Demo: Simple Deep Packet Inspection with P4
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Abstract—The P4 language allows ‘protocol-independent
packet parsing” in network switches, and makes many operations
possible in the data plane. But P4 is not built for Deep Packet
Inspection — it can only “parse” well-defined packet headers,
not free-form headers as seen in HTTPS etc. Thus some very
important use cases, such as application-layer firewalls, are
considered impossible for P4. This demonstration shows that this
limitation is not strictly true: switches, that support only standard
P4, are able to independently perform tasks such as blocking
specific URLs (without using non-standard “extern” components,
help from the SDN controller, or rerouting to a firewall). As
more Internet infrastructure becomes SDN-compatible, in future,
switches may perform simple application-layer firewall tasks.

I. INTRODUCTION

Modern (software-defined) networks are flexible and power-
ful: they have been used for load balancing [1], [2], detecting
network attacks (notably denial-of-service [3], port scans [4]),
and simple (network-layer) firewalls [S]). It is natural to
ask whether such “smart switches” can also perform more
complex packet processing tasks — such as blocking particular
URLSs, session sniping (terminating attack traffic), and so on
— reducing the need for heavy security infrastructure such as
middleboxes, NIDS such as Snort, etc.

The fundamental building block for such tasks is Deep
Packet Inspection (DPI), i.e., the ability to match patterns
inside a packet payload, and not just the (IP or TCP) header.
In this paper, we focus on an important specific case, which we
call “simple DPI” — detecting the URL of a malicious website.
In HTTP, the name is the “Host” field of the HTTP header in
a GET request; in HTTPS, it is the “SNI” field in the TLS
client hello request; and in DNS, it is the “query.name” field
in the query request. Thus, any of these protocols can be used
to detect (or deny) access to attack sites.

However, while specialized packet processors (such as
nVidia DPU) can provide full DPI functionality, standard SDN
switches — by which we mean, switches that support the
OpenFlow and P4 standards — cannot. The P4 standard [6]
explains that P4 allows users to specify how a switch should
parse a packet: a user writes a P4 program to define a packet
schema (and switches running this program slice matching
packets into fields, following the schema). But such parsing
does not allow loops. As a result, there is no “runtime
flexibility” where a field can be matched if we do not know
its position in the packet a priori.

Research Question: Our goal is to detect a specific field (site
name) in three application-layer protocols: HTTP, HTTPS, and
DNS. This cannot be done in all possible cases, as these
protocols (as per RFC standards) are highly flexible, and allow
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(a) optional fields, (b) variable field ordering, and (c) variable-
length fields. So our research question is, “is it possible (in
all practically significant cases) to detect URLs of (malicious)
sites, using only standard (P4 compliant) switches?”

II. APPROACH.

We note that the challenge in simple Deep Packet Inspection
consists of two components: the variability in start position,
and the variability in length of the pattern (i.e. URL) to match.

1) We suggest that in practice, the start position of the URL
is usually consistent; the number of cases is small.

2) In order to deal with matching patterns of variable (finite)
length, we can pad all patterns to the same (greatest re-
quired) length, if there is a “don’t-care” symbol available.

To test (1) above, we conduct a survey, using the three most
popular browsers (Google Chrome, Microsoft Edge, Mozilla
Firefox), on different operating systems (Microsoft Windows
10, and Ubuntu 18.04 LTS) to access Alexa top-100 websites.
Our original plan was to use Alexa top-1000, but we found
100 sites were sufficient to generate several thousand TLS and
DNS connections (to CDN sub-domains, image servers, etc.)

For (2), we make use of the don’t-care match function
provided by TCAM in standard SDN switches.

ITI. RESULTS.
A. Observational Study: URL Location and Length.

We consider the packet as a string, beginning with three
sections (X, Y, Z) as shown in Figure 1.

X Y z
= e Pt
Ethernet| IP Tcp |THS g;'ldf?ell’:f‘”e SNI TLS fields after SNI field
X Y z
=} e e ——pg
query DNS field after
Ethernet 1P upP gllsryﬁ:;::nze:i::fi name query name field

Fig. 1: Random variables in offset.

1) Variation in random variable X: X varies very pre-
dictably, based on three factors.

1) IP protocol: IPv4 or IPv6.

2) Transport layer protocol: UDP or TCP.
3) TCP with or without an options field.

This variability can be handled by the P4 parser, by having
separate rules for each case. It is simple to identify the case
(type of IP is a field in the L2 header; type of transport is the
next-protocol field in IP header; TCP header length is exactly
12 bytes longer with an Options field; and the port field in
transport header usually indicates the application protocol).



2) Variation in random variable Y: In our study Y was
completely predictable for a given protocol — 13 bytes for

DNS, 127 bytes for TLS (Figure 2).
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Fig. 2: Y is constant for a given protocol.

3) Variation in random variable Z: In alexa top 100,
URLs varied in length from 10 (“www.qq.com”) to 24
(“www.thestartmagazine.com”). Once the entire list of URLs
to be blocked is known, the network operator specifies TCAM
match rules where each URL is padded with don’t-cares to the
length of the longest one.

We will demonstrate with packet captures that the URL start
location is stable, and length variation in Z is limited.

B. Experimental Study: Overhead of Simple DPI

We show that our assumptions are reasonable for practical
cases (e.g., switch supports a high-level header definition with
Y+Z bytes, and TCAM matching supports Z bytes), through
a demonstration of our P4 application-layer firewall in action.

Using Mininet [7], we emulate a network: a P4 switch
S1 (emulated using the standard BMV2 model) connects two
hosts H1 and H2. H1 generates mixed censored and benign
traffic to H2, which runs HTTPS, DNS, and HTTP services
(i.e. masquerades as the target sites and the DNS server).

While this is a preliminary study, we can see that the
overhead compared to baseline is quite small — in the slowest
case (HTTP), the delay is a few milliseconds for 50 match
rules on 10 parallel connections — even in simulation using
Mininet on a VM. A real switch (e.g. Tofino 2) will improve
performance by orders of magnitude.

IV. CONCLUDING REMARKS

Our demonstration shows that in practice, simple DPI can
be performed by standard (P4-compliant) switches. Two issues
still remain.

o A very short packet, where the entire packet is shorter
than the padded match pattern with don’t-cares, will slip
through the firewall.

« We are yet to demonstrate simple DPI on a real switch,
for a direct comparison with existing middleboxes.

We are developing a more advanced approach to address the
first issue. We invite collaborators, who are willing to share
access to an actual switch, to help address the second.
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