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Abstract—Data center workload fluctuations need periodic,
but careful scheduling to minimize power consumption while
meeting the task completion time requirements. Existing data
center scheduling systems tightly pack containers to save power.
However, with the growth of multi-tiered applications, there is a
significant need to account for the affinity between application
components, to minimize communication overheads and latency.
Centralized container scheduling systems using graph partition-
ing algorithms cause a significant number of task migrations,
with associated downtime.

We design pMACH, a novel distributed container scheduling
scheme for optimizing both power and task completion time in
data centers. It minimizes task migrations and packs frequently
communicating containers together without overloading servers.
pMACH operates at peak energy efficiency, thus reducing energy
consumption while also providing greater headroom for unpre-
dictable workload spikes. We also propose in-network monitoring
using smartNICs (sNIC) to measure the communications and then
perform scheduling in a hierarchical, parallelized framework to
achieve high performance and scalability. pMACH is based on
incremental partitioning and it leverages the previous scheduling
decision to significantly reduce the number of containers moved
between servers, avoiding application downtime.

Both testbed measurements and large-scale trace-driven simu-
lations show that pMACH saves at least 13.44% more power com-
pared to previous scheduling systems. It speeds task completion,
reducing the 95th percentile by a factor of 1.76-2.11 compared to
existing container scheduling schemes. Compared to other static
graph-based approaches, our incremental partitioning technique
reduces migrations per epoch by 82%.

Index Terms—Data center scheduling, power saving, cost
saving, meeting SLA

I. INTRODUCTION

Striking the right balance between conflicting scheduling
requirements such as overprovisioning to satisfy an appli-
cation’s service level agreements (SLA) vs. tightly packing
servers to save power in a data center (DC) can be challenging.
Tightly packing containers is necessary to achieve high server
utilization and power saving [1]–[4] by turning off idle servers.
In general, DCs operate at ∼ 20% server utilization [5]–
[7] and 10% network utilization [2], [8] in order to meet
application SLAs. However, this results in high overall DC
power consumption as more servers remain powered on.

While there exists some prior work to minimize both power
and task completion time [9], they are not incremental, leading
to a significant number of container migrations. They ignore
the cost of container migrations when adapting to workload
changes or when the workload is consolidated to a smaller
number of servers to reduce power consumption. Container
migration (e.g., CRIU [10]) also results in downtime [11],

and frequent migrations can adversely impact task completion
times and are likely to result in SLA violations [12]. Thus, it is
desirable to have a DC scheduler that simultaneously reduces
power, task completion time, and container migrations and
is also scalable to DC scales. The challenges are several -
the need to operate servers efficiently [13], support fluctuating
workloads [8], account for application container affinity [14],
and account for migration overheads [11].

Today’s DCs typically employ some form of heuristic-driven
bin packing such as RC-Informed [15], Borg [16], pMapper
[17] and others [18]–[20]. These solutions do not consider
container affinity, potentially resulting in hosted cloud appli-
cations having higher latency [9] due to large inter-container
communications. State-of-the-art task placement frameworks
such as Borg [16] and RC-Informed [15] pack containers in
highly utilized servers. Borg aims to reduce stranded resources
while RC-Informed over-subscribes CPU resources at 125%
[15], as a way of minimizing the number of servers deployed.
To minimize power consumption, pMapper [17] determines the
target utilization for each server based on the power model for
the server. It then places VMs on servers using a bin-packing
algorithm, trying to meet the target utilization on each server.
E-PVM [21] places containers on the server with the lowest
utilization, so as to leave large headroom for load spikes and
achieve low task completion time.

Goldilocks [9] is another approach for scheduling latency
sensitive tasks in a DC. It balances task completion time
and energy, benefiting from placing frequently communicating
containers together. However, it uses a centralized, periodic
graph partitioning and scheduling policy using Metis [22],
which does not scale to large DCs consisting of tens of
thousands of servers. The change in container graph going
from one epoch to the next may be incremental, but re-
partitioning the entire graph, as in [9], results in a lot
of container migrations. Vertices can be moved from one
partition to another due to repartitioning. As vertex migrations
correspond to container migrations, they are expensive and
must be minimized. Furthermore, their work does not consider
the overhead associated with transmitting the traffic matrix.

A DC cluster of several thousand servers, switches and links
is typically broken up into smaller identical units. These units
are called pods, comprising of several hundred servers along
with the top-of-the-rack and aggregation switches. The DC
network provides high-performance connectivity between all
pods in the DC. We propose pMACH a Two-Tier distributed
scheduling framework to adaptively ‘right size’ the DC by
first considering a pod-level partitioning of containers, and978-1-6654-4131-5/21/$31.00 ©2021 IEEE



then repartitioning the container sub-graph within a pod.
pMACH schedules groups of containers (pMACH is generic,
and may be used for scheduling VMs as well) of a partition
on a server. It minimizes container migrations by adopting an
incremental partitioning technique. pMACH’s main focus is on
achieving scalability using a Two-Tier partitioning algorithm,
and executing the algorithm in an entirely distributed manner,
unlike the centralized approach that has been the state-of-the-
art. pMACH’s strengths are:

• Scalability: pMACH can schedule a large number of
containers over a cluster of ten thousands of servers in a
relatively short time.

• Multi-objective optimization: pMACH balances be-
tween power consumption, task completion time, and task
migrations.

• Efficient: pMACH only requires a small amount of
processing resources (few cores on a select server in each
pod of the DC), and uses network offload to relieve CPU
cores of scheduler related activity.

