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Abstract—This paper proposes an IP forwarding information
base (FIB) encoding leveraging an emerging data structure called
a learned index, which uses machine learning to associate key-
position pairs in a key-value store. A learned index for FIB
lookups is expected to yield a more compact representation and
faster lookups compared to existing FIBs based on tries or hash
tables, at the cost of efficient FIB updates, which is difficult to sup-
port with a learned index. We optimize our implementation for
lookup speed, exploiting that for efficient FIB lookups it is enough
to approximate the key-position pairs with a piece-wise linear
function, instead of having to learn the key-position pairs. The
experiments using real BGP routing information snapshots sug-
gest that the size of the proposed FIB is compact and lookup speed
is sufficiently fast regardless of the length of matched prefixes.

Index Terms—Forwarding, learned index structure, longest
prefix matching

I. Introduction

Packet forwarding is one of the essential functions of IP,
and therefore much effort has been devoted to fast IP for-
warding [1]–[3]. IP forwarding has suffered from the complex
table lookup operation, i.e., longest prefix matching, due to
either the exploitation of ternary content addressable memory
(TCAM) or the adoption of classless inter-domain routing
(CIDR). That is, IP routers have to search their forwarding
information bases (FIBs) for the longest IP prefix that matches
the destination IP addresses. IP addresses and IP prefixes are
referred to as addresses and prefixes for notation simplicity.
This study aims at realizing fast FIB lookup by avoiding
longest prefix matching with an emerging data structure.

Longest prefix matching for IP forwarding is considered an
already solved issue; however, the increase in the number of
prefixes due to the trends in Internet business makes us revisit
fast longest prefix matching. One trend is that Internet service
providers (ISPs) are increasingly using longer prefixes than be-
fore to control customer’s traffic finely. The other is that IPv6 is
being deployed and thus in the near future the number of IPv6
prefixes will become much larger than that of IPv4 prefixes.

To circumvent the high energy consumption of TCAM
devices, two types of FIBs for longest prefix matching, which
are assumed to use only SRAM devices, were developed: Trie-
and hash-based FIBs. They address a problem raised by CIDR
that an address matches multiple prefixes since CIDR enables

This work has been supported by KAKENHI Grant-in-Aid for challenging
exploratory research 21K19771.

to aggregate prefixes. Longest prefix matching rather than
exact matching is used to search for the longest matched prefix.

Longest prefix matching is performing well in the current
Internet. It is, however, expected that trie- and hash-based
FIBs cannot scale to the increase in the number of IP
prefixes in terms of the computation time. The computation
time of longest prefix matching based on trie-based FIBs is
proportional to the average prefix length [4]. Although level
compression techniques, such as LC-trie [5] and Poptrie [6],
reduce the apparent length, such compression is not effective
for long prefixes. Similarly, the computation time of hash-
based FIBs increases in proportion to the average prefix length.

In this paper, we adopt exact matching rather than longest
prefix matching, inspired by the emergence of an index struc-
ture for key-value stores (KVSs), referred to as a learned index
structure [7]. We refer to a learned index structure as a learned
index for simplicity. A learned index uses machine learning to
associate keys and their positions in the KVS. The core idea to
enable IP forwarding with exact matching is that FIB entries
are divided into several sub entries so that all the prefixes in
the sub entries are disjoint. The idea is similar to the leaf-
pushing technique for tries [8].

The paper is inspired by the two studies: One study proposes
to use a learned index for IPv4 prefix matching. Higuchi
et al. [9] design an FIB lookup method according to exact
matching by leveraging a learned index and preliminarily
demonstrate that a learned index enables to construct a com-
pact FIB with fast lookup operation, which requires half the
memory size compared to the FIB based on LC-tries [5] and
realizes the same lookup speed. Another study, which does not
directly relate to longest prefix matching, reveals an important
insight into a learned index. Rashelbach et al. [10] reveal that
a learned index is a piece-wise linear function, provided that
all the machine learning models in the learned index are neural
networks with fully connected layers and the ReLU activation
function. They utilize this feature to derive the worst-case error
analytically and to realize efficient learning of models.

We argue that the essential feature of the learned index is not
to use machine learning to search a KVS but to approximate
the key-position relation of the KVS with a combination
of piece-wise linear functions, each of which is expressed
by a small neural network. Unlike the aforementioned two
studies [9], [10], which rely on machine learning techniques
for constructing a learned index, we propose a deterministic
method to directly design weights and biases of neural net-978-1-6654-4131-5/21/$31.00 ©2021 IEEE



works in a learned index.
The proposed method can design neural networks in a

learned index so that the maximum prediction error of the
neural networks is lower than the pre-determined threshold.
The proposal enables to optimize a learned index in the
following three ways: First, the proposal minimizes the number
of layers in neural networks of a learned index. Specifically,
we use neural networks of a single hidden layer because we
do not need to increase the number of layers to reduce the
prediction error. Second, the proposal eliminates multiple iter-
ations of the neural network computation, whereas the original
learned index recursively applies neural network computation
to achieve better predictions. This is because we can con-
trol the maximum prediction error without applying multiple
neural networks. Third, it optimizes the implementation of
a learned index to utilize the capability of state-of-the-art
CPUs. Specifically, with the proposal, the lookup program for
a learned index is entirely realized without loops and branches,
thereby achieving fast lookup.

In this paper, we propose an FIB based on the aforemen-
tioned optimized learned index. We refer to an FIB based on
a learned index as a learned FIB. The contributions of this
paper are summarized as follows:

• We propose a method to apply a learned index to encode
an FIB, which results in a more compact representation
than existing trie-based encodings [6]. This requires, how-
ever, eliminating longest prefix matching since learned
indexes only support exact matching. This sacrifices ef-
ficient FIB updates. Correspondingly, the current learned
FIB mainly focuses on encoding static FIBs, which
change only infrequently.

• We utilize the essence of learned indexes, which is to
approximate the key-position relations with piece-wise
linear functions. Based on this fact, we develop an algo-
rithm to design a learned index nearly optimal in terms
of its implementation. The proposed method is applicable
to not only IP FIBs but also general databases, which are
the original target of learned indexes.

