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Abstract—1 Network measurement is indispensable to network
operations. Two most promising measurement solutions are In-
band Network Telemetry (INT) solutions and sketching solutions.
INT solutions provide fine-grained per-switch per-packet infor-
mation at the cost of high network overhead. Sketching solutions
have low network overhead but fail to achieve both simplicity and
accuracy for per-flow measurement. To keep their advantages,
and at the same time, overcome their shortcomings, we first
design SketchINT to combine INT and sketches, aiming to obtain
all per-flow per-switch information with low network overhead.
Second, for deployment flexibility and measurement accuracy,
we design a new sketch for SketchINT, namely TowerSketch,
which achieves both simplicity and accuracy. The key idea of
TowerSketch is to use different-sized counters for different arrays
under the property that the number of bits used for different
arrays stays the same. TowerSketch can automatically record
larger flows in larger counters and smaller flows in smaller
counters. We have fully implemented our SketchINT prototype
on a testbed consisting of 10 switches. We also implement
our TowerSketch on P4, single-core CPU, multi-core CPU, and
FPGA platforms to verify its deployment flexibility. Extensive
experimental results verify that 1) TowerSketch achieves better
accuracy than prior art on various tasks, outperforming the state-
of-the-art ElasticSketch up to 13.9 times in terms of error; 2)
Compared to INT, SketchINT reduces the number of packets
in the collection process by 3 ∼ 4 orders of magnitude with an
error smaller than 5%.

Index Terms—Network measurement; INT; Sketch

I. INTRODUCTION

A. Background and Motivation
Network measurement is essential to various network opera-

tions, including traffic engineering [1], [2], anomaly detection
[3]–[5], failure troubleshooting [6], [7], network accounting
and billing [8], flow scheduling [9], [10], and congestion con-
trol [11]. Among all existing works, two kinds of measurement
solutions are widely acknowledged as the most promising:
In-band Network Telemetry (INT) solutions [12]–[15] and
sketching solutions [8], [16]–[23].

The first kind is the INT solutions. INT solutions obtain
per-switch information by configuring the switches to insert
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predefined packet-level information, i.e., INT information,
into each incoming packet. As per-switch information is as
important as per-flow information, more and more commodity
switches start to support INT. However, the main shortcoming
of INT is its high network overhead incurred by collecting
INT information: 1) many additional packets, and 2) large
additional bandwidth usage. Specifically, to perform per-flow
measurement, current solution for collecting INT information
is to mirror the header of each packet with the INT information
to a global analyzer in each switch (postcard mode [14]) or
only the sink switches (passport mode [12]). Both modes
at least double the number of packets in the network and
consume large bandwidth.

The second kind is the sketching solutions. Sketches are
a kind of probabilistic data structures used to measure per-
flow information with small memory usage and low bandwidth
overhead. The development of sketches undergoes two phases:
1) simple sketches which are inaccurate, and 2) sophisticated
sketches which are accurate. In the first phase, typical sketches
include sketches of Count-Min (CM) [16], Conservative Up-
date (CU) [8], and Count [17]. These sketches are simple and
easy to use. However, they suffer from poor accuracy because
they do not match the practical network traffic which is often
highly skewed: most flows are small and a small amount
of large flows contribute to most traffic [8], [24], [25]. In
the second phase, typical sketches include ElasticSketch [19],
NitroSketch [20], and ASketch [23].

These sketches improve accuracy at the cost of complicated
data structures and operations. Specifically, the state-of-the-art
solution, ElasticSketch [19] uses a voting technique to separate
large flows from small flows, and ASketch [23] maintains
the top-k flows by checking their sizes during each insertion
operation. Compared with the simple sketches, sophisticated
sketches have two shortcomings: 1) they are more complicated
in terms of data structures and operations; 2) they have many
more parameters which need to be carefully tuned. These
two shortcomings hinder their implementation in practice,
especially in hardware, such as FPGA and P4-capable switches
[26]. For example, in Tofino switches [27], a classic 3-array
CM sketch can be implemented within just one stage. In
contrast, an ElasticSketch consumes 9 stages.

Due to the complexity of sophisticated sketches, operators
in industrial community still prefer the most simple sketch –
the CM sketch despite its poor accuracy. However, sketches
can hardly achieve per-switch measurement because of the
following two reasons. 1) Until now, commodity switches still978-1-6654-4131-5/21/$31.00 ©2021 IEEE



do not support programming, which means sketches cannot be
deployed on these switches. 2) While programmable switches
have become increasingly popular in recent years, only simple
sketches and a small fraction of sophisticated sketches can be
deployed on programmable switches.

In summary, as shown in Table I, INT solutions have high
network overhead, and existing sketching solutions suffer two
shortcomings: 1) they cannot achieve both simplicity and accu-
racy, and 2) cannot measure per-switch information. This paper
aims to overcome all these shortcomings, while achieving per-
flow per-switch measurement, which refers to measuring the
information of each flow at every switch/hop. In other words,
the design goal of this paper is to design a new solution for
per-flow per-switch measurement, while achieving simplicity,
accuracy and low network overhead simultaneously.

Table I: Design goals.
Advantages INT Sketch Goal

Per-flow per-switch measurement X × X
Low network overhead × X X
Simplicity and accuracy X × X

B. Our Proposed Solution
As shown in Table I, INT solutions achieve per-flow per-

switch measurement, and sketching solutions achieve low
network overhead. To keep the advantages of both INT and
sketching, and at the same time, overcome their shortcomings,
we propose our first contribution, which is to combine INT and
sketches, namely the SketchINT solution. For the sake of de-
ployment flexibility, the ideal sketch for SketchINT should be
simple and easy to use. For the sake of measurement accuracy,
the ideal sketch for SketchINT should have high accuracy.
Unfortunately, no existing sketch can achieve both simplicity
and accuracy. Motivated by this, our second contribution is
to design a new sketch, namely TowerSketch, which is as
simple as simple sketches, while as accurate as sophisticated
sketches. Our third contribution is to build a prototype to verify
the effectiveness and efficiency of our proposed solutions.
Contribution I: combining INT and sketches. To combine the
advantages of INT and sketches, we design SketchINT, which
achieves per-flow per-switch measurement and low network
overhead at the same time. The key design of SketchINT is
to first compress all INT information into compact sketches
for collection, rather than directly transmit them to the global
analyzer as INT does. Specifically, SketchINT first aggregates
the per-packet INT information into a small amount of per-
flow information, then further encodes the per-flow information
into compact sketches. In this way, the bandwidth usage
and the number of packets are significantly reduced. Finally,
SketchINT transmits these sketches to the global analyzer with
jumbo frames to further reduce the number of packets.