• Practical: rather than assuming the container communi-
cation graph, pMACH collects the needed information in
real-time on a Smart network interface card (sNIC).

pMACH significantly reduces task completion time as
containers that frequently communicate with each other are
placed together in the DC topology. Power saving is achieved
by having a minimal number of servers, so that unused
servers can be turned off. Container migrations are reduced
by accounting for dirty vertices (vertices that are moved
from their original group to another group in the graph),
thereby minimizing downtime. We consider three mechanisms
to perform hierarchical partitioning of the container graph,
namely, ParMetis Base partitioning, ParMetis Adaptive par-
titioning [23], and Tabu Search. Both ParMetis offerings (e.g.
Base and Adaptive) are highly parallelized. The difference
between them is that Adaptive partitioning reduces container
migrations and is faster to deal with workload variation. Tabu
Search is a widely used meta-heuristic for graph partitioning as
shown in [24]–[26] and allows us to provide a multi-objective
cost formulation, accounting for container migration costs.
Tabu Search however has poor scaling properties for larger
graphs. Hence, we propose a hierarchical Two-Tier partitioning
architecture that combines the advantages of both ParMetis
Adaptive partitioning and Tabu search.

To obtain the container graph, we use a sNIC to collect
the communication graph and provide it to the appropriate
ParMetis graph partitioning worker nodes. This helps us save
crucial CPU cycles. We use an efficient data stream sum-
marization [27] to derive the edge weights with reasonable
accuracy to allow frequently communicating container pairs
to be placed together, to minimize task completion time.

Both testbed measurements and large-scale trace-driven
simulations show that pMACH saves 13.44% more power
compared to other scheduling systems. It speeds task com-
pletion, reducing the 95th percentile by a factor of 1.76-2.11
compared to existing container scheduling schemes. Compared

to the static graph-based approach [9], our incremental parti-
tioning technique reduces the migrations per epoch by 82%.
Our major contributions include:
• A distributed scheduling system to scalably schedule

containers across tens of thousands of servers.
• A Two-Tier scheduler composed of ParMetis Adaptive

partitioning and Tabu Search to help reduce the parti-
tioning time and container migrations.

• An efficient telemetry data structure on the sNIC to obtain
the container graph in real-time.

• We implemented pMACH in a DC testbed (Cloudlab
[28]) using 16 servers. We also implemented a large-
scale flow-level simulation to demonstrate the scalability
of pMACH.

II. BACKGROUND AND RELATED WORK

Problem Statement: A DC scheduler runs hundreds of
thousands of jobs, from many thousands of different appli-
cations, across a number of clusters each with up to tens of
thousands of machines [16]. This work focuses on scheduling
for light-weight container instances. The broad goals for a
power and migration aware DC scheduling approach are:
• Task Completion Time: There is a need to honor

container resource requirements and place frequently
communicating container pairs together so that the task
completion time (latency) is reduced.

• Power Consumption: It is desirable to consolidate con-
tainers to fewer servers and operate them at peak energy
efficiency.

• Downtime: It is important to minimize the downtime
impact of container migrations.

Related Work: E-PVM and RC-Informed are instances of
the vector bin packing that model static resource allocation
problems, where there is a set of servers with known capacities
and a set of services with known demands [19]. Firstly,
E-PVM distributes containers to the least occupied servers,
leaving sufficient head room for spikes, but resulting in un-
desirably higher power consumption [21]. Alternatively, RC-
Informed [15] predicts the workload for the scheduler to safely
oversubscribe resources and tightly pack containers, thereby
consuming less energy compared to E-PVM [9]. The problem
with E-PVM and RC-Informed is that they do not consider
container pair affinities and nor do they take advantage of
peak energy efficiency. Compared to E-PVM, 6.6% to 18.8%
power can be saved by alternatives that pack containers more
tightly [9]. Furthermore, workload prediction can be imperfect
and RC-Informed is shown to predict a new VM’s CPU
utilization with only 81% accuracy [15]. Under-prediction will
cause the target peak utilization to be exceeded, and with
oversubscribing of resources at 125%, it can result in violating
latency requirements. Thus, it is desirable to have a lower
utilization level for each processor and still save energy.

Another approach is to represent containers and the com-
munication between them as a graph and use partitioning
to allocate containers to different nodes [9]. The approach
considers a container graph with resource demands as vertex



weights and inter-container communication as edge weights.
By running the graph partitioning algorithm accounting for
edge cut and partition aggregate utilization, containers with
high communications are grouped together and the load of
the container group gets balanced. Goldilocks [9] is based
on periodic partitioning of the container graph by Metis
[22] and mapping it to DC resources. According to the
formulation in [9], Metis K-Way partitioning places frequently
communicating containers together by minimizing edge cut
(e.g., communication between servers). It also respects server
capacities by balancing container resource demands across
servers.

Tabu Search is a widely used meta-heuristic for graph
partitioning as shown in [24]–[26] and allows us to provide a
custom cost formulation that can account for the cost of mi-
grations. Local search methods have the tendency to be stuck
in suboptimal regions. Tabu Search enhances the performance
of these techniques by prohibiting already visited solutions
or others through user-provided rules [29]. As shown in the
next section, Tabu search reduces the number of migrations
considerably, which is an important criterion.

Outstanding Challenges: The shortfall of Goldilocks is
that the partitioning at every epoch is not incremental, causing
a lot of container migrations, and it is not parallelizable,
making it slow. In reality, there are only small changes in
the workload between epochs. Incremental partitioning [23]
reduces vertex migrations while reducing the edge cut and load
imbalance. ParMetis is a Message Passing Interface (MPI [30])
based graph partitioning technique that distributes the graph’s
vertices across processing cores, to reduce the partitioning
time. Instead of the centralized partitioning and scheduling in
Goldilocks, we envision a distributed architecture to do both
functions. Thanks to advances made in the graph partitioning
algorithms, edge-cut minimization and load balance can also
be carried out in parallel (e.g., multi-core or multi-server)
by using ParMetis [23]. Alternatively, we could use Tabu
Search also, but it is not scalable. The next section shows
how our Two-Tier approach combines the benefits of Adaptive
partitioning and Tabu search for a scalable design.