• We develop an implementation of the learned FIB opti-
mized for recent CPUs. Using the implementation, we
demonstrate the following three factors: First, the FIB
lookup speed of the learned FIB is independent of the
prefix length. Second, the FIB lookup speed is sufficiently
fast though it is slightly lower than Poptrie [6], which is
one of state-of-the-art FIBs. Finally, the learned FIB is
compact and it fits into the second-level cache of a recent
CPU.

The rest of this paper is organized as follows: We introduce
the related work in Section II while describing the concept of
learned indexes in Section III. We describe the design rationale
of the learned FIB in Section IV, design the learned FIB in
Section V, and implement the learned FIB in Section VI.
We discuss open issues in Section VII. We evaluate the
performance of the implemented learned FIB in Section VIII.
Finally, we conclude this paper in Section IX.

II. Related Work
Fast IP forwarding is a traditional and fundamental research

topic, and there have been many solutions based on both
hardware and software. TCAM is widely used by hardware-
based solutions [11]. TCAM realizes constant-time complexity
by parallelizing matching operations for all stored prefixes.
Another hardware-based solution is to leverage FPGA to
parallelize search operations of multiple hash tables, each of
which maintains a different length of prefixes [12]. However,
the size of TCAM and FPGA’s on-chip memory is limited,
and thus an FIB does not entirely fit into such memory device
as the number of prefixes grows [13].

With the evolution of general-purpose CPUs, software-
based solutions have been revisited. The key for high-speed
FIB lookup is to fit an FIB into a fast but small memory
device, such as CPU caches, and thus compact trie-based data
structures have been studied well. Tries, however, reduce space
complexity at the cost of time complexity, and thus existing
studies aimed at reducing time complexity. Traditional
effort [5], [14]–[16] has reduced the number of vertices
traversed during longest prefix matching without sacrificing
space complexity much. A state-of-the-art trie-based solution,
Poptrie [6], employs two techniques: a multi-bit trie [16],
where multiple bits of the prefix are matched in traversing
each vertex, and direct pointing [15], [17], which skips
matching of upper bits of a prefix by a single access to an
array that stores pointers to sub trees of the trie. Asai and
Ohara [6] have reduced the number of instructions required
to traverse each vertex by leveraging an AVX instruction in
addition to the two techniques.

Despite the numerous effort, the lookup speed of the state-
of-the-art trie-based solutions [6] still depends on the length
of matched prefixes because they must traverse vertices de-
pending on the length. Prefixes equal to or longer than 24
bits dominate the current Internet traffic [18], and the length
of prefixes will be longer in the future due to the IPv6
deployment. Hence, our approach, learned FIB, is designed to
keep constant-time complexity regardless of the prefix length.

III. Learned Index
Learned index structures use one or multiple machine

learning models to associate keys and the positions of the
corresponding entries in a KVS. For notation simplicity, we
refer to a machine learning model and a learned index structure
as a model and a learned index, respectively. An overview
of a learned index is illustrated in Fig. 1. The algorithm of
learning indexes consists of the training and the search phase
since learned indexes rely on machine learning.

In the training phase, entries, pairs of a key and a value,
are sorted in ascending order of the keys and stored in an
array. An example of such an array is illustrated in Fig. 3
(the table in the left-hand side of the figure). The mapping
from the keys to the positions is regarded as a monotonically
increasing function, and therefore a regression model learns
the key-position mapping. We refer to the mapping from the
keys to the positions as the target function.
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Fig. 1. An example structure of learned index (recursive model index)

The search phase consists of the prediction and the local
search phase. First, given a key, the position of the key is
predicted with the models in the prediction phase. Unlike
traditional index structures, such as B-trees and hash tables,
the position predicted by the models contains a certain degree
of prediction error. The prediction error is defined as the
difference between the predicted and the actual position of
the key. Thus, a local search around the predicted position is
performed to find the key in the local search phase.

Accurate prediction is indispensable to minimize the speed
of a local search operation. Kraska et al. [7] propose a
recursive model index (RMI), which uses multiple small
models hierarchically, as shown in Fig. 1, rather than using
a single big model. Given a key, at each stage, one of the
models takes the key as an input and generates the prediction
result. The model in the next stage is selected according to
the prediction result, and the selected model generates the
prediction result recursively. Finally, the prediction result of
the last stage is used as the output of the RMI. Since each
model is responsible for a smaller area of the key-space than
the case of a single big model, the RMI predicts the positions
of keys with lower errors.

IV. Design Rationale
This section presents the design rationale of an FIB based

on a learned index, referred to as a learned FIB, hereafter.

A. Goals and Approaches
Our goal is to realize fast and constant-time FIB lookup

regardless of the length of matched prefixes.
It is of vital importance for fast FIB lookups that a lookup

algorithm achieves sufficiently low time and space complexity.
The designed algorithm, however, is sub-optimal in terms of
complexity since the designed algorithm is faster than the
optimal one on the assumed platform. Thus, we adopt, for
example, the linear search algorithm rather than the exponen-
tial search algorithm for the local search phase of the learned
index because it is faster for the designed learned FIB. In this
way, our choice depends on a router platform, and therefore
we describe the assumed router platform in the next section.

Our approach to realizing constant-time FIB lookup is to
eliminate longest prefix matching. For instance, the compu-
tation time of trie-based FIBs [5], [6] generally increases

with the length of matched prefixes because long prefixes
correspond to vertices of high depth [4]. The computation
time of hash-based FIBs [19] increases similarly because the
matched prefix is iteratively searched for from the longest
prefix to the shorter ones. In this way, longest prefix matching
incurs the computation depending on the length of matched
prefixes.

B. Assumed Router Platform

Recent advances in CPUs and fast networking technologies
for computers make a software-based router, which is built
on a computer without any TCAM devices, feasible, and we
assume a computer with recent CPUs as a router platform.