SketchINT has 3 working modes, where the sketches are
deployed in different places. First, SketchINT can deploy
sketches on sink node switches, i.e., edge switches. Second,
considering that the memory resources of switches are rel-
atively limited, SketchINT can deploy sketches on end-hosts
for achieving higher measurement accuracy. Third, SketchINT
can offload the sketches to FPGA-based SmartNICs, so as to

save the expensive CPU resources in end-hosts for economic
benefits. To support all the above three working modes, our
sketch should be simple enough to be deployed on the three
platforms: P4, CPU, and FPGA.
Contribution II: designing a simple and accurate sketch
– TowerSketch. To be simple, TowerSketch just consists of
several counter arrays and hash functions. To be accurate under
the skewed network traffic, TowerSketch uses different-sized
counters for different arrays while allocating the same amount
of memory for each array. In this way, TowerSketch can
automatically record larger flows in larger counters and smaller
flows in smaller counters. As shown in Figure 1, TowerSketch
organizes the counters into a tower shape consisting of d
arrays. For every two adjacent arrays, the array at the higher
level has fewer counters and its counters are larger in size.
The property of TowerSketch is that the numbers of bits used
for different arrays are the same. The insertion and query
operations of TowerSketch are similar to those of the CM
sketch (see § IV-A). In this way, TowerSketch can approach
a state that every bit is counting. Thanks to the simplicity
of our TowerSketch, it can be easily extended to support a
wide range of measurement tasks, and can be implemented
on various software and hardware platforms, such as P4 [26],
[27], single-core CPU, multi-core CPU, and FPGA.

TowerSketch

new packet 
𝑓

2-bit counters

4-bit counters

8-bit counters+1
+1

+1

Figure 1: TowerSketch example.

Contribution III: building a SketchINT prototype. To verify
the effectiveness of our combination of INT and sketches,
and evaluate the performance of our proposed sketch, we
have fully implemented a SketchINT prototype on a testbed
consisting of 10 programmable switches and 8 end-hosts in
a FatTree topology. This prototype verifies that our solution
well achieves the design goal of measuring per-flow per-switch
network information with high accuracy and low network
overhead using simple operations. Further, our experimental
results on this prototype system show that 1) TowerSketch
achieves higher accuracy than ElasticSketch on various tasks.
The error of TowerSketch is 13.9 times lower than ElasticS-
ketch. 2) SketchINT can reduce the number of packets in the
collection process by 3 ∼ 4 orders of magnitude compared
to INT with ARE smaller than 5%. To make our results easy
to reproduce, we have released all related source codes and
datasets at Github2 without identity information.

II. RELATED WORK

In this section, we summarize the in-band telemetry solu-
tions and the sketching solutions for network measurement.
For other measurement solutions, such as sampling and prob-
ing solutions, please refer to reference [28]–[47].

2https://github.com/SketchINT-code/SketchINT



Table II: Comparison with existing solutions.
Systems Switch End-host Coordinator Bandwidth Accuracy

SketchINT INT-capable Packet insertion (off-loadable to edge-switch) × Medium High
INT INT-capable – × High Full

OmniMon Programmable Hash table insertion X Low Full
LightGuardian Programmable Sketch restruction × Low Low

In-band Telemetry Solutions: These solutions insert packet-
level statistics into incoming packets in INT-compatible
switches. Typical in-band telemetry solutions include INT
[12]–[14], its successor PINT [15], and LightGuardian [48].
INT has two collection strategies: passport and postcard. In
passport mode [12], switches insert packet-level statistics into
each passing packet. Then sink switches mirror the packet
headers and the desired INT information into new packets
and forward these packets to the analyzer. In postcard mode
[14], the mirroring and forwarding process happens in each
switch. Both of the two modes at least double the number
of packets in the network. As collecting INT information
incurs significantly network overhead, PINT [15] chooses to
insert packet-level statistics into each packet with a certain
probability, which reduces network overhead at the cost of
information missing. However, PINT cannot support some
measurement tasks, e.g., per-flow per-switch inflated latency
detection (see §V-B), and its accuracy is also lower than
INT. LightGuardian [48] compresses per-flow information into
sketches on programmable switches. The switches periodically
split their sketches into sketchlets (sketch fragments) and send
the sketchlets to the analyzers by packet piggyback.

Sketching Solutions: There are a great number of sketching
solutions, which can be further divided into two categories:
simple sketches and sophisticated sketches. Typical simple
sketches include CM [16], CU [8], Count [17], CMM [49]
and CSM [50]. These sketches often consist of multiple arrays.
Each array consists of many counters, and is associated with
a hash function that maps flows to a counter in it. Simple
sketches are easy to implement and transmit. However, as
they equally treat large flows and small flows, the accuracy
of these sketches is poor due to hash collisions. To address
this problem, sophisticated sketches devise many mechanisms
to explicitly separate large flows and small flows, incurring
complicated data structures and operations. Typical sophisti-
cated sketches include ElasticSketch [19], NitroSketch [20],
ASketch [23], and more [21], [51]. Besides, there are a kind of
dedicated sketches designed exclusively for specific measure-
ment systems. Typical dedicated sketches include FlowRadar
[22], OpenSketch [29], SketchLearn [52], BeauCoup [53],
UnivMon [18], OmniMon [54], and more [55]–[57]. Among
them, FlowRadar uses a variant of Invertible Bloom filter
[58] to record flow-level information. UnivMon builds several
sketches on the data plane to perform many measurement
tasks, and uses a key method called universal streaming [59]
to sample packets. However, due to its sampling techniques,
UnivMon is inevitably not accurate in flow size estimation.
OmniMon builds hash tables in end-hosts to record the IDs
(5-tuple) of all flows. For different flows, a coordinator assigns

different counters in switches to these flows, so as to achieve
full accuracy.