III. MOTIVATING EXPERIMENTS

In this section, we carry out several experiments to measure
the impact of container affinity, energy consumption and
migrations on the performance of a DC. We also test how
all these factors can be improved through graph partitioning.
A. Metrics

Container Affinity: Our previous work [9] shows that it
can achieve 2.6 times better task completion time compared
to alternatives such as E-PVM, RC-Informed, and p-Mapper
by grouping frequently communicating containers together. To
understand this in our context, we utilize a 10-tier Kubernetes
microservice application provided in [31] on a testbed with
four servers connected by an intermediate switch. First we
let the Kubernetes scheduler decide the container placement
by itself and in the second scenario we place the high
affinity container pairs together (e.g. CheckoutService with
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PaymentService) by setting the nodeName [32] configuration.
In Figure 1(a) we show that by exploiting affinities across
three services (Catalog, Checkout, and Payment) the 95th
percentile response time sees a speedup of 1.5, 1.2, and 1.5
times, respectively. This is a different workload compared to
[9], resulting in a lower speedup. Clearly, container affinity
must be considered while placing the containers, unlike other
bin packing approaches such as E-PVM and RC-Informed.

Energy Consumption: Figure 1(b) shows a boxplot of the
energy consumption in Joules, measured using RAPL [33]
with respect to the load on the CPU. In this experiment,
we use a 16 core Intel(R) Xeon(R) CPU D-1548 2.00GHz
x86 64 architecture CloudLab [28] instance. We toggle the
CPU utilization on all CPU cores of the instance (x-axis in
Figure 1(b)) and study the total energy consumed by the
CPU package (y-axis in Figure 1(b)) to complete a buffer
I/O workload [34]. We observe that the energy consumed is
lowest around 65% to 75% CPU utilization, displaying a ‘U’
curve for energy consumption. Similar observations have been
made in the past [9], [35], generally referring to it as Peak
Energy Efficiency, which is defined as the point achieving the
maximum number of operations completed per watt. Such a
strategy saves more total server power, while leaving a larger
headroom to deal with instantaneous load fluctuations. The
non-linear relationship between CPU load and power curve
may be attributed to the cubic reduction in processing power
with a linear reduction in performance for DVFS and dynamic
overclocking, such as with Intel’s TurboBoost [35]–[38].

Migrations: Consolidation can contribute to considerable
power savings by turning off both servers and network
switches and links. Maintaining affinity among containers
is important to reduce communication overhead and reduce
task completion time. The byproduct of consolidation and
enforcing affinity are migrations. Containers will have to be
moved at scheduling epochs, resulting in container migration
overheads (both additional processing and communication)
and undesirable downtime. Figure 1(c) shows that using
CRIU [10] a Memcached container instance from CloudSuite
[39] takes upwards of 3.5 seconds to migrate. Furthermore,



the image predump, image transfer using rsync, and image
restore require stopping application execution resulting in
application downtime. Overall, it is important to minimize
migrations, which was not considered earlier (e.g., [9]). The
typical sources of migrations delays are 1) checkpoint/restore
2) writes to remote storage, and 3) scheduling delays [40].
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Fig. 2: Partition goodness for different approaches.

B. Effective Graph Partitioning

Since we transform the container placement problem to a
graph partitioning algorithm, we must consider how effective
the partitioning is. ParMetis distributes vertices among cores
(e.g. MPI workers) to parallelize the algorithm while balancing
the load on the MPI workers. The technique can operate in
two modes, namely, COUPLED or UNCOUPLED. These two
approaches vary in partitioning time. In the COUPLED ap-
proach all vertices that belong to the same original partition are
placed within the same CPU core before the next partitioning
phase starts. The advantage of the COUPLED approach is that
partitioning time is much lower because of increased local
computation and reduced communication between the cores
[41]. One constraint while running in the COUPLED mode is
that the number of MPI workers must equal the original and
target number of partitions. As we explore the partitioning
time in this section by varying the number of partitions (e.g.
1024), we cannot physically have those many MPI workers,
forcing us to operate in the UNCOUPLED mode. Later in the
paper, we explain how we can scalably respect this constraint
imposed by the COUPLED approach and leverage its speedup.

Graph partitioning imposes significant processing require-
ments with large graphs. Even though it is possible to have
a 256-node MPI cluster [42] that can quickly partition such
graphs, it would be impractical and expensive to have such a
dedicated cluster in a DC. We perform the graph partitioning
in a distributed manner in the DC by carefully designating
CPU cores in selected servers in each pod of the DC. Taking
advantage of the high-bandwidth links in the DC, and intelli-
gently splitting it into a hierarchical solution, we are able to
partition the large graph rapidly. Figure 2 shows the clustering

goodness for various platforms such as ParMetis base par-
titioning (Base), ParMetis Adaptive partitioning (Adaptive),
Tabu Search, and a combination of these.

To manage the scale of the problem, we envisage parti-
tioning the graph first at a coarser granularity (Tier-1). Then,
we partition each subgraph (Tier-2). Adpar-Adpar refers to
the partitioning result, where the first tier of partitioning
employs the ParMetis Adaptive partitioning, generating X
partitions. The second tier partitioning then internally par-
titions the graph, using ParMetis Adaptive partitioning, into
Target #Partitions

X partitions. We also define Two-Tier, where
the first tier carried out by ParMetis Adaptive partitioning and
the second tier is carried out using Tabu Search. We carry out
several experiments to compare these partitioning techniques.
The partitioning was done using a single CPU core.

Container Graph: We utilize a trace derived from the
CDF of DC traffic, using a NS3-based DC simulation [43].
We obtain the communication matrix time series for different
workloads. This yields both the container-pair connectivity
and the edge-weights that represent the amount of commu-
nication per epoch. The container graph vertex weights are
the percentage utilization, measured when running CloudSuite
[39] container instances on CloudLab [28] servers. Using the
docker stat API [44], we measure the CPU, memory and disk
utilizations. We use three different workloads (Memcached,
Hadoop , and web-search using Apache Solr).