The CPU supports advanced instruction sets, i.e., single in-
struction multiple data (SIMD) instructions (and advanced vec-
tor extensions (AVX) in the case of Intel CPUs [20]) and neural
network instructions, such as the vectorized fused multiply-add
(FMA) instruction [21]. SIMD instructions complete the same
operation on multiple data simultaneously, thereby accelerating
the computation speed. The CPU has a three-level cache
system, which consists of a 1st-level instruction (L1I), a 1st-
level data (L1D), a 2nd-level (L2), and a 3rd-level (L3) cache.
Each CPU core has its exclusive L1I, L1D, and L2 cache, and
all CPU cores share the L3 cache.

We need to optimize the algorithm and the data structure of
a learned index to utilize the SIMD instructions. In addition,
we need to eliminate pipeline stalls to optimize computation
speed further. The major causes of pipeline stalls are cate-
gorized into the frontend bound, the backend bound, and the
bad speculation [22]. Pipeline stalls in the three categories are
mainly caused by instruction cache misses, data cache misses,
and branch miss-predictions, respectively. We do not address
pipeline stalls in the frontend bound since compilers often
address the elimination of pipeline stalls in the frontend bound.

We eliminate any pipeline stalls in the bad speculation
by implementing the algorithm of a learned index without
any branches. We minimize the effects of pipeline stalls in
the backend bound in the two steps. First, we place data
on a memory device so that the hardware prefetcher of the
CPU prefetches the data, thereby reducing data cache misses.
Second, we try to minimize the latency due to pipeline stalls in
case the data cannot be prefetched as the second step since the
first step may not eliminate all the pipeline stalls in the backend
bound. Specifically, we design a compact data structure to
place as much data as possible on a higher-level cache.

C. Design Rationale behind Fast FIB Lookup

This section discusses the design rationale for fast lookup
with a learned FIB.

1) Piece-wise Linear Approximation: In our view, the
essential aspect of learned indexes is to approximate key-
position relations in a KVS, i.e., the target function, rather
than to learn the target function with machine learning. This
finding implies that we can design an arbitrary approximation
to the target function. It raises two questions: One is what kind



of approximation is suitable for the router platform, while the
other is how to exploit the finding for realizing fast FIB lookup.

Regarding the first question, we choose a piece-wise linear
approximation based on a combination of neural networks,
considering the following two aspects. First, we adopt neural
networks because we can optimize the implementation for the
aforementioned router platform. In the next section, we discuss
why we can optimize the neural network implementation
for the assumed router platform. Second, we can inherit an
important observation found by Rashelbach et al. [10] that a
learned index consisting of neural networks with the ReLU
activation function is a piece-wise linear function, which ob-
viously means that a neural network with the ReLU activation
function is also a piece-wise linear function. We develop a
method to control the maximum prediction error of neural
networks in a learned index based on the observation.

Rashelbach et al. [10] propose a learning approach using the
piece-wise linear property of a neural network; however, the
method cannot guarantee the maximum error. More precisely,
they prove a theorem that the maximum prediction error
of a learning index is analytically derived. Their proposal
trains a neural network with a machine learning technique
and analytically derives the maximum prediction error. If the
maximum prediction error is larger than the pre-determined
threshold, it increases the number of samples in the training
data and retries the training. If it cannot achieve the maximum
prediction error lower than the threshold, it increases the
threshold and retries the training.

In contrast, our proposal first designs a piece-wise linear
function so that the maximum prediction error is below the
pre-determined threshold. Then, it determines the weights and
the biases of neural networks so that the sequence of the piece-
wise linear functions of the neural networks forms the designed
piece-wise linear function. Thus, we derive the weights and the
biases of neural networks in a deterministic manner rather than
relying on learning algorithms, such as the backpropagation
algorithm, and the maximum prediction error of the designed
neural networks is bounded by the threshold.

The ability to control the maximum prediction error is
an answer to the second question. First, it allows us to
optimize the structure of a learned index, thereby reducing
the computation time of a learned index. Second, it enables to
implement the entire computation without any branches and
loops, thereby eliminating pipeline stalls in the bad specula-
tion. The two features are discussed in detail in Section IV-C3
and Section IV-C4, respectively.

2) Regression with Neural Networks: The prediction phase
of learned indexes is a regression task. We choose neural
networks for the regression task of learned FIBs rather than
polynomial or nonlinear regression because we can optimize
the implementation of a neural network on the aforementioned
router platform. Specifically, we focus on the fact that the
computation of a neural network can be programmed pwith
SIMD instructions because it consists of element-wise vector
multiplication, addition, and max operations. Furthermore,
data necessary for computing a neural network, i.e., weights

and biases, are vectors. This also contributes to vectorizing the
neural network computation since a vector can be transferred
to a SIMD register with a single instruction. In contrast, a
polynomial regression task, for example, includes exponen-
tiation computation, which is implemented with a sequence
of instructions [23], and hence its computation speed may be
worse than an optimized neural network.

Moreover, state-of-the-art CPUs have several features
beneficial for neural networks, such as the vectorized fused
multiply-add (FMA) instruction [21] and the half-precision
floating point format [24], also referred to as bfloat16 (brain
floating point). The FMA instruction computes the product
of two numbers and adds another number to the product in a
single instruction. The vectorized FMA instruction completes
multiple FMA operations simultaneously. The instruction
completes the computation of input values for multiple neurons
simultaneously. The half-precision floating point format
doubles the number of floating point numbers computed si-
multaneously compared to the case of single-precision floating
point numbers. We choose the ReLU activation function rather
than the sigmoid and the hyperbolic tangent activation function
for the same reason. Specifically, it can be implemented with
a SIMD instruction, i.e., the vectorized max operation.

Finally, in addition to the SIMD instructions, the cache
system of CPUs supports the neural network computation.
The weights and the biases of a neural network are accessed
sequentially from the input layer to the output layer. We
place the data continuously on a memory device, and hence
the continuous placement allows the hardware prefetcher to
prefetch them in advance so that pipeline stalls do not occur.