We compare SketchINT with existing measurement so-
lutions that can perform per-flow per-switch measurement
from five aspects. As shown in Table II, 1) for requirement
on switches, SketchINT and INT require much less. They
only need switches to support INT, which will be supported
by future commodity switches3. In contrast, OmniMon and
LightGuardian need to deploy dedicated data structures on
programmable switches. 2) For requirement on end-hosts,
SketchINT inserts packets into TowerSketch in end-hosts,
which can be offloaded to programmable edge-switches; INT
has no requirement on end-hosts; OmniMon builds hash tables
in end-hosts to store the active flows; LightGuardian collects
sketch fragments from packets, and uses them to reconstruct
complete sketches in end-hosts. 3) For requirement on co-
ordinator, OmniMon needs a coordinator to assign different
counters in switches to different flows, so as to avoid collisions
and achieve full accuracy. In contrast, SketchINT, INT and
LightGuardian do not have such requirement. 4) For band-
width overhead, INT consumes a large amount of bandwidth
for transmitting and collecting INT information; SketchINT
consumes less bandwidth as it reduces most bandwidth over-
head in the collection; OmniMon and LightGuardian con-
sume the least as they only transmit their data structures.
5) For accuracy, INT and OmniMon achieve full accuracy;
SketchINT achieves less accuracy because of hash collisions;
LightGuardian achieves the least accuracy because of the
limited memory in switches.

III. SKETCHINT DESIGN

As aforementioned (see Table I), INT solutions come with
unacceptable network overhead, while sketching solutions
cannot acquire per-flow per-switch information. Therefore, we
present SketchINT, a scalable network measurement system
that integrates sketches and INT to keep their advantages
simultaneously while overcoming their shortcomings.

As shown in Figure 2, the SketchINT system comprises
three components. The first component is the SketchINT agent
that encodes the INT metadata into compact TowerSketches
for each incoming packet. Based on operator’s monitoring in-
tents, SketchINT agent can be flexibly deployed in three work-
ing modes, i.e., the TowerSketch can be built in programmable
edge switches, end-host CPUs, or SmartNICs to compactly
encode per-flow per-switch information. The second compo-
nent is the INT-compatible switch which inserts the desired
per-switch INT metadata into packets. The last one is the
global SketchINT analyzer which is deployed in a commodity

3We implement SketchINT prototype with Tofino switches, but actually it
can be replaced with INT-capable commodity switches.
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Figure 2: The architecture and workflow of SketchINT.

server collecting TowerSketches from all SketchINT agents.
The analyzer is designed with high elasticity and scalability.
We take SketchINT working in end-host CPU as an example.
Figure 2 shows SketchINT’s workflow, consisting of three
phases. The remaining parts of this section demonstrate the
design details of each phase.
1) Piggyback packet-level statistics using INT. First,
SketchINT leverages the INT capability of switches to acquire
per-switch packet-level statistics. For resource efficiency and
compatibility, SketchINT customizes an INT-layer consisting
of an INT instruction header and several INT metadata fields.
The INT instruction header consists of a 16-bit hop-count
indicating the number of passing switches. The INT metadata
fields record the desired packet-level statistics in the passing
switches. The INT layer is designed to be between the trans-
port layer and the payload. For each packet, in each switch
on its path, we insert an INT metadata field into the packet
and increment its hop-count by one. In the switch at its first
hop, we additionally insert the INT instruction header into
the packet, and modify the DSCP field of IPV4 protocol to
indicate this packet is an INT-packet.
2) Encode INT information into TowerSketches on end-
hosts. Owing to the flexibility and sufficient memory of end-
hosts, we build several TowerSketches (detailed in § IV) in
each end-host to support a variety of measurement tasks.
The SketchINT agent in each end-host first reads the INT
metadata from the received packets, and then removes INT
header and metadata to prevent interference to upper protocols
and applications. The SketchINT agent inserts/encodes the
information carried by INT metadata (e.g., switch ID, internal
latency) into TowerSketches. The encoding process is designed
with high performance, introducing acceptable overhead when
considering the traffic volume of end-hosts.
3) Collect sketches and perform network-wide analysis.
The SketchINT agent in each end-host maintains two groups
of TowerSketches T0 and T1, a group of active sketches
and a group of idle sketches. The status of the two groups
of sketches is periodically exchanged, e.g., 5 seconds. For
each incoming packet, the SketchINT agent inserts/encodes

the INT information carried by its INT metadata into the
active sketches. At the same time, the agent forwards the idle
sketches to the global SketchINT analyzer. After forwarding,
we clear the idle sketches by setting all counters to 0. After
collecting all local sketches, the global SketchINT analyzer
will have a complete view of the whole network, and can then
perform further analysis for each flow in each switch.

IV. TOWERSKETCHES

In this section, we first introduce the well-known CM sketch
[16]. Then we show the data structure and operations of our
TowerSketch, and present the theoretical analysis. We list the
main symbols in this paper and their meanings in Table III.

