a new virtual filter algorithm that sup-
ports non-duplicate sampling, which is substantially different
from traditional sampling. It increases throughput by around
100% and reduces memory requirement by more than one
magnitude when comparing with the only prior non-duplicate
sampling work, especially when the sampling probability
is small. We extend the basic algorithm for non-duplicate
distribution sampling and flow spread measurement. When
compared with the state-of-the-art, we find that our algorithm
can perform better (higher accuracy, higher throughput) even
when the memory is much tighter.

ACKNOWLEDGMENTS

This work is funded by NSF grant CNS-1719222.

REFERENCES

[1] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine Grained
Traffic Engineering for Data Centers,” in Proceedings of the Seventh
COnference on emerging Networking EXperiments and Technologies,
2011, pp. 1–12.

[2] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford, and
F. True, “Deriving Traffic Demands for Operational IP Networks:
Methodology and Experience,” IEEE/ACM Transactions On Networking,
vol. 9, no. 3, pp. 265–279, 2001.

[3] Y. Xie, V. Sekar, D. A. Maltz, M. K. Reiter, and H. Zhang, “Worm Origin
Identification using Random Moonwalks,” in 2005 IEEE Symposium on
Security and Privacy (S&P’05). IEEE, 2005, pp. 242–256.

[4] Cisco, “Cisco IOS NetFlow,” Online. [Online]. Available: http://www.
cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html

[5] Inmon Corporation, “sFlow Accuracy and Billing,” Online. [Online].
Available: https://inmon.com/technology/

[6] Z. Liu, R. Ben-Basat, G. Einziger, Y. Kassner, V. Braverman, R. Fried-
man, and V. Sekar, “Nitrosketch: Robust and general sketch-based
monitoring in software switches,” in Proceedings of the ACM Special
Interest Group on Data Communication, 2019, pp. 334–350.

[7] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic Sketch: Adaptive and Fast Network-wide
Measurements,” Proc. of ACM SIGCOMM, August 2018.

[8] Q. Huang, P. P. C. Lee, and Y. Bao, “SketchLearn: Relieving User
Burdens in Approximate Measurement with Automated Statistical In-
ference,” Proc. of ACM SIGCOMM, pp. 576 – 590, August 2018.

[9] Q. Huang, X. Jin, P. P. C. Lee, R. Li, L. Tang, Y. Chen, and G. Zhang,
“SketchVisor: Robust Network Measurement for Software Packet Pro-
cessing,” Proc. of ACM SIGCOMM, 2017.

[10] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman†, “One
Sketch to Rule Them All: Rethinking Network Flow Monitoring with
UnivMon,” Proc. of ACM Sigcomm, 2016.

[11] G. Cormode and S. Muthukrishnan, “An Improved Data Stream Sum-
mary: the Count-Min Sketch and Its Applications,” Proc. of LATIN,
2004.

[12] C. Estan and G. Varghese, “New Directions in Traffic Measurement and
Accounting,” Proc. of ACM SIGCOMM, August 2002.

[13] M. Charikar, K. Chen, and M. Farach-Colton, “Finding Frequent Items
in Data Streams,” Proc. of International Colloquium on Automata,
Languages, and Programming (ICALP), July 2002.

[14] C. Ma, H. Wang, O. Odegbile, and S. Chen, “Noise Measurement and
Removal for Data Streaming Algorithms with Network Applications,”
in 2021 IFIP Networking Conference (IFIP Networking). IEEE, 2021,
pp. 1–9.

[15] Q. Xiao, S. Chen, M. Chen, and Y. Ying, “Hyper-Compact Virtual
Estimators for Big Network Data Based on Register Sharing,” in Proc.
of ACM SIGMETRICS, 2015.

[16] Y. Zhou, Y. Zhang, C. Ma, S. Chen, and O. O. Odegbile, “Generalized
Sketch Families for Network Traffic Measurement,” Proc. ACM Meas.
Anal. Comput. Syst., vol. 3, no. 3, Dec. 2019.

[17] K. Whang, B. T. Vander-Zanden, and H. M. Taylor, “A Linear-time
Probabilistic Counting Algorithm for Database Applications,” ACM
Transactions on Database Systems, vol. 15, no. 2, pp. 208–229, 1990.

[18] P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for
database applications,” Journal of Computer and System Sciences,
vol. 31, pp. 182–209, September 1985.