The simulation generates the connectivity graph and the
communication (i.e., edge weights), and the testbed measure-
ments provide the utilization (i.e., vertex weights). We com-
bine the two based on the application type (e.g. Memcached,
Hadoop, Websearch). For example, if an edge connects a
Memcached client to a server, then the vertex weight is that
of the Memcached client and server. This graph has 4 million
vertices. We consider three metrics for partition goodness and
relate them to the container placement problem.

Imbalance: Vertices represent the container resource re-
quirements in a multi-dimensional form (e.g. CPU, MEM,
DISK). Our goal is that each partition, depicting a server
resource in a DC, should see close to the same, balanced,
load. Therefore partition imbalance (e.g., deviation from mean
partition weight) must be minimized. Figure 2(a) shows the
imbalance, for every dimension, computed as the average
absolute difference between each partition’s weight and the
mean partition weight. In this experiment we set the number
of partitions to 1024. Figure 2(a) shows that ParMetis Base
partitioning has the lowest partition imbalance. Adaptive parti-
tioning is more imbalanced as it tries to minimize migrations
(e.g. it prioritizes vertex moves that place the vertices back
to their original partition). The hierarchical approach, Adpar-
Adpar, has a similar imbalance as Adaptive partitioning as
it relies on the same mechanism. Tabu Search results in
higher imbalance as it penalizes vertex migrations more.
Finally, Two-Tier (i.e., Adaptive at the coarse level and then
Tabu Search) depicts slightly higher imbalance compared to
adaptive partitioning as the second tier Tabu Search heavily
penalizes container migration within the sub-graph.



Edge Cut: Edge weights represent the communication
between the containers, and the edge cut denotes the communi-
cation intensity between partitions. As partitions represent the
placement of containers on a physical server in our case, the
more we reduce the edge cut, the more we take advantage of
container pair affinity with frequently communicating contain-
ers being placed closer together. Figure 2(b) shows the edge
cut relative to base partitioning, e

eBP
, where e denotes the edge

cut provided by the partitioning algorithm and eBP denotes the
edge cut afforded by Base partitioning. Adaptive partitioning
and Adpar-Adpar depict very similar edge cut and sometimes
even lower than Base partitioning. As Tabu Search heavily
penalizes vertex migrations that are required to minimize edge
cut, standalone Tabu search has a higher edge cut. Finally,
Two-Tier improves over Tabu search by leveraging the lower
edge cut across coarse-grained partitions generated by Tier-1.

Migrations: The graph is repartitioned periodically to take
into account the change in workload that may result in
different assignment. We express migrations as a percentage
of the total number of containers running during a given
time interval. Figure 2(c) and 2(d) shows the percentage
of containers migrated as a consequence of two different
types of perturbations: namely, workload changes caused by
partitioning every 10 minutes considering the graph snapshots
at that time; and consolidation where the number of target
partitions are reduced by one to save energy. For hierarchical
partitioning schemes, as the Tier-2 sub-graph partitions will
correspond to servers, consolidation only reduces the target
number of partitions in the Tier-2 step. The target number
of partitions for the Tier-1 partitioning remains unchanged
as the coarsened partitions correspond to pods as described
below. Figure 2(c) shows that Base partitioning is ill-suited,
similar to Metis used in [9], for DC container placement,
since the number of migrations is very high. This is because
Base partitioning does not take the previous partitioning result
into account and only tries to aggressively minimize edge cut
and imbalance. However, Adaptive partitioning, shows very
few migrations for workload changes as it takes the previous
partitioning solution into account. But, it fails to yield the
same low number of migrations when there is consolidation
as compared to the original partitioning (e.g., previous epoch’s
partitioning result). It uses migrations to mitigate either the
poor balance or edge cut when one partition is taken away.

Figure 2(d) shows that none of the approaches using
ParMetis (e.g., Base or Adaptive) performs as well as Tabu
Search when considering consolidation in terms of vertex
migrations. Tabu Search’s custom cost function allows us
to provide a higher penalty for migration. With hierarchical
approaches, the first tier is not impacted by consolidation
because the target number of partitions is fixed, but the the
number of partitions for the second tier may reduce. Adpar-
Adpar suffers because the second tier Adaptive partitioning
has too many migrations. The Two-Tier scheduler drastically
outperforms other approaches, except Tabu-Search, when con-
sidering consolidation. This is because the target number of
partitions for Tier-1 is unchanged and Tier-2 heavily penalizes

migrations by assigning a higher weight to migrations in its
formulation, while also including edge cut and imbalance.
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Fig. 3: Partitioning time for different platforms.

Partitioning Time: Figure 3 shows the partitioning time
on a 48-core machine by varying the number of CPU cores
devoted to computing the partitioning algorithm. The paral-
lelism (i.e., more CPU cores) helps reduce the partitioning
time for all the approaches. It shows the benefit of using
ParMetis instead of Metis, used in Goldilocks [9]. On the other
hand, the partitioning time increases with the increase in the
target number of partitions. Comparing Figure 3(a) and 3(b),
Adaptive partitioning is more scalable than base partitioning,
taking much less time to partition the graph. Latency with
Adpar-Adpar in Figure 3(c) goes down slightly relative to
Adaptive partitioning. This is because the Tier-1 no longer
has to generate a partitioning result with significant number of
partitions, thereby reducing the total partitioning time. Lastly,
Two-Tier takes slightly longer time than Adaptive partitioning
as it has to spend the second tier in the slower Tabu Search.