Table III: Main symbols used in this paper.
Symbol Meaning
f An arbitrary flow
nj Real size of flow fj
n̂j Estimated size of flow fj
m Number of distinct flows
mi Number of distinct flows with size of i
m̂i Estimated number of distinct flows with size of i
d Number of counter arrays in TowerSketch
Ai The ith counter array

hi(·)
The hash function mapping a flow to a hashed counter in
the ith counter array Ai

wi Number of counters in the ith counter array Ai

δi
Each counter in the ith counter array Ai consists of δi
bits

A. The Classic CM Sketch
The CM sketch consists of d counter arrays A1, · · · ,Ad.

Each array Ai has w counters and it uses a hash function hi(.)
to randomly and uniformly map/hash a flow into a counter
in it. When a packet of flow f arrives, CM calculates hash
functions to find d counters:A1[h1(f)], · · · ,Ad[hd(f)], which
are called the d hashed counters for convenience. CM just
increments the d hashed counters by 1. To query the number
of packets of flow f , CM returns the minimum value among
the d hashed counters. Based on CM, the CU sketch slightly
changes the insertion operation: CU [8] only increments the
smallest counter(s). We use “counter(s)” because when there
are multiple counters which are considered as the smallest,
CU needs to increment them all. Compared with CM, CU
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significantly improves accuracy at the cost of not supporting
pipeline implementation. Both CM and CU have no under-
estimation errors.

Based on the above classic CM/CU sketch, our TowerSketch
makes small but non-trivial improvement, aiming to automat-
ically record larger flows in larger counters and small flows
in small counters.

B. Data Structure and Operations

Rationale: The key idea of our TowerSketch is to use
different-sized counters for different arrays while allocating
the same amount of memory for each array. The array at
the higher level has fewer counters and its counters are
larger in size. For large flows, their small counters at low
levels will be overflowed, and thus their frequencies will be
kept in the large counters at high levels. For small flows,
since the large counters at high levels are occupied by large
flows, their frequencies will be kept in small counters. In this
way, TowerSketch automatically records larger flows in larger
counters and smaller flows in smaller counters.
Data Structure: As shown in Figure 3, TowerSketch consists
of d arrays, A1, · · · ,Ad. Each array Ai consists of wi
counters, and is associated with a hash function hi(.). The
size of each counter in array Ai is δi bits. The key difference
between our sketch and the CM/CU sketch is: the lower arrays
have more counters which are smaller in size, while the higher
arrays have fewer counters which are larger in size. Under the
property that the number of bits used for different arrays is
the same, we allocate the same amount of memory to each
array with different counter size.

Example: As shown in Figure 3, the array at the bottom has
8 counters, each of which has 2 bits; the array at the top has
2 counters, each of which has 8 bits. All the three arrays have
the same size of memory: 16 bits.
CM insertion: To record a packet with flow ID f , TowerS-
ketch just increments the d hashed counters by 1. If a δ-bit
counter overflows after increment, we mark it as an overflowed
counter by setting its value to 2δ − 1. That is to say, for a δ-
bit counter, the maximum value it can record is 2δ − 2. We
consider the value of the overflowed counter as +∞, which
cannot be incremented or decremented any more.

Example: Figure 3 shows an example to insert a packet. As
the counter A1[h1(f)] has overflowed (its value is 22−1 = 3),
we do not increment it.
CU insertion: TowerSketch can use the strategy of CU [8] to
improve the accuracy. Instead of incrementing all the d hashed
counters, CU insertion only increments the smallest counter(s)
that are not overflowed.

Query: The query process for flow f returns the minimum
value of the d hashed counters. Recall that we treat the value
of an overflowed counter as +∞.

C. Mathematical Analysis
In this subsection, we derive the error bound of TowerS-

ketch. Let δ0 = 0. Note that δ0 6 δ1 6 · · · 6 δd. Given an
arbitrary flow fj , without loss of generality, we assume its real
size nj satisfies 2δt−1 − 1 6 nj 6 2δt − 1, where 1 6 t 6 d.
Let m be the number of flows and n be the sum of the real
sizes of all flows, i.e., n =

∑m
j=1 nj .

Theorem 1 (Error Bound). Given an arbitrary small positive
number ε, when nj + ε · n < 2δt − 1, the estimation error of
flow fj is bounded by

Pr {n̂j 6 nj + ε · n} > 1−
d∏
k=t

(
1

ε · wk

)
Proof. We define an indicator variable Ij,k,l as

Ij,k,l =

{
1, hk(fj) = hk(fl) ∧ j 6= l
0, otherwise

As the d hash functions are independent from each other,
we have

E(Ij,k,l) = Pr {hk(fj) = hk(fl)} =
1

wk
We define another variable Xj,k =

∑m
l=1 nl · Ij,k,l, indicat-

ing the estimation error caused by hash collisions in counter
Ak[hk(fj)]. Then for ∀k > t, we have

Ak[hk(fj)] =

{
nj +Xj,k, nj +Xj,k < 2δk − 1
+∞, otherwise

And we have

E (Xj,k) = E

(
m∑
l=1

nl · Ij,k,l

)
=

m∑
l=1

nl · E (Ij,k,l) 6
n

wk

Therefore, we have
Pr{n̂j > nj + ε · n} = Pr {∀k > t,Ak[hk(fj)] > nj + ε · n}

= Pr {∀k > t, nj +Xj,k > nj + ε · n}
= Pr {∀k > t,Xj,k > ε · n}

6 Pr

{
∀k > t,

Xj,k

E(Xj,k)
> ε · wk

}
According to the Markov inequality, we can derive that

Pr {n̂j > nj + ε · n} 6
d∏
k=t

{
E

(
Xj,k

E(Xj,k)

)
/ (ε · wk)

}

=

d∏
k=t

(
1

ε · wk

)
Therefore, we have

Pr {n̂j 6 nj + ε · n} = 1− Pr {n̂j > nj + ε · n}

> 1−
d∏
k=t

(
1

ε · wk

)

From the above theorem, we can see that the smaller flow
goes with the smaller t. Note that we have ε · wk > 1 for
∀k ∈ [0, d]. Thus, we can conclude that the smaller flow has
the smaller error.