3) Simple Configuration of a Learned Index: We apply the
neural network computation once, while the original recursive
model index applies it multiple times depending on the stage
depth, as illustrated in Fig. 1. One of the reasons why the
original recursive model index increases the number of stages
is to realize a better regression result. In contrast, we adopt a
modified two-stage learned index, where the first-stage model
is replaced with a table lookup operation while the second-
stage model is designed neural networks, as shown in Fig. 2,
because the maximum prediction error of a neural network is
controlled. Specifically, the key space is equally divided into
several sub spaces, and each model is responsible for a sub
space. Each model approximates the target function in its re-
sponsible sub space. The 𝑚 most significant bits of addresses,
i.e., keys, are used to determine the responsible model. Thus,
the proposal only incurs the computation of the bitwise shift
operation and the one-time neural network computation.

In addition, we design a neural network with as few hidden
layers and neurons as possible for realizing a given piece-wise
linear approximation, thereby reducing the computation time
and the size of the designed neural networks. The compactness
of the designed neural networks contributes to placing the
neural networks on a higher-level cache, thereby reducing the
latency caused by pipeline stalls in the backend bound.

4) Branch- and Loop-free Implementation: Since the max-
imum prediction error is bounded, we can make the linear
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Fig. 2. Structure of a learned index for learned FIBs

search algorithm faster than more sophisticated algorithms,
such as the exponential search, of which time complexity is
lower than the linear search algorithm. The linear search algo-
rithm can be implemented without any branches by unrolled
the loops in the search algorithm. In addition, the unrolled
linear search can be programmed with SIMD instructions
and therefore the computation time is also reduced. The
implementation is discussed in Section VI.

D. Design Rationale behind Constant-time FIB Lookup

We avoid longest prefix matching as an approach to
constant-time FIB lookup regardless of the length of matched
prefixes. CIDR allows multiple prefixes with a common prefix
into a single prefix, thereby reducing the size of FIBs [25].
On the one hand, the compactness of an FIB contributes
to fast FIB lookup because it can be placed on a fast but
small memory device, such as an SRAM device. On the other
hand, the prefix aggregation incurs longest prefix matching.
We stop using the prefix aggregation under the assumption
of longest prefix matching. Instead, we convert a given FIB
so that prefixes in FIB entries are disjoint to search for the
prefixes with exact matching.

V. Learned FIB

A. Overview

This section presents the construction algorithm of a learned
FIB. As illustrated in Fig.3, the construction of a learned FIB
is composed of the following four steps:
• Table conversion: It converts an FIB so that entries in the

FIB can be indexed with a learned index.
• Piece-wise linear approximation: It derives a piece-

wise linear function that approximates the prefix-position
relation with the maximum error lower than the pre-
determined threshold.

• Division of the piece-wise linear function: It divides the
piece-wise linear function into sub-functions so that each
sub-function is expressed with a specified neural network.

• Computation of weights and biases of a neural network
for each sub-function: It determines the weights and the
biases of a neural network to be identical to the sub-
function.
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Derive a piece-wise linear function 
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Fig. 3. Overview of the construction of a learned FIB
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Fig. 4. An example of converting an FIB for indexing with a learned index

B. Table Conversion
The purpose of the table conversion is to eliminate longest

prefix matching from the FIB lookup operation so that we
can apply a learned index to an FIB. One way is to maintain
the next hop information for all the addresses [9]. However,
it is expensive because it has to compute the next hop for all
232 addresses. We rethink this process. If a prefix contains
any other prefixes, the prefixes are divided into disjoint
prefixes, where no prefix contains any other prefixes. The
list of resulting prefixes is similar to that of a leaf-pushed
trie [8], where every prefix is located in leaves in the trie.

A schematic diagram of the table conversion is illustrated in
Fig. 4. First, the boundaries of prefixes are sorted in ascending
order. A prefix that contains another prefix is divided into
several prefixes so that all the prefixes are disjoint. Dummy
prefixes with dummy next hop information, e.g., a magic
number 0xFF in Fig. 4, are inserted in the space where there
are no corresponding prefixes. Finally, consecutive prefixes
are aggregated if their next hop information is the same. The
left boundary of each prefix is used as a representative key
for the prefix. An FIB entry in a learned FIB is the pair
of the left boundary of each prefix and its corresponding
next hop information. For a given address, the next hop
information is determined by searching for the prefix where the
address belongs. Since the prefix where an address belongs is
equivalent to the prefix nearest to and smaller than the address
in the resulting FIB, the FIB lookup operation is realized with
exact matching. The FIB entries are indexed by a learned index
according to the procedures in the following subsections.

C. Piece-wise Linear Approximation
Let 𝑁 and 𝑥𝑖 be the number of prefixes and the 𝑖th prefix

in the FIB constructed in the previous section. Because the
prefixes are sorted in ascending order, the position of 𝑥𝑖
is 𝑖. We refer to the function that traverses all the points
P = {(𝑥0, 0), (𝑥1, 1), . . . , (𝑥𝑁−1, 𝑁 − 1)} in a two-dimensional
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Fig. 5. Approximate the target function with a piece-wise linear function

space as the target function. We denote the target function
and its piece-wise linear approximation by 𝜁 (𝑥) and 𝜓(𝑥),
respectively. We describe a heuristic algorithm to derive a
piece-wise linear approximation, 𝜓(𝑥), to the target function,
𝜁 (𝑥), with the maximum error lower than a pre-determined
threshold, 𝜀. That is, the algorithm derives 𝜓(𝑥) satisfying
|𝜁 (𝑥) − 𝜓(𝑥) | ≤ 𝜀 (𝑥0 ≤ 𝑥 ≤ 𝑥𝑁−1).

The schematic of the algorithm is illustrated in Fig. 5, and
the algorithm is summarized in Algorithm 1. The key idea
behind the algorithm is to incrementally extend a line segment
from a point (𝑥𝑖 , 𝑖) to another (𝑥 𝑗 , 𝑗) ((𝑥𝑖 , 𝑖), (𝑥 𝑗 , 𝑗) ∈ P,
𝑖 < 𝑗) with keeping the maximum error lower than the
threshold, i.e., |𝜁 (𝑥) − 𝜓(𝑥) | ≤ 𝜀 (∀𝑥, 𝑥𝑖 ≤ 𝑥 ≤ 𝑥 𝑗 ), as
illustrated in Fig.5(b)–(d). If the maximum error is greater than
𝜀, the algorithm terminates the line segment at (𝑥 𝑗−1, 𝑗 − 1)
and draws a new line segment from (𝑥 𝑗−1, 𝑗 − 1) to another.
The error |𝜁 (𝑥)−𝜓(𝑥) | takes the maximum value on one of the
points in P, as shown in Fig. 5(b). We therefore only examine
the error on the points in P.