[19] P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier, “Hyperloglog: The
analysis of a near-optimal cardinality estimation algorithm,” Proc. of
AOFA, pp. 127–146, 2007.

[20] H. Wang, C. Ma, O. O. Odegbile, S. Chen, and J.-K. Peir, “Random-
ized Error Removal for Online Spread Estimation in Data Streaming,”
Proceedings of the VLDB Endowment, vol. 14, no. 6, pp. 1040–1052,
2021.

[21] G. Cormode and S. Muthukrishnan, “Space Efficient Mining of Multi-
graph Streams,” Proc. of ACM PODS, June 2005.

[22] S. Ganguly, M. Garofalakis, R. Rastogi, and K. Sabnani, “Stream-
ing Algorithms for Robust, Real-time Detection of Ddos Attacks,”
in 27th International Conference on Distributed Computing Systems
(ICDCS’07). IEEE, 2007, pp. 4–4.

[23] W. Liu, W. Qu, J. Gong, and K. Li, “Detection of superpoints using a
vector bloom filter,” IEEE Transactions on Information Forensics and
Security, vol. 11, no. 3, pp. 514–527, 2015.

[24] M. Yu, L. Jose, and R. Miao, “Software Defined Traffic Measurement
with OpenSketch,” Proc. of USENIX Symposium on Networked Systems
Design and Implementation, 2013.

[25] L. Tang, Q. Huang, and P. P. Lee, “SpreadSketch: Toward Invertible
and Network-Wide Detection of Superspreaders,” in IEEE INFOCOM
2020-IEEE Conference on Computer Communications. IEEE, 2020,
pp. 1608–1617.

[26] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey, “Bohatei: Flexible
and Elastic DDOS Defense,” in 24th {USENIX} Security Symposium
({USENIX} Security 15), 2015, pp. 817–832.

[27] Z. Durumeric, M. Bailey, and J. A. Halderman, “An Internet-wide View
of Internet-wide Scanning,” in 23rd {USENIX} Security Symposium
({USENIX} Security 14), 2014, pp. 65–78.

[28] S. Singh, C. Estan, G. Varghese, and S. Savage, “Automated Worm
Fingerprinting.” in OSDI, vol. 4, 2004, pp. 4–4.

[29] B. H. Bloom, “Space/Time Trade-offs in Hash Coding with Allowable
Errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[30] Y.-E. Sun, H. Huang, C. Ma, S. Chen, Y. Du, and Q. Xiao, “Online
Spread Estimation with Non-duplicate Sampling,” in IEEE INFOCOM
2020-IEEE Conference on Computer Communications. IEEE, 2020,
pp. 2440–2448.

[31] S. Sen and J. Wang, “Analyzing Peer-to-peer Traffic Across Large
Networks,” in Proceedings of the 2nd ACM SIGCOMM Workshop on
Internet measurment, 2002, pp. 137–150.

[32] S. Venkataraman, D. Song, P. B. Gibbons, and A. Blum, “New Streaming
Algorithms for Fast Detection of Superspreaders,” Proc. of NDSS, 2005.

[33] Y. Liu, W. Chen, and Y. Guan, “Identifying High-cardinality Hosts from
Network-wide Traffic Measurements,” IEEE Transactions on Depend-
able and Secure Computing, vol. 13, no. 5, pp. 547–558, 2015.

[34] Q. Xiao, S. Chen, Y. Zhou, M. Chen, J. Luo, T. Li, and Y. Ling,
“Cardinality Estimation for Elephant Flows: A Compact Solution based
on Virtual Register Sharing,” IEEE/ACM Transactions on Networking,
2017.

[35] S. Heule, M. Nunkesser, and A. Hall, “HyperLogLog in Practice:
Algorithmic Engineering of a State-of-The-Art Cardinality Estimation
Algorithm,” Proc. of EDBT, 2013.

[36] C. Estan, G. Varghese, and M. Fisk, “Bitmap Algorithms for Counting
Active Flows on High Speed Links,” in Proceedings of the 3rd ACM
SIGCOMM conference on Internet measurement, 2003, pp. 153–166.

[37] C. Estan, G. Varghese, and M. Fish, “Bitmap Algorithms for Counting
Active Flows on High-Speed Links,” IEEE/ACM Trans. on Networking,
vol. 14, no. 5, October 2006.

[38] UCSD, “CAIDA UCSD Anonymized 2015 Internet Traces on Jan. 17,”
http://www.caida.org/data/passive/passive 2015 dataset.xml, 2015.