D. Discussion

Comparison to CM/CU sketches. For large flows, as fewer
counters are assigned to them, TowerSketch has slightly larger
overestimation error on large flows due to the limited volume
of small flows. For small flows, as much more counters are
assigned to them, the overestimation error is significantly
reduced. Therefore, the overall accuracy of TowerSketch is
much higher than CM/CU sketches.
Comparison to PyramidSketch [51]. PyramidSketch also
uses large counters to store large flows. However, its key
idea is different from TowerSketch. TowerSketch uses several
arrays with small and large counters to adapt to the skewed
traffic pattern. PyramidSketch uses the counter sharing idea
to combine multiple small-sized counters for large flows.
Therefore, in the worst cases, the number of memory accesses
in PyramidSketch is very large, while that of TowerSketch
always keeps constant. Moreover, due to the use of lots of
flag bits, PyramidSketch is not hardware friendly.
Comparison to ElasticSketch [19]. ElasticSketch is the state-
of-the-art sketch in frequency estimation. It records the flow
IDs of the large flows, and can estimate the large flows more
accurately. However, it only uses an 8-bit CM sketch for the
small flows, which results in poor accuracy when measuring
small flows. On the contrary, our TowerSketch allocates a large
number of 2-bit and 4-bit counter for small flows, which allows
us to measure flow sizes at a much finer granularity, resulting
in an overall higher accuracy.

V. MEASUREMENT TASKS

In this section, we elaborate on how our system performs
the 6 representative local measurement tasks and the 4 rep-
resentative global measurement tasks. We take SketchINT
working in end-host CPU as an example. Note that besides
these tasks, SketchINT also supports all other measurement
tasks supported by INT (e.g., routing path, per-switch packet
drop). And SketchINT is also perfectly compatible with other
INT-based mechanism (e.g., HPCC [11]).
A. Local Measurement Tasks

This subsection presents 6 representative per-flow measure-
ment tasks of TowerSketch, including 1) flow size estimation,
2) heavy hitter detection, 3) heavy change detection, 4) flow
size distribution estimation, 5) entropy estimation, and 6)
cardinality estimation. Although existing network measure-
ment solutions support these tasks, TowerSketch significantly
improves the accuracy in most of them. To support these tasks,
the SketchINT agent builds one TowerSketch in each end-host,
and inserts each incoming packet with its flow ID as the key.
Flow size estimation: estimating the flow size for any flow ID
fj

4. TowerSketch directly estimates the flow size by returning
the minimum value of the d hashed counters.
Heavy hitter detection: reporting flows whose sizes are larger
than a threshold ∆h. We build a tiny hash table to maintain the
heavy hitters by recording their flow IDs. For each incoming
packet of flow fj , we insert it into TowerSketch and query its

4A flow ID can be any combination of 5-tuple: source IP address, source
port, destination IP address, destination port, and protocol type.

flow size n̂j . If n̂j > ∆h and n̂j is not in the hash table, we
insert fj to the hash table. To get all heavy hitters, we report
all flow IDs in the hash table.
Heavy change detection: reporting flows whose sizes dras-
tically change beyond a predefined threshold ∆c in two
adjacent time windows. We build one TowerSketch for each
time window, and also use the hash table described above
to maintain the flows whose sizes are larger than ∆c. For
each flow recorded in the two hash tables, we calculate its
flow size difference by querying the two TowerSketches. If
the difference exceeds ∆c, we report it as a heavy change.
Flow size distribution estimation: estimating the distribution
of flow sizes. We apply the basic MRAC algorithm [60] to each
counter array of TowerSketch and then synthesize the results.
Specifically, array Ai provides the estimated results with flow
size in range [2δi−1 − 1, 2δi − 1).
Entropy estimation: estimating the entropy of flow sizes.
After getting the estimation of flow size distribution, we
can easily compute the entropy by the following formula:
−
∑(

mi · iM log i
M

)
, where mi is the number of flows with

size of i, and M =
∑

(i ·mi).
Cardinality estimation: estimating the number of flows. We
use the bottom array with the largest number of counters to
estimate cardinality, and calculate the results using the linear
counting algorithm [61].

B. Global Measurement Tasks

This subsection presents 4 global measurement tasks en-
abled by SketchINT, including 1) per-flow per-switch latency
estimation, 2) per-flow per-switch inflated latency detection,
3) per-switch heavy hitter detection, and 4) per-switch heavy
change detection. The first two tasks provide information of
latency, which can be used as the basis of flow scheduling, load
balancing, and congestion control. The remaining two tasks
provide information of large flows, which is useful to problem
diagnosis when a switch suffers problems (e.g., congestion,
packet drops, full Network Processing Unit (NPU) utilization).
Note that none of existing sketching solutions can support
these tasks, and compared with INT, SketchINT empowers
these tasks with great scalability. To support these tasks, the
SketchINT agent builds two TowerSketches, one for the first
two latency tasks, and another for the rest two tasks.
Per-flow per-switch latency estimation: reporting the average
internal latency in each switch for any given flow. For this
task, we configure the switches to insert the switch ID and
the internal latency into each incoming packet. In each end-
host, the SketchINT agent builds a TowerSketch to record the
latency information. We extend each counter in TowerSketch
to a bucket consisting of two counters: 1) a latency counter
recording the total latency of inserted packets, and 2) a
frequency counter recording the number of inserted packets.
For each incoming packet, we first acquire its forwarding
path, i.e., the recorded switch IDs, and the per-switch internal
latency via INT. For each recorded switch Si, we concatenate
the switch ID Si and the flow ID to form a new key, which is
used to locate the d hashed buckets. For each hashed bucket,