D. Division of a Piece-wise Linear Function
A piece-wise linear function of 𝑛 line segments can be

expressed as a neural network of a hidden layer of 𝑛 neurons,
as we will explain in the next section. We therefore need to
divide the piece-wise linear function 𝜓(𝑥) obtained in the
previous step into sub-functions, each of which consists of
at most 𝑛 line segments.

The proposed learned index uses the 𝑚 most significant
bits of prefixes and addresses to select models, as explained
in Section IV-C and Fig. 2. Consequently, the 𝑖th model is
responsible for the range [232−𝑚𝑖, 232−𝑚 (𝑖 + 1) − 1]. Thus, the
piece-wise linear function must be divided along the bound-
aries of the ranges. We derive the value of 𝑚 so that there are
at most 𝑛 line segments of the given piece-wise linear function
for all the ranges [232−𝑚𝑖, 232−𝑚 (𝑖+1)−1] (∀𝑖, 0 ≤ 𝑖 ≤ 2𝑚−1).

This division policy should coincide with the efficient
implementation of the lookup program such that the number

Algorithm 1: Deriving a piece-wise linear function
Input: P: Points on the target function, 𝜀: The

threshold of the maximum error
Output: B: Boundaries of line segments of the

piece-wise linear approximation
1 B ← {(𝑥0, 0)}

// 𝑙, 𝑟: left and right boundary of a line segment
2 𝑙 ← 0, 𝑟 ← 2
3 while 𝑟 < 𝑁 do

// Derive a line passing through (𝑥𝑙 , 𝑙) and (𝑥𝑟 , 𝑟)
4 𝑎 ← (𝑟 − 𝑙)/(𝑥𝑟 − 𝑥𝑙), 𝑏 ← 𝑙 − 𝑎 × 𝑥𝑙

// Examine the error between 𝑥𝑙+1 and 𝑥𝑟−1
5 for 𝑖 ← 𝑙 + 1 to 𝑟 − 1 do
6 𝑝 ← 𝑎 × 𝑥𝑖 + 𝑏 // Compute the y-value on the

line for the x-value of 𝑥𝑖
7 if |𝑝 − 𝑖 | > 𝜀 then

// The error is larger than the threshold
8 Append (𝑥𝑟−1, 𝑟 − 1) to B // Append the

previous point to the set of boundaries
9 𝑙 ← 𝑟 − 1

10 break

11 𝑟 ← 𝑟 + 1

of neurons of all the neural networks should be identical. This
eliminates branches in the program, thereby contributing to the
fast computation. We use a neural network of one hidden layer
of 𝑛 neurons for all the models. However, in the naive division,
while there are 𝑛 line segments in some ranges, there are fewer
line segments in the other ranges. It is obviously inefficient to
assign 𝑛 neurons to express a piece-wise linear function having
less than 𝑛 line segments. We therefore merge sub-functions
so that the merged sub-function has as many line segments as
possible with satisfying the condition of less than or equal to
𝑛 line segments.

E. Computation of Neural Network Parameters

In this section, we first explain that a neural network is a
piece-wise linear function, and then we describe how to derive
the weights and the biases so that the neural network and a
given piece-wise linear function are identical.

1) Piece-wise Linear Function of Neural Network: A neural
network of one hidden layer of 𝑛 neurons is formulated as

𝑦 =

𝑛∑︁
𝑘=1

ReLU (𝑤1𝑘𝑥 + 𝑏1𝑘 ) 𝑤2𝑘 + 𝑏2, (1)

where 𝑥 and 𝑦 are the input and the output, 𝑤1𝑘 and 𝑏1𝑘 are
the weight and the bias for the hidden layer, and 𝑤2𝑘 and 𝑏2
are the weight and the bias for the output. The ReLU activation
function, ReLU(𝑧), is equivalent to max(𝑧, 0).

The neural network is the summation of the 𝑛 func-
tions, 𝑓𝑘 (𝑥) (𝑘 = 1, . . . , 𝑛), where 𝑓𝑘 (𝑥) denotes 𝑓𝑘 (𝑥) =
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Fig. 6. An example of a piece-wise linear function of a neural network

ReLU (𝑤1𝑘𝑥 + 𝑏1𝑘 ) 𝑤2𝑘 = 𝑤2𝑘 max(𝑤1𝑘𝑥 + 𝑏1𝑘 , 0). The func-
tion 𝑓𝑘 (𝑥) consists of two linear functions:

𝑓𝑘 (𝑥) =
{
𝑤2𝑘 (𝑤1𝑘𝑥 + 𝑏1𝑘 ) if 𝑤1𝑘𝑥 + 𝑏1𝑘 ≥ 0
0 otherwise

. (2)

Let 𝑠𝑘 denote the solution of 𝑤1𝑘𝑥 + 𝑏1𝑘 = 0, i.e., 𝑠𝑘 =

−𝑏1𝑘/𝑤1𝑘 . Because the two functions in (2) change only at
𝑥 = 𝑠𝑘 , the neural network is a piece-wise linear function
of 𝑛 + 1 lines segmented at {𝑠1, . . . , 𝑠𝑛}. An example of a
piece-wise linear function of a neural network is illustrated in
Fig. 6. Without loss of generality, we assume that the functions
𝑓𝑘 (𝑥) are sorted in ascending order of 𝑠𝑘 and all the solutions
are different, i.e., 𝑠1 < 𝑠2 < · · · < 𝑠𝑛, because we need to
express a piece-wise linear function with a neural network of
as few neurons as possible. Note that the slope of the piece-
wise linear function is zero in the range of 𝑓𝑘 (𝑥) = 0 for all
𝑘 . We therefore use the remaining 𝑛 line segments to express
a given piece-wise linear function with the neural network.

2) Computing Parameters of Neural Network: Next, we
describe how to determine the weights and the biases of the
neural network so that the piece-wise linear function of the
neural network and a given piece-wise linear function are
identical. To avoid confusion, we refer to a piece-wise linear
function of a neural network as a neural network function.

