
Loom: Switch-based Cloud Load Balancer
with Compressed States

Jiao Zhang†‡, Yuxuan Gao†, Shubo Wen†, Tian Pan†‡, Tao Huang†‡
†Beijing University of Posts and Telecommunications, Beijing, China

‡Purple Mountain Laboratories, Nanjing, China

Email: {jiaozhang, gaoyuxuan, 2013210006, pan, htao}@bupt.edu.cn

Abstract—Layer-4 load balancers play a critical role in large-
scale data centers. Recently, load balancers implemented on
programmable switches have attracted much attention since
they overcome the inflexibility of dedicated load balancers and
high latency of software load balancers. However, keeping per-
connection state easily leads to storage exhaustion, especially
under resource exhaustion attacks. Although several stateless
load balancers are proposed to address this issue, the state
management burden is offloaded to backend servers, causing
high deployment and running costs. In this paper, a load balancer
called Loom with compressed states is proposed for large-scale
data centers. Firstly, we propose a novel classifier-based load
balancer idea to avoid directly maintaining per-connection state.
Then, a circulating Bloom filter structure is proposed that can
efficiently classify connections as well as be implemented on
existing programmable switches. Theoretical analysis shows that
Loom can maintain 11 ∼ 30x more concurrent connections
than those directly storing the 5-tuple of connections. Loom is
implemented in hardware P4 switches and experimental results
indicate that 11 ∼ 29x more concurrent connections can be
maintained in Loom, which is close to the theoretical results.
Besides, Loom is resistant to resource exhaustion attacks and
reduces the percentage of broken connections by up to 57% with
an SYN flood.

Index Terms—Cloud Data Center, Load Balancer, Compressed
States, Programmable Switch, Resource Exhaustion Attack

I. INTRODUCTION

Layer-4 load balancing is an indispensable function in large-

scale data centers. To achieve outward scalability, a cloud

service is generally provisioned by a large number of backend

servers [1], [2]. Each service exposes several public virtual

IP (VIP) addresses for users to establish connections. Load

balancers in data centers need to dispatch requests destined

to these VIPs to one of the corresponding backend servers.

Each backend server has a unique direct IP (DIP) address.

A desirable layer-4 load balancer should achieve quite low

latency and keep Per-Connection Consistency (PCC) in various

scenarios. Per-connection consistency means that a connection

will always be mapped to the same DIP server even if the DIP

pool updates or the mapping function between VIPs and DIPs

changes.
Existing load balancers can be mainly classified into three

categories according to their implementation platforms. First,

dedicated load balancers [3], [4]. This kind of load balancer

is usually expensive and hard to scale. Second, software load
balancers [5]–[8]. By implementing load balancers in a great

number of commodity servers, software load balancers exhibit

high scalability and availability. However, this kind of load

balancer processes packets in software, which leads to high

packet processing latency and high latency jitter when traffic

load is relatively large. Third, switch-based load balancers.

To address the drawbacks of dedicated and software load

balancers, some attempts have been conducted to implement

load balancers in switches [9]–[12]. This method is cost-

effective and can process packets in line-rate as dedicated load

balancers. However, switch-based load balancers are limited

by the fixed processing logic. Recently, with the development

of programmable switches, there is a trend to implement load

balancers on them [11], [13]–[15].

Most load balancers record the mapping relationship be-

tween every connection and its corresponding backend server

locally. That is, a load balancer generally assigns a backend

server for the first packet of a new connection by using a

hash function. Then the assignment result will be recorded

locally. In this way, all the following packets of that connection

can be guaranteed to be dispatched to the same backend

servers even if the hash function changes or the backend

servers pool updates. However, the hardware resource of

switches is limited. Maintaining the states of all connections

consumes much memory space. What’s more, once a resource

exhaustion attack like an SYN flood [16] happens, the memory

of switches will be easily exhausted, failing to guarantee PCC.

Although several stateless load balancers have been pro-

posed recently to solve the state management problems [13],

[17], they transfer the burden of keeping per-connection con-

sistency to backend servers. Each backend server requires to

implement a module to detect whether the received packets

should be processed by it. If not, it needs to forward the

packets to another server that possibly has the state for the

packet. This kind of method will increase packet processing

latency. Besides, installing a new module leads to a deploy-

ment cost. What’s more, some computation and bandwidth

resources of backend servers will be taken for continuously

forwarding packets.

In this paper, we propose a semi-stateful load balancer,

Loom, which is implemented on programmable switches.

Since most memory of stateful load balancers is taken to

maintain per-connection state, we firstly propose a novel
classifier-based load balancer idea to avoid directly maintain-
ing per-connection state. Specifically, by using a classifier to978-1-6654-4131-5/21/$31.00 ©2021 IEEE

differentiate connections as well as maintaining their corre-

sponding hash functions, all connections can be directed to

the correct backend servers. Since the classifier potentially

occupies much less memory than directly maintaining per-

connection state especially with a large number of connections,

the load balancer can deal with more connections given a fixed

memory space.

Then, we propose a specific design of the classifier-based
load balancer idea by leveraging several Bloom filters [18]
and devising a circulating update scheme. The average storage

space taken up by one connection greatly decreases. Theo-
retical analysis shows that Loom can support 40.4 million
connections with only 50 MBytes SRAM, which indicates
11 ∼ 30x improvement over those directly storing entire con-
nection information and about 2.7 times over those with per-
entry compressed solutions [11]. Besides, it greatly decreases

the percentage of broken connections caused by resource

exhaustion attacks like SYN flood.

We implemented Loom in an Edgecore Wedge100BF-