IV. PMACH: DISTRIBUTED CONTAINER SCHEDULING

We need to rapidly partition container graphs with mini-
mal communication overhead. End-hosts are responsible for
transmitting sub-graphs to designated partitioning workers
(pWorker) in the pod, avoiding communication across pods
(e.g., which is unavoidable in the centralized approach). We
do this in the background, with the partitioning task in epoch
t operating over data gathered in epoch t− 1. Next, the entire
container graph is partitioned using Adaptive Partitioning. It’s
highly parallel and focuses on container-pairs that commu-
nicate across neighbouring pods. Adaptive partitioning also
minimizes edge cut in the output partitioning. Lastly, to factor
the cost of migrations, since Adaptive Partitioning is poor
at consolidation, we run Tabu Search on the same pWorker,
which is slower but operates on a smaller graph. Altogether,
the distributed architecture for graph partitioning is a key
innovation that makes wide-scale, real-time scheduling that
is adaptive to workload changes, practical.



A. Two-Tier Hierarchical Scheduler Overview
A scheduler in a DC is typically responsible for the place-

ment of tasks among a large number, typically of the order of
10,000 servers (e.g., as in Google’s DCs [16]). Furthermore,
as in a fat-tree DC network (DCN) architecture (e.g., [45]),
we consider a k-ary fat tree network with k3

4 end hosts. In
our context that would roughly translate to 11,664 servers
distributed among 36 pods handled by one scheduler. To help
manage this scale, factoring in the complexity of the graph
partitioning algorithm, pMACH uses a Two-Tier hierarchical
scheduler, as shown in Figure 4. pMACH develops a two-level
graph partitioning algorithm, namely the ParMetis Adaptive
partitioning as the first tier and Tabu Search as the second tier.
Tier-1 is responsible for partitioning the container graph over
pods using the large-scale, scheduler-wide communication
graph as input. Tier-2 is responsible for intra-pod scheduling
using a smaller pod-wide communication graph as input. This
design is inspired by DC such as [16], [46] that use pods as
a logical and physical clustering of DC resources, creating a
modular solution that can adapt to different-size DCs.

Pod 1 Pod 2 Pod K
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Node N……..

Tier 1: ParMetis AdaptiveRepart

Tier 2: Tabu Search Tier 2: Tabu Search Tier 2: Tabu Search

Fig. 4: Two-Tier Hierarchical Scheduler

Adaptive partitioning of a graph with 4 million vertices,
with a target of 36 partitions, takes 101ms compared to
5619ms with Tabu Search. This speedup holds even as the
number of partitions increase. As the Tier-2 input container
sub-graph is small, partitioning takes at most 71ms. There-
fore, intra-pod scheduling is managed by Tabu Search for
scheduling the containers over fewer, k2

4 (324) servers. Since
pMACH employs an epoch based scheduler, we place new
containers according to the Best-Fit algorithm [47] with a 70%
cap on utilization (i.e., to operate at Peak Energy Efficiency).

In Figure 5, we show the three stages in our distributed
container scheduling technique to schedule containers on to
servers. The end hosts transmit the communication graph
to the designated pWorker within the pod for the purposes
of graph partitioning. Next, the Tier-1 ParMetis Adaptive
partitioning program is invoked. We designate one pWorker
(one core on one select server) per pod to partition the graph.
If a scheduler’s domain consists of k pods, then Adaptive
partitioning will take the container graph as input and generate
k partitions. In the next stage, the same pWorker in each
pod concurrently run independent instances of the Tier-2 Tabu
Search optimization problem where the input graph consists
only the containers running in this pod plus the graph changes
made by Tier-1 scheduler (i.e., inter-pod migration). Once the
serialized Tabu Search procedure for the pod terminates, we
migrate containers corresponding to dirty vertices from the
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original partition to the new partition, where the partition ids
correspond to server ids. Some containers may have to be
moved to another pod as per the Tier-1 partitioning output.
B. Tier-1 Scheduler: Container graph scheduling

min
∑

1≤i<j≤n

|Ec
i,j | (1)

W 1
d ≈W 2

d .. ≈Wn
d , where d ∈ D (2)

∀Pi,
∑
j∈Pi

Ac
j ≤ Bc

i , where 1 ≤ i ≤ n (3)

The Tier-1 scheduler runs ParMetis adaptive partitioning
using the objective function to minimize edge cut (Eq. 1).
It seeks to ensure the partition weights are almost balanced
(Eq. 2). Eq. 3 guarantees that the partition resource demands
do not exceed the pod capacities. Here, n represents the
number of partitions, Ec

i,j is the sum of edge weights between
partition i and j, W i

d represents the dth dimension weight of
partition i, where d ∈ D. The dimensions D include CPU,
memory, and disk. Bc

i represents the capacity of pod i. Pi

is the container group assigned to pod i and Aj represents
the resource demands of container j. This cost formulation
does not explicitly factor the cost of migrations, but it tries to
minimize migrations by leveraging the previous partitioning
result along with the assumption that graph changes are small.
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Our MPI program can run on a centralized server, where
the computation is distributed over CPU cores or in a dis-
tributed manner. According to Figure 6, pMACH can dis-
tribute vertices (e.g., containers) over pWorkers in four dif-
ferent ways (e.g., centralized/distributed, each being COU-
PLED/UNCOUPLED). We measure pMACH’s partition time
overhead for different implementations of ”Two-Tier” as
shown in Fig. 6. Partitioning time is the dominant time for
scheduling, followed by the migration related down-times,
whose impact on the task completion time is studied in section
V-A. In Figure 7(a), we see the partitioning time breakdown
for Two-Tier, composed of the latency to run ParMetis Adap-
tive repartitioning (Adaptive) and Tabu Search on a container
graph that contains 6 million vertices. We experiment with
a distributed approach (16 servers each with 1 core) and a
centralized server based approach (1 server with 16 cores). For
each, we explore the COUPLED and UNCOUPLED approach.
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Fig. 7: Partitioning time and coefficient selection