The given piece-wise linear function is defined as follows:
It is composed of 𝑛 line segments, and the boundaries of
the line segments are {(𝑡1, 𝑢1), (𝑡2, 𝑢2), . . . , (𝑡𝑛−1, 𝑢𝑛−1)}. The
slope of the 𝑘th line segment is 𝑎𝑘 . The target function is
monotonically and strictly increasing, and hence its piece-
wise linear approximation is also monotonically and strictly
increasing, i.e., 𝑎𝑘 > 0 (∀𝑘).

We next discuss how to determine a neural network function
that is identical to the piece-wise linear function. The weights
for the hidden layer 𝑤1𝑘 must be positive so that the neural
network function is a monotonically and strictly increasing
function. Specifically, there are four cases of changing the
slope of 𝑓𝑘 (𝑥) depending on the sign of 𝑤1𝑘 and 𝑤2𝑘 , as shown
in Fig. 7. The line segment of slope 0 must be located in the
leftmost or the rightmost side of the neural network function
to ignore the line segment. If the sign of the weights for the
hidden layer 𝑤1𝑘 is positive, the slope of the left-side line
segment of 𝑓𝑘 (𝑥) is zero. Conversely, if the sign is negative,
the slope of the right-side line segment is zero. Hence, the
signs of 𝑤1𝑘 (∀𝑘) must be identical. Otherwise, the slope of
one of the intermediate line segments might be zero, which
does not satisfy the condition of strictly increasing.

Fig. 7. The four patterns of a ReLU function

For simplicity, we use positive values for 𝑤1𝑘 . In this case,
(2) is expressed without the ReLU function as

𝑦 =



𝑏2 if 𝑥 < 𝑠1

𝑤21 (𝑤11𝑥 + 𝑏11) + 𝑏2 if 𝑠1 ≤ 𝑥 < 𝑠2

. . .∑𝑖
𝑘=1 𝑤2𝑘 (𝑤1𝑘𝑥 + 𝑏1𝑘 ) + 𝑏2 if 𝑠𝑖 ≤ 𝑥 < 𝑠𝑖+1

. . .∑𝑛
𝑘=1 𝑤2𝑘 (𝑤1𝑘𝑥 + 𝑏1𝑘 ) + 𝑏2 if 𝑠𝑛 ≤ 𝑥

. (3)

This equation indicates that the slope of the 𝑖th line segment
is

∑𝑖
𝑘=1 𝑤1𝑘𝑤2𝑘 . Note that we ignore line segments of slope

0, and the first line segment is 𝑤21 (𝑤11𝑥 + 𝑏11) + 𝑏2 (𝑠1 ≤
𝑥 < 𝑠2). Hence, the intersection between the (𝑖 − 1)th and the
𝑖th line segment is a convex (concave) point if 𝑤2𝑖 is positive
(negative). Thus, we can express an arbitrary piece-wise linear
function that is strictly increasing with a neural network.

According to the aforementioned discussion, the weights
and the biases of the neural network function are determined
as follows: First, 𝑤11 and 𝑤21 are set to 𝑤11 = 𝑎1 and 𝑤21 = 1,
respectively. Next, for the slope of the 𝑖th line segment (𝑖 > 1),
we set 𝑤2𝑖 to either +1 or −1 depending on whether the
intersection between the (𝑖 − 1)th and the 𝑖th line segment is
convex or concave and we set 𝑤1𝑘 to 𝑤1𝑘 = |𝑎𝑘−1−𝑎𝑘 |. Then,
we obtain the bias for the hidden layer 𝑏1𝑘 as 𝑏1𝑘 = −𝑡𝑘𝑤1𝑘 ,
which is the solution of 𝑠𝑘 = 𝑡𝑘 . Finally, the bias for the output
layer 𝑏2 is determined so that the neural network function
perfectly fits the piece-wise linear function. The simplest way
is to solve the equation 𝑤21 (𝑤12𝑡1 + 𝑏12) + 𝑏2 = 𝑢1 because
𝑠2 = 𝑡1, as illustrated in Fig. 6.

VI. Implementation of Learned FIB
This section presents the implementation of the lookup

algorithm for a learned FIB.
The algorithm is summarized in Algorithm 2. The algorithm

consists of the prediction phase (line 1–7) and the local search
phase (line 8–11). The algorithm is fed with an address as an
input and returns the next hop information as the output. The
data structures of a learned FIB are illustrated in Fig. 8.

We implement the algorithm according to the design
rationale in Section IV. The entire program is implemented
without any loops and branches. First, the algorithm extracts
the 𝑚 most significant bits of a given address with the
shift right logical instruction (line 1). Next, it obtains the
model corresponding to the address using the extracted prefix
(line 2–3). The neural network computation (line 4–7) is
implemented with the SIMD (vectorized) versions of the FMA
(vfmadd), the max (vmax), and the multiplication (vmul)
instruction. The accumulation operation, which computes the



Algorithm 2: Algorithm for lookup the learned FIB
Input: 𝑥: Address (32-bit unsigned integer)
Output: ℎ: Next hop information
// — Prediction phase —

1 𝑟 ← srl(𝑥, 32 − 𝑚) // Shift (slr: shift right logical)
2 𝑖 ← table[𝑟] // Get model index
3 𝒘1, 𝒃1, 𝒘2, 𝑏2 ← model[𝑖] // Get weights and biases

// Predict the position of 𝑥 via a neural network
4 𝒛 ← vfmadd(𝒘1, 𝑥, 𝒃1) // 𝒛 ← 𝒘1 × 𝑥 + 𝒃1
5 𝒛 ← vmax(𝒛, 0) // 𝒛 ← ReLU(𝒛)
6 𝒛 ← vmul(𝒘2, 𝒛) // Element-wise 𝒘2 × 𝒛
7 𝑦 ← accumulate(𝒛) + 𝑏2 // 𝑦 ← ∑

𝒛 + 𝑏2
// — Local search phase —

8 𝑙 ← 𝑦 − 𝜀 // Search the range [𝑦 − 𝜀, 𝑦 + 𝜀] for 𝑥
// Set the results of 𝒌 [𝑙 : 𝑙 + 2𝜀] ≤ 𝑥 to 𝒛

9 𝒛 ← vpcmp(𝒌 [𝑙 : 𝑙 + 2𝜀], 𝑥)
10 𝑙 ← 𝑙 + accumulate(𝒛)
11 ℎ← nexthop[𝑙]

sum of elements in a vector, is also implemented with several
SIMD instructions without loops.