we increment the latency counter by the internal latency in
Si, and increment the frequency counter by one. The global
SketchINT analyzer periodically collects TowerSketches from
end-hosts. To acquire the latency of flow fj in its passing
switch Si, we query the corresponding TowerSketch using the
concatenated key and report the average latency as the total
latency divided by the frequency.
Per-flow per-switch inflated latency detection: reporting
the frequency of inflated latency in each switch for any
given flow. Inflated latency in switch Si is defined as the
latency which exceeds ∆l times of the average latency in
Si, where ∆l is a predefined threshold. We configure the
switches as in latency estimation, and we still use the extended
TowerSketches in latency estimation to perform this task. In
addition, the SketchINT agent builds a tiny hash table. For
each incoming packet of fj , we insert it into the TowerSketch
as described above. Every time we find that the latency of a
packet in switch Si exceeds ∆l times of its estimated average
latency, we insert a key consisting of the flow ID and the
switch ID into our hash table. The global SketchINT analyzer
periodically collects the hash tables and reports the inflated
latency.
Per-switch heavy hitter detection: detecting heavy hitters for
any switch. We configure the switches to insert the switch ID
into each incoming packet. In each end-host, the SketchINT
agent builds a TowerSketch and a tiny hash table. For each
incoming packet, we acquire the forwarding path via INT. The
insertion process of TowerSketch and the hash table is similar
to local heavy hitter detection. The only difference is that we
insert the flow ID and its forwarding path as a key-value pair
to the hash table. The global SketchINT analyzer periodically
collects the hash tables. For any given switch Si, we check all
hash tables. If a flow has Si in its forwarding path, we report
it as a heavy hitter in switch Si.
Per-switch heavy change detection: detecting heavy changes
for any switch. In end-hosts and switches, we use the same
data structures and operations as in per-switch heavy hitter
detection, except the threshold is set to the heavy change
threshold ∆c. For each flow ID recorded in the two adjacent
hash tables, we calculate its flow size difference by querying
two adjacent TowerSketches. If the difference exceeds ∆c, we
insert the flow ID and its forwarding path into a list. The
analyzer periodically collects the lists. For any given switch
Si, we check all lists. If a flow has Si in its forwarding path,
we report it as a heavy change in switch Si.
C. Discussions

The collection manner of SketchINT leads to losses of real-
time capability to some extent. However, note that in each end-
host, the collection process just transmits the TowerSketches
and some large flows to the global analyzer. Therefore, in
practice, SketchINT can collect information in a short period,
so as to approach the real-time capability as much as possible.

VI. IMPLEMENTATION OF WORKING MODES

With the great simplicity, TowerSketch can be implemented
upon a diversity of platforms, giving operators great flex-

ibility of deploying SketchINT. We have completed three
types of TowerSketch implementations, corresponding to the
three working modes, respectively. First, we present edge-
switch-based TowerSketch which runs on P4-programmable
edge switches. Second, considering the limited memory in
switches, we present the kernel-based TowerSketch which
runs on end-hosts with abundant memory resources. Third, to
avoid consuming the expensive CPU resources in end-hosts,
we present the FPGA-based TowerSketch which can run on
FPGA-based SmartNIC for economic benefits. This section
demonstrates the details of each implementation type.
A. TowerSketch on P4-capable Switches

We have implemented our TowerSketch on P4-capable
Tofino switches, which can be used as edge switches. Then,
edge switches can collect INT metadata fields and perform
TowerSketch measurement tasks. To perform all measurement
tasks in P4-capable switches, we need the same number of
TowerSketches as the maximum hop count in data centers,
which is usually 5. Since the Tofino switch processes packets
in a pipeline manner, TowerSketch cannot support CU inser-
tion. We implement TowerSketch using several registers and
Stateful ALUs (SALU). For each counter array Ai consisting
of wi counters, we build a register with wi register elements,
where each element stores a corresponding counter inAi. Note
that the registers in Tofino switch only support 8-bit, 16-bit and
32-bit elements, we use the register elements that are slightly
larger than wi to store the counters. For each incoming packet,
we use its 5-tuple flow ID to locate the hashed element in each
array with pairwise-independent hash functions. Then, we use
the SALU to execute the hashed element in each array as
described in Section IV.

We compare the resource usage of our TowerSketch with
a baseline forwarding program switch.p4. Table IV shows
the additional resource usage to build a TowerSketch with the
following parameters: d = 3, δi = 2i+2, and wi = 217−i. We
find that compared with switch.p4, the additional resource
usage is less than 8% across all resources except for SALU.
The additional usage percentage of SALU is naturally higher
than other resources because we need to use SALU to access
the registers. Note that the ASIC processing throughput does
not decrease as long as the resource usage can fit into the
ASIC resource constraint.

Table IV: Resources usage on P4-capable switches.
Resource types Baseline Additional usage
Stateful ALU 16 18.75%
VLIW Actions 82 4.88%
TCAM 145 0.00%
SRAM 562 2.67%
Hash Bits 1851 4.86%
Tenary Crossbar 409 0.00%
Exact Crossbar 371 7.27%

B. TowerSketch on Single/Multi-core CPU
We implement TowerSketch in the user space on both

single-core and multi-core CPU platforms. We integrate Tow-
erSketch with a packet receiving program written in DPDK
[62] to perform per-flow per-switch measurement. For multi-
core CPU platform, we build TowerSketches shared by all



cores and use the lock mechanism for synchronization. To
speed up the insertion, we can also abandon the complicated
lock mechanism. Our experimental results show that the lock-
free version of TowerSketch achieves much higher throughput
with almost no loss in accuracy (see § VII-B).
C. TowerSketch on FPGA

To verify that our TowerSketch can be implemented on
FPGA-based SmartNIC, we have implemented our Towers-
ketch (using CM insertion) on Xilinx Virtex-7 VC709 with
the following parameters: d = 3, δi = 2i+2, and wi = 217−i.
CU insertion cannot be efficiently implemented because the
FPGA process packets in a pipeline manner. We use FPGA
device (model XC7VX690TFFG1761-2) as the target plat-
form, which has 433200 Slice LUTs, 866400 Slice Registers,
and 1470 Block RAM Tiles (i.e., 30.6Mb on-chip memory).
The resource usage information is as follows: 1) TowerSketch
uses 45.5 Block RAM Tile, 3.1% of the total on-chip Block
RAM; 2) TowerSketch uses 686 LUTs, less than 1% of the
433200 total available. TowerSketch is fully pipelined, which
can process one packet in every clock, and update the d hashed
counters after eight clocks. The clock frequency of our FPGA
is 365 MHz, meaning an insertion speed of 365 Mpps.