The COUPLED approach is on average 1.8 times faster than
the UNCOUPLED approach. By switching from the UNCOU-
PLED to COUPLED Tier-1 partitioning scheme, we see a sig-
nificant speedup because Tier-1 is responsible for processing
a large-scale container graph, dominating the total partitioning
time. We choose the COUPLED over UNCOUPLED approach
for its lower partitioning time. In a centralized approach, the
data collected across end-hosts in all pods must be transmitted
over the network to a single server (or a group of servers).
Typically, communication spanning pods is more expensive
since more links are traversed. The distributed approach,
reserves one pWorker per pod, resulting primarily in intra-pod
communication (from end hosts in the pod to the pod’s desig-
nated worker). Therefore, the COUPLED distributed approach
reduces the communication overhead across pods. Hence,
we opted for the COUPLED distributed approach over the
COUPLED centralized approach. The COUPLED-centralized
scheduler is 1.18 times faster compared to the COUPLED-
distributed approach. This is because workers communicate
over shared memory in the COUPLED-centralized scheduler
as opposed to network links. We tolerate this partitioning
time penalty to minimize cross-pod communication during the
traffic matrix distribution phase. In summary, we select the
COUPLED distributed scheduling mechanism as it is scalable
and faster. The complexity analysis for Tier 1 and 2 can be
found [48] and [49], respectively.

C. Tier-2 Scheduler: Intra-pod scheduling

We partition the intra-pod container sub-graph at the Tier-
2 scheduler once the Tier-1 scheduler has computed and
transmits the changes to the container graph to each of the
pods. The intra-pod container graph is the graph involving
the containers (i.e., the vertices) within that pod. The Tier-2
scheduler runs a sequential Tabu Search algorithm using an
objective function as shown in Eq. 4.

min α× EC + β × IB + γ ×DV

EC =
∑

1≤i<j≤n

|Ec
i,j |/E

IB =
1

n|D|
∑
d∈D

∑
1≤i≤n

|W i
d −Wd |/Wd

DV =
∑
v∈V

IPt−1(v)6=Pt(v)/|V |

(4)

∀Qi,
∑
j∈Qi

Ac
j ≤ Sc

i , where 1 ≤ i ≤ n (5)

The objective function consists of three parameters (e.g
α, β, and γ) that act as weights to the edge cut (EC),
imbalance (IB), and dirty vertices (DV ). The indicator vari-
able IPt−1(v)6=Pt(v) equals 1 when the vertex is assigned to
a different partition as compared to the original partition,
otherwise 0. To ensure edge cut, imbalance, and dirty vertices
are dimensionless, we normalize the multi-objective function
using the following: E represents the total edge weight and
|V | represents the total number of vertices. Equation 5 ensures
that the resource demands do not exceed server capacity. Sc

i

represents the capacity of server i. Qi is the container group
assigned to server i. By setting a large value for γ relative to
α and β, we penalize vertex migrations more. Therefore, even
in the event of consolidation, container migrations are low.

We employ Tabu Search for iterative refinement of our
graph partitioning solution, following [26]. Each solution (e.g.,
candidate) provides a cut, which assigns containers to servers.
We start with an original partition. At each iteration, we
compute the neighborhood solutions (e.g., current solution +
a candidate vertex migration). From this, we filter away Tabu
moves and then select the vertex move that satisfies Eq. 4.
Next, the current solution is updated and the selected move
is stored in a Tabu list for a predefined tenure (e.g., next
t iterations). The Tabu list ensures that a local minimum is
not returned by discouraging the search from coming back
to previously-visited solutions. Under certain circumstances
a move that is in the Tabu list can be selected, which is
referred to as the aspiration criterion. In our technique, a Tabu
move will be selected if it yields a solution that is better than
the best solution so far. The Tabu Search program stops if
a fixed Max Iterations value is reached or if there was no
improvement in b iterations. Next we describe how we select
the coefficient for Tabu Search. First, we compute different
partitioning outputs of the same graph by varying α and β
(e.g., α+β+γ = 1). We then summarize the partition quality
Q as 1

N(EC) +
1

N(IB) +
1

N(DV ) (see Eq. 4) where N scales



the individual quantity to the range [0, 1] across all partitioning
outputs of the same graph. Fig 7(b) shows how Q changes with
α and β. This plot summarizes multiple partitioning outcomes
over several input graphs, using the median Q. We observe (α,
β, γ) equal to (0.234, 0.512, 0.254) maximizes the median
value of Q and use it for subsequent experiments.
D. Distributed Monitoring using sNIC

Server Host

          sNIC       sNIC

Container
Container Container

VF VF VF

Physical Port

End Host
Other

End Hosts

MPI 
Worker
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Virtual Switch Monitor

Fig. 8: Pod Architecture: Monitoring and Graph Partitioning

Unlike previous approaches for scheduling and power man-
agement in DCs where the communication graph is assumed to
be known (or ignored), pMACH explicitly accounts for it and
utilizes a sNIC to collect the container-level communication
graph. The intra-host container communication graph is col-
lected by the software switch running on the host [50] while
the inter-host container communication graph is collected by
the sNIC, which are a often used in today’s DC networks [51].
We assume every node contains a sNIC to offload the traffic
matrix collection, reducing the overhead on the host while
collecting the information at link speed [51], [52].