The local search phase is implemented without any loops
and branches (line 8–11). As explained in Section V-B, the
local search is completed when it finds the prefix nearest to
and smaller than a given address. Additionally, the position
of the prefix is in the range of [𝑦 − 𝜀, 𝑦 + 𝜀] because the
maximum prediction error is 𝜀. Hence, we can derive the
position of the prefix by counting the number of prefixes
less than or equal to the address in the range and adding the
number to 𝑦−𝜀. The counting operation can be vectorized with
the vpcmp instruction family, which compares multiple values
simultaneously and stores the comparison results (0 and 1)
into a vector. The algorithm obtains the position of the prefix
by accumulating the comparison results.

Figure 8 depicts the data structures of learned FIB. The
data structures are also optimized by taking into account the
following two points. One is that the weights and the biases
of a neural network are continuously placed on a memory
device to be prefetched by the hardware prefetcher. The
other is that the array of keys (prefixes) and that of values
(next hop information) are decoupled to implement the local
search phase with SIMD instructions. An alternative design
is implementing the FIB as an array of compositions (structs
in C/C++) of a key and a value. Our design is superior to the
alternative design because keys are continuously placed on a
memory device. The keys in the range of [𝑦 − 𝜀, 𝑦 + 𝜀] can
be transferred to a SIMD register in a single instruction. The
design has another benefit: the number of memory accesses is
reduced, thereby reducing the possibility of evicting necessary
data from the L2 cache. While 2𝜀 elements in the array of
keys are accessed during the local search phase, a single
element alone is accessed in the array of next hop information.

Index
(Prefix) Array of models

Array of keys Array
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Fig. 8. The data structures of a learned FIB

VII. Open Issues
There are several open issues for the learned FIB. A crucial

issue is its expensive FIB update cost due to the following
three reasons. First, the table conversion is similar to the
leaf-pushing technique, and hence, it spends the computation
time depending on the number of prefixes. In particular, the
insertion and the deletion of a short prefix are likely to
take long time because a short prefix tends to cover many
prefixes. It may be a promising approach to circumventing the
expensive FIB update to introduce sophisticated leaf-pushing
techniques [26]. Second, insertion and deletion of an FIB
entry also require time depending on the number of prefixes
because FIB entries are stored in a sorted array. Finally,
it requires updating neural networks if the maximum error
of the previously designed neural networks exceeds the pre-
determined threshold 𝜀.

Another open issue is to apply the proposed design for
learned indexes to other tables, such as IPv6 FIBs. Though
the core ideas of the proposal, such as the piece-wise lin-
ear approximation and the branch-free implementation, are
applicable to tables in other domains, the current design is
highly optimized for IPv4 FIBs. For instance, the implemented
learned FIB fits into the assumed router platform well since
the size of keys, i.e., prefixes, is 32 bits. Inventive ideas
are required to apply the proposed design to 128-bit IPv6
addresses on top of the assumed router platform.

VIII. Performance Evaluation
A. Overview of Performance Evaluation

The objectives of the performance evaluation are threefold.
First, we validate that the learned FIB realizes fast and
constant-time FIB lookup regardless of the length of matched
prefixes by comparing it with a state-of-the-art FIB based
on Poptrie [6] (Poptrie FIB) in Section VIII-C. Second, we
validate that the following two learned index designs are
beneficial for fast FIB lookups via comparisons with two
variants of FIBs based on a learned index in Section VIII-D.
One is to validate the use of the table lookup operation in
the first stage. We use an FIB with the original RMI (RMI
FIB) as a comparison. The RMI FIB uses neural networks in
all the stages, whereas our learned index uses neural networks
only in the last stage. Note that we use a two-stage RMI since
our learned index has two stages. The other is to validate the
use of the piece-wise linear approximation for constructing
neural networks. We use the FIB proposed in our previous



study [9], which is similar to the proposal except that it
construct neural networks using a machine learning technique.
We refer to this FIB as the machine learning (ML) FIB. Finally,
we analyze performance characteristics of the learned FIB in
Section VIII-E.

B. Evaluation Conditions
While we implement the learned, the ML, and the RMI FIB

in C++, we use the open source software of the Poptrie FIB
implemented in C [27]. The maximum error 𝜀 and the number
of neurons 𝑛 in a hidden layer are 32 and 8, respectively. We
evaluate effects of these parameters in Section VIII-E.

We use a server with an Intel Xeon Gold 6130 CPU and
128 Gbytes DDR4 DRAMs as an experiment platform. All
the programs for the FIBs run on a single thread. The CPU
has a 32 Kbytes L1D cache and a 1.25 Mbytes L2 cache in
each CPU core, and a 22 Mbytes L3 cache shared by all CPU
cores. The L1D, the L2, and the L3 cache require 5, 12, and
38 cycles to be accessed, respectively [28].

We use a real traffic trace as well as a random traffic pattern.
The real traffic trace was captured by CAIDA at an Equinix
datacenter in New York [29]. Under the random traffic pattern,
randomly generated addresses are looked up. We mainly use
the random traffic pattern since various properties, such as the
spatial and the temporal address locality, are often observed in
real traffic traces. Such locality affects the lookup performance.
We use the real traffic trace for the evaluation in Fig. 10
in Section VIII-C, which aims at analyzing the CPU cache
locality.

FIBs are created from a BGP routing information base (RIB)
snapshot provided by the Route Views project [30]. We use the
snapshot captured on Nov. 20th, 2019. The RIB has 360879
prefixes, and prefixes whose length is longer than or equal to
24 account for 33%. The learned, the Poptrie, and the ML FIB
are 1.83 Mbytes, 1.98 Mbytes, and 1.78 Mbytes, respectively.