VII. EXPERIMENTAL RESULTS

We conduct extensive experiments in our SketchINT proto-
type. We focus on the following issues:

• How accurate can TowerSketch perform the 6 local
measurement tasks? We implement TowerSketch using
C/C++ program, and evaluate the accuracy of TowerSketch
on single-core CPU and multi-core CPU platforms.

• How accurate can TowerSketch perform the 4 global
measurement tasks? We evaluate the accuracy of TowerS-
ketch in our SketchINT prototype.

• How much network overhead can SketchINT reduce
in the collection process? We compare the bandwidth
usage and the number of generated packets in the collection
process of SketchINT with the INT passport mode [12].

Evaluation metrics:
• Average Absolute Error (AAE): 1

m

∑n
i=1 |ni − n̂i|, where

m is the number of flows, ni and n̂i are the actual and
estimated flow sizes respectively.

• Average Relative Error (ARE): 1
m

∑m
i=1

|ni−n̂i|
ni

.
• F1 Score: 2·PR·RR

PR+RR , where PR (Precision Rate) refers to
the ratio of the number of the correctly reported instances to
the number of all reported instances, and RR (Recall Rate)
refers to the ratio of the number of the correctly reported
instances to the number of all correct instances.

• Relative Error (RE): |True−Est|True , where True and Est are
the true and estimated values, respectively.

• Weighted Mean Relative Error (WMRE) :
∑z

i=1 |mi−m̂i|∑z
i=1

(
mi+m̂i

2

) ,

where mi and m̂i are the true and estimated numbers of the
flows of size i respectively, and z is the maximum flow size
[63].

• Throughput: Million packets per second (Mpps).

A. Testbed Setup

Figure 4: Testbed.

As shown in Figure 4, we implement
the SketchINT prototype on a testbed
consisting of 10 Tofino switches and 8
end-hosts with 40GbE links in a FatTree
topology. The MTU of the network inter-
face cards (NIC) is set to 9000B. In each
switch, we insert an INT metadata field
consisting of a 16-bit predefined switch
ID and a 32-bit internal latency into each
incoming packet. The period that active
and idle sketches exchange their status is set to 5 seconds,
implying that the global analyzer collects sketches from end-
hosts in every 5 seconds. In INT passport mode, the mirrored
packets are considered without payload.

B. Experimental Results on Local Tasks
1) Experimental Setup: We use the anonymized IP traces

collected in 2018 from CAIDA [64], which is widely used in
prior works [63], [65]. Each trace contains about 2.3M packets
of 170K flows, with a monitoring time interval of 5s.

We compare TowerSketch with the most widely used CM
and CU sketches, and the state-of-the-art ElasticSketch. For
TowerSketch, we set d = 5, and δi = 2i for ∀i ∈ [1, 5].
We allocate the same amount of memory for each array
with different counter size. For CM and CU, we use 3 hash
functions as recommended in literature [66]. For ElasticSketch,
we set its parameters as the original paper [19] recommends.
We set the capacity of the hash table used in heavy change
detection and heavy hitter detection to 1024. We use the
famous MurmurHash [67] for all sketches. All experiments are
repeated 100 times and the average results are reported. We
vary the memory usage to evaluate the accuracy of different
sketches. This is equivalent to evaluate the scalability of
different sketches with respect to the number of flows that can
be monitored concurrently under the same memory usage. The
remaining settings are as follows:
• Heavy hitter detection: We set the heavy hitter threshold

∆h = 500, about 0.02% of the total packets.
• Heavy change detection: We set the heavy change threshold

∆c = 250, about 0.01% of the total packets.
• Processing speed evaluation: We conduct the flow size

estimation experiments on single-core CPU and multi-core
CPU. We allocate 2MB of memory to each algorithm. To
enlarge the subtle difference between different algorithms,
we use 5 hash functions for Tower, CM, and CU. On multi-
core CPU, we implement both the lock version and the
Lock-Free (LF) version of our TowerSketch.
2) Performance on Local Tasks:

Flow size estimation (Figure 5(a)-(b)): We find that the
average ARE of Tower is 13.9 times lower than CM, CU,
and ElasticSketch. The results show that when using 900KB of
memory, TowerCM achieves at least 1.9 times lower AAE and
at least 6.8 times lower ARE than the other three algorithms,
and TowerCU achieves at least 28 times lower AAE and at
least 29 times lower ARE than the others.
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Figure 5: Performance on local measurement tasks, where TowerCM represents the TowerSketch using CM insertion and
TowerCU represents the TowerSketch using CU insertion.
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(b) Single-core query speed.
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Figure 6: Processing speed on single-core CPU and multi-core CPU, where L represents the lock version and LF represents
the lock-free version.