Figure 8 shows the pod-architecture. All servers in the pod
are responsible for generating the communication graph. The
container resource utilization weights along with intra-host and
inter-host container communication weights are transmitted to
the designated server within that pod for graph-partitioning.
The vertex weights are derived using the docker stat API
[44]. The edge weights are measured in the sNIC and software
switch. As communication weights help characterize affinity,
estimating them helps us trade-off between space (memory
and bandwidth) vs. partitioning quality. Reducing bandwidth
consumption helps reduce interference for latency sensitive
user traffic. Reducing the partitioning quality degrades appli-
cation task completion time. It is possible to seek a balance
between space and application performance. We describe four
data plane algorithms below that we evaluated to collect the
communication graph edge weights. Based on the analysis in
section V-B, we choose Elastic Sketch.
Confluo: Uses a data structure called Atomic MultiLog that
supports highly-concurrent read-write operations [53]. Since
all the edge weights are accurately recorded, Confluo occupies
a lot of space, but has no error estimating edge weights.
CountMIN Sketch: A compact space data structure for sum-
marizing data streams. It uses hash functions to map container-
pair communication events to frequencies (e.g., edge weight)
at the expense of overcounting due to collisions [54].
Elastic Sketch: It consists of two parts: a “heavy” part
recording high-affinity container pair communication weights
and a “light” part recording low-affinity container pair com-
munication weights. The heavy part is a hash table while the

light part is CountMIN Sketch [27].
Nitro Sketch: It combines a Count Sketch [55] with a
sampling strategy to reduce the number of communication
edge weight update operations. It is the fastest, but results
in higher error estimating communication weights [50].

E. Mapping Partitions to Servers
The Tier-1 ParMetis scheduler equates pods to partitions

while the Tier-2 Tabu Search scheduler equates servers to
partitions. This is possible because both ParMetis and Tabu
Search support heterogeneous partitions. In ParMetis Adaptive
partitioning, the user can supplement the tpwgts argument to
regulate the fraction of vertex weight that should be distributed
to each partition (e.g. pod) for each dimension [41]. Likewise
in Tabu Search, vertex moves that violate server capacity can
be deemed as illegal moves (e.g., non-neighboring moves).
Therefore, both ParMetis and Tabu Search can capture het-
erogeneous pod and server capacities. Different CPU speeds
(e.g., GHz) can also be captured by adjusting vertex weights.

V. EVALUATION

We evaluate pMACH on a testbed implementation and
compare it with a number of alternatives published in the
literature, viz., E-PVM [21], MPP [17], Goldilocks [9], Best-
Fit [47] (e.g. Borg stand-in) and RC-Informed [15]. We also
do limited measurements with a sNIC. Finally, we carry out
large scale simulations to predict the performance of DCs.

Testbed: We run the Cloudsuite benchmark, which has
432 containers on a testbed containing 16 servers (each with
20 cores) on Cloudlab [28]. The container graph is obtained
from running the CloudSuite [39] workload components Mem-
cached, Hadoop MapReduce, and Apache Solr (an equal num-
ber of instances of each). The vertex weights, depicting server
resource consumption is measured using the docker stat API
[44]. CloudSuite benchmarks comprise multiple containers
with communication between each other, and the graph’s edges
characterizes this connectivity. We consider the provisioning
of new services where containers are created and killed in the
trace at different points in time based on real production data-
center traces [43]. We used the IPTraf monitoring tool [56] to
measure the communication rate between pairs of containers,
which is used as the edge weight. IPTraf monitors the virtual
port for each container. Similar to [2], [9], servers with no
active containers are turned off to reduce power consumption.
The epoch length is 10 mins. We empirically determined that
scheduling decisions with epoch lengths < 10 mins, made it
prone to transient changes, unsuitable for partitioning.
A. Testbed Results

Partitioning Quality: In Figure 9(a) we plot the number
of active serves over time for different scheduling techniques.
It is observed that E-PVM occupies the largest number of
servers, as it places containers in the least utilized server.
The bucket based RC-Informed technique yields the lowest
number of active servers due to CPU over subscription.
Best-Fit packs containers at 95% utilization, yielding fewer
servers compared to Goldilocks and pMACH that pack at
70% utilization to operate at peak energy efficiency. MPP tries



to minimize power consumption by greedily increasing the
target utilization on the server. Its curve overlaps with that of
Best-Fit in Fig. 9(a). In Figure 9(b) we see that the power
consumption with Goldilocks and pMACH is the lowest, a
reduction of 13.44% compared to RC-Informed. RC-Informed
consumes less power than E-PVM, Best-Fit, and MPP because
it occupies fewer servers. Goldilocks and pMACH consume
less power by running at utilizations that result in peak
energy efficiency in terms of tasks completed for the energy
consumed. Packing at 70% utilization also provides more head
room to sustain CPU utilization spikes. In these experiments
we have three different container workloads running (e.g.
Memcached, Hadoop, and Web-Search). In Figure 9(c) we
show the 95th percentile task completion time for the Twitter
Memcached Workload by varying the RPS between 44K to
440K across the entire testbed, which effectively varies the
resource utilization for the containers. The task completion
time is measured at the Memcached-client as it issues get
and set requests to the Memcached-servers. As expected,
Goldilocks and pMACH show a substantial improvement, with
the 95th percentile task completion time speedup of 2.011 as
it takes account of the container pair affinity.
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Fig. 9: Scheduling quality with a testbed containing 16 servers.

Goldilocks did not do incremental graph partitioning. At ev-
ery epoch, Goldilocks re-partitioned from scratch and assumed
the containers migrate to their new location, while ignoring
the overhead of migrations. Here, we incorporate the impact of
container migrations of pMACH in the application-level metric
of task completion time. In this experiment, containers are
migrated as per the scheduler’s decision, using CRIU. Much
of the scheduling activity is performed concurrently with task
execution. But, the downtime due to migrations directly im-
pacts the task completion time. The average downtime is 2.39s.
However, the parallelism in performing 44 migrations with all
16 servers results in 6.06s downtime. While this downtime
could be reduced by live migration optimizations, e.g., [57], it
is crucial to reduce the amount of migrations, as we strive
with pMACH. pMACH still achieves close to Goldilocks’

completion time by minimizing dirty vertices. Figure 9(d)
shows container migration events as a percentage of total
number of containers. Unlike Goldilocks, MPP and pMACH,
the other scheduling mechanisms distribute containers only
when they arrive, and have no migrations. Goldilocks has
average 51.8% migrations per epoch. But, pMACH only has
8.83% migrations, benefiting from its incremental partition-
ing approach. MPP has the least migrations as it migrates
containers only when the server’s utilization deviates from the
target utilization. This results in poorer task completion time
and higher power consumption than pMACH.
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Energy Consumption: We now verify if indeed running at
70% utilization is efficient for overall DC energy consumption.
We replicate experiments for Figure 9, but with different
maximum caps on CPU utilization, to examine sensitivity to
that parameter. Figure 10 shows the energy consumption, mea-
sured using RAPL [33], for 16 servers against different levels
of packing capacities using pMACH’s scheduler. Consistent
with previous work on Peak Energy Efficiency [13], [35] we
observe that the total power consumption is the lowest when
the utilization per server is capped at 70%.