We use the computation time spent for a single lookup
operation as a performance metric. The computation time is
measured as the number of CPU cycles using the read time
stamp counter (RDTSC) instruction.

C. Comparison Against Longest Prefix Matching
First, we evaluate the learned FIB realizes fast and constant-

time FIB lookup by comparing it with the Poptrie FIB. The
computation time for each length of matched prefixes under
the random traffic pattern is plotted in Fig. 9. The wick of
each candlestick, the body, and the internal bar represent the
5th/95th percentile, the first and the third quartile, and the
median, respectively.

This figure provides the following two observations: First,
the learned FIB realizes constant-time lookup regardless of
the length of matched prefixes, whereas the computation time
of the Poptrie FIB increases if the prefix length is longer than
18. The learned FIB always performs the prediction phase, the
computation of a neural network, and the local search phase,
the linear search for a constant range (2𝜀). In contrast, the
Poptrie FIB requires traversing vertices of a trie if the matched
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Fig. 9. The computation time of the learned FIB and the Poptrie FIB for
each prefix length in the case of the random traffic pattern
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Fig. 10. The computation time of the learned FIB and the Poptrie FIB for
each prefix length in the case of the real traffic trace

prefix is long, and the traversal increases with the matched
prefix length.

Second, the Poptrie FIB outperforms the learned FIB in
terms of the average computation time, especially in the case
that the length of matched prefixes is short, because the Poptrie
FIB completes a lookup operation by a single access to an
array. Specifically, the array maintains 218 entries indexed by
the significant 18 bits of prefixes, and the entries have next hop
values. Hence, the lookup operation does not need to traverse
any vertices of the Poptrie if the length of matched prefixes is
less than 18.

These results suggest that using the learned FIB is beneficial
in the case that long prefixes, such as IPv6 prefixes and 24-bit
IPv4 prefixes, dominate in an FIB. As a future insight, the
number of long prefixes will grow up due to the need for fine-
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Fig. 11. The computation time of the learned, the ML, and the RMI FIB.

grained traffic control. The trend implies that the learned FIB
will be useful in the near future.

We next evaluate the lookup speed with the real traffic trace
in Fig. 10. The computation time of both the learned and the
Poptrie FIB decreases compared to the case of the random
traffic pattern due to the high CPU cache locality. Since
there are many consecutive accesses to the same destination
addresses, data for the FIBs tend to be accessed from a higher
level CPU cache.

D. Comparison Against Machine Learning

We compare the computation time of the learned FIB
with the ML and the RMI FIB to prove that our designed
learned index improves the computation time. Figure 11 shows
the average computation time. The learned FIB reduces the
computation time by 19.1% and 40.0% compared to the ML
and the RMI FIB, respectively.

The three FIBs similarly consist of the prediction and the
local search phase. To prove the benefits of our design in
greater detail, we further decompose the computation time of a
single lookup operation into the prediction and the local search
phase. The RMI FIB spends more time for the prediction phase
than the learned and the ML FIB. The RMI FIB needs to
compute neural networks twice in the prediction phase, while
the learned and the ML FIB need the computation once. This
result indicates that replacing a neural network with a table
lookup operation in the 1st stage of the learned index improves
the computation speed.

The difference in the local search phase between the learned
and ML FIB comes from our design choice that the piece-wise
linear approximation bounds the maximum error 𝜀. This allows
the learned FIB to complete the local search phase without any
branches and loops. In contrast, the ML FIB must perform
the exponential search algorithm, which contains loops and
branches, to correct the prediction error since 𝜀 cannot be
determined in advance.

We quantitatively investigate the impact of the difference on
the computation time with the Intel Vtune profiler [31]. We
measure how much the computation time wasted by pipeline
stalls accounts for the entire computation time of the local
search phase. In the case of the ML FIB, pipeline stalls due
to branch prediction misses consume 44.4% of the entire
computation time, whereas there is no pipeline stalls due to
branch prediction misses in the case of the learned FIB. The
analysis proves that the learned FIB successfully eliminates
branches and loops and the elimination contributes to the
improvement in the computation time.
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Fig. 12. The computation time when varying the maximum error and the
number of neurons.

E. Impacts of Parameters for Learned FIB
Finally, we analyze effects of the parameters on the com-

putation time of the learned FIB. Two key parameters to be
analyzed in the learned FIB are the maximum error 𝜀 and the
number of neurons 𝑛 in each neural network.

Figure 12a shows the average computation time of a single
lookup operation when varying 𝜀 from 8 to 128. Though the
computation time of the local search phase decreases with 𝜀,
that of the prediction phase increases. While the range of the
array of prefixes to be searched decreases with 𝜀, the number
of models to be stored in the array of models increases. Hence,
models do not fit into the L1D cache if 𝜀 is small. This
result suggests that 𝜀 = 32 is a good trade-off point from
the perspective of the performance of these two phases.

We next evaluate the computation time when varying the
number of neurons 𝑛 from 8 to 32. The result is plotted in
Fig. 12b. In this evaluation, we set 𝜀 to 32. Although the
computation time of the prediction phase slightly increases
in the case of 𝑛 = 32, the increase is negligible. This is
because that the CPU supports the simultaneous computation
of up to 32 neurons. The CPU, which supports the AVX-
512 extension [20], has SIMD registers of 512 bits, hence
supporting the simultaneous computation of up to 16 single-
precision (32-bit) floating points. In addition, each CPU core
of the CPU has two execution units used for the neural network
computation [28]. The CPU therefore supports the computa-
tion of a neural network of a hidden layer of 32 neurons.

IX. Conclusion
In this paper, we have proposed an FIB based on a learned

index, aiming at a compact FIB representation and fast FIB
lookups. We have designed a near-optimal implementation of
a learned index for a recent computer platform, leveraging that
it is sufficient to approximate the key-position pairs in the FIB
with a piece-wise linear function. We have demonstrated that
the learned FIB realizes fast and constant-time FIB lookups
using real BGP routing information snapshots. Finally, we
have applied a learned index to an FIB at the cost of efficient
FIB updates, which is deferred for our future work.
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