Heavy hitter detection (Figure 5(c)-(d)): We find that Tow-
erCU always achieves better F1 score than CM, CU, and
ElasticSketch. The results show that when using 300KB of
memory, the F1 score of TowerCU reaches 0.9997, and the
ARE of TowerCU achieves 3×10−4, which is at least 5 times
lower than the others.
Heavy change detection (Figure 5(e)): We find that TowerCU
achieves better F1 score than CM, CU, and ElasticSketch.
When using 300KB of memory, the F1 score of TowerCU
is 0.998, while that of CM, CU, and ElasticSketch are 0.96,
0.98, and 0.99, respectively.
Entropy estimation (Figure 5(f)): We find that the average
RE of TowerCU is 5.7 times lower than CM, CU, and
ElasticSketch. The results show that when using 900KB of
memory, the RE of TowerCU is 2.42×10−4, which is at least
12.9 times lower than the other algorithms.
Cardinality estimation (Figure 5(g)): We find that Tower
achieves comparable accuracy with ElasticSketch and better
accuracy than CM and CU. The results show that when using
900KB of memory, the RE of TowerCU is 6.02×10−4, while
that of CM, CU, and ElasticSketch are 1.7× 10−3, 2× 10−3,
and 6.62× 10−4, respectively.
Flow size distribution estimation (Figure 5(h)): We find that
the average WMRE of Tower is 4.0 times lower than CM and
CU. The results show that when using 900KB of memory, the

WMRE of Tower is 0.09, while that of CM and CU are 0.38
and 0.35, respectively.
Speed on CPU (Figure 6(a)-6(d)): We find that Tower
achieves comparable processing speed with CM and CU
on single-core CPU. The results show that the throughput
of TowerCM is 22.6Mpps, while that of CM and CU are
27.1Mpps and 21.7Mpps, respectively. Among the five al-
gorithms, ElasticSketch achieves the fastest speed, but our
Tower has higher accuracy. On multi-core CPU, the lock-free
version of Tower achieves much higher insertion speed, and
the accuracy loss incurred by concurrency is negligible. The
results show that when using 30 threads, the Lock-Free version
of Tower can reach a throughput of 274Mpps, which is 1.96
times higher than the lock version.

In summary, compared with prior arts, our TowerCU
achieves better accuracy in most local measurement tasks. This
is because TowerSketch automatically stores large flows into
large counters and small flows into small counters, and thus
make full utilization of every bit. In addition, on multi-core
CPU, the lock-free version of TowerSketch achieves extremely
high throughput without compromising the accuracy, indicat-
ing that the complicated locking mechanism can be abandoned.

C. Experimental Results on Global Tasks
1) Experimental Setup: In our SketchINT system, we con-

figure the eight end-hosts to send and receive traffic at the
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Figure 7: Performance on global measurement tasks.
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Figure 8: Bandwidth and packet number overhead.
same time, and they use the Traffic Generator [68] to generate
the traffic under DCTCP [69] distribution. Each end-host
independently builds several TowerSketches to perform the
measurement tasks. An analyzer collects the sketches every
5 seconds and performs further network-wide analysis. To
provide ground-truth analysis, we dump all packets in the
network into a trace every 5 second. Each trace contains about
16M packets and 73K flows.

Since ElasticSketch does not naturally support the global
tasks, we just compare TowerSketch with CM and CU. For
TowerSketch, we set d = 3, and δi = 2i+2 for ∀i ∈ [1, 3].
For CM and CU, we use 3 hash functions. For per-switch
heavy hitter detection, we set ∆h = 1500. For per-switch
heavy change detection, we set ∆c = 750. And for per-flow
per-switch inflated latency detection, we set ∆l = 5.

2) Performance on Global Tasks:
Per-switch heavy hitter detection (Figure 7(a)): We find
that TowerCU is more accurate than CM and CU. When using
10KB of memory, the F1 score of TowerCU is 0.765, while
that of CM and CU are 0.446 and 0.667, respectively. The F1

score of TowerCU reaches 0.99 under 50KB of memory.
Per-switch heavy change detection (Figure 7(b)): We find
that TowerCU is more accurate than CM and CU. Under 10KB
of memory, the F1 score of TowerCU is 0.688, while that of
CM and CU are 0.462 and 0.536, respectively. Under 50KB
of memory, the F1 score of TowerCU reaches 0.98.
Latency estimation (Figure 7(c)): We find that Tower
achieves at least 0.52× lower ARE than CM. Under 3MB
memory, the ARE of Tower is 0.11, while that of CM is 0.18.
Inflated latency detection (Figure 7(d)): We find that Tower
always achieves better F1 score than CM. When using 600KB
of memory, the F1 score of Tower is 0.976, while CM is 0.961.
Bandwidth overhead and packet number comparison (Fig-
ure 8(a)-8(b)): We find that SketchINT can achieve almost
the same accuracy as INT while only using less than 3%
bandwidth of INT, reducing the number of packets by 3 ∼ 4

orders of magnitude. We evaluate the bandwidth overhead and
the number of generated packets of SketchINT on latency esti-
mation task. We use Normalized Bandwidth (NB) to represent
the ratio of the bandwidth overhead in the collection process
of SketchINT to that in the standard INT passport mode. We
use Normalized Packet Number (NPN) to represent the ratio of
the number of packets in the collection process of SketchINT
to that in standard INT passport mode. The results show that
only 3% NB and 0.03% NPN can achieve < 5% ARE on the
latency estimation task.

In summary, SketchINT achieves high accuracy because
TowerSketch can efficiently encode per-flow information.
SketchINT supports various global measurement tasks as we
can insert any desired INT information into the packets. By
first aggregating per-packet INT information into per-flow in-
formation and then encoding it into TowerSketches, SketchINT
significantly reduces the number of additional packets and
bandwidth usage. We believe such a combination of INT
and TowerSketch is promising and can support many more
measurement tasks.

VIII. CONCLUSION

In this paper, we present SketchINT, which empowers
INT with sketches to provide per-flow per-switch network
measurement with low network overhead. For deployment
flexibility, a simple and accurate sketch, namely TowerSketch,
is designed to support multiple local and global measurement
tasks. We have fully implemented a SketchINT prototype
on a testbed consisting of 10 programmable switches and
8 end-hosts. We also verify that our TowerSketch can be
implemented on four platforms: single-core CPU, multi-core
CPU, FPGA and P4 switches. Extensive experimental results
on the testbed verify that SketchINT provides per-flow per-
switch measurement, while achieving simplicity, accuracy and
low network overhead simultaneously.
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