B. Distributed Data Collection

We study different ways to collect the communication graph
on the sNIC using the trace to derive the partitioning quality in
section V-A. This section emphasizes the reduction in network
bandwidth for transmitting the graph and the resulting tradeoff
in application performance. We replay the packet trace over
a sNIC, transfer the data collected from the sNIC to the
host, and partition the communication graph using the data
collected from the sNIC as well as the intra-host container
communication obtained by the cluster metrics collection
framework. All the approaches other than Confluo [53] use
some sort of probabilistic approximation, allowing them to
have lower packet processing and data transmission overhead,
but are more prone to estimation error. In all the data structures
the tuple key is the source and destination container IP. We
also use a local testbed consisting of server with 20 Intel
Xeon 2.20GHz CPU cores and 256GB memory running Linux
(4.4.0-142). It has Netronome Agilio LX 2×40 GbE sNICs
which have 8GB DDR3 memory and 96 flow processing cores.

Figure 11(a) shows the task completion time vs the overall
memory usage at all the servers in a 16 server implementation.
We run the pMACH graph partitioning technique to determine
the container placement, similar to the testbed experiments
of section V-A. We compute the 95th percentile of task
completion time for the Memcached workload. Memory usage
reflects the amount of data that must be transferred over



the wire. Confluo consumes the most amount of memory
compared to all other platforms as it must track all edges,
but also yields the lowest task completion time. Nitro Sketch
and CountMIN Sketch result in high task completion times
because of the edge weight overestimation that results in many
of the low-affinity containers pairs being scheduled together.
These low-affinity containers compete with container-pairs that
actually have high affinity and thus result in overall poor
placement. We observe Elastic Sketch has a negligible increase
in task completion time compared to Confluo but with a
substantial memory usage reduction of 2.38 times. This is
because Elastic Sketch prioritizes the retention of heavy flows,
in turn preserving container-container affinity.

Figure 11(b) shows the result of the experiment in the
form of a time series, where the memory state of the data
summarization approach is transferred every epoch. Confluo
transfers 4.76MB of data per epoch, while the other dataplane
algorithms transfer only about 2MB data per epoch. Clearly,
Elastic Sketch, despite using 57.98% less bandwidth, has low
application task completion time, matching Confluo.
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Fig. 11: Task Completion Time w/other monitoring approaches

C. Large Scale Simulation Results

We also performed a flow-level, large scale simulation with
a 36-ary fat tree topology, with 11, 664 servers and a total
of 104, 958 containers (e.g., targeting 20-30% utilization for
baseline E-PVM [5]–[7]). We utilize a trace from a NS3-based
DC simulation [43]. We obtain the communication matrix time
series for different workloads (i.e., Memcached, Hadoop, and
Microsoft Web Search). This represents the container graph
edge weights and connectivity. We then merge the graph edges
with container graph vertex weights per application (e.g.,
Memcached). We ran actual instances of containers from the
Cloudsuite [39] benchmark on CloudLab [28] and measured
resource demands to get the vertex weights.

In Figure 12(a), we see E-PVM always chooses the least
utilized server, but all 11664 servers are active. RC-Informed
requires the least number of servers because it permits over-
subscription of server resources. Best-Fit requires a slightly
higher number of servers, because it sets target of 95% utiliza-
tion. Similarly, MPP does not oversubscribe server resources,
but greedily selects the servers to provision, based on the
power model. Goldilocks and pMACH use more of servers
as they operate at a lower target of 70% utilization. But, as
we see in Figure 12(b) for the power consumption, using the
power model we measured on CloudLab [28], Goldilocks and
pMACH consume the least energy as they operate at peak en-
ergy efficiency. In Figure 12(c) we compute the 95th percentile
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Fig. 12: Scheduling quality using trace driven simulation.

task completion time for Apache Solr search engine in the
testbed and vary the search request rate. We use the processing
time distribution for search queries based on a benchmark
measurements made in CloudLab [28]. We use packet latency
obtained from measuring the container pair communication
latency in our testbed using the Arista 7050SX-72Q switch.
We ignore the queuing delays based on typically low link
utilizations in DCs (< 25%) [58]. By accounting for container-
pair affinity, the 95th percentile task completion speeds up
by 1.76x. Lastly, in Figure 12(d) we see that the migrations
reduce from 51.70% with Goldilocks to 8.7% with pMACH.
MPP’s migrations remain below 1.3%, but consumes 19%
more power and 76% longer task completion time. This is
because MPP does not operate at peak energy efficiency and
ignores container affinity.

VI. CONCLUSION
pMACH is a framework that solves the complex provision-

ing problem in containerized data centers. pMACH includes a
novel graph-based locality aware container placement scheme
that significantly reduces power consumption, task completion
time, and migrations. We show that by operating server
resources at Peak Energy Efficiency, we both save power
and provide greater headroom for traffic spikes. Our Two-
Tier distributed graph partitioning architecture can scale to
tens of thousands of servers and compute the partitioning
result quickly. By carefully CPU cores in selected servers
in each pod of the data center, and taking advantage of the
high-bandwidth data center links, we split the graph partition-
ing into a hierarchical solution. pMACH tracks container-to-
container communication and uses data stream summarization
techniques to communicate the traffic matrices efficiently to
designated servers in each pod for partitioning the graph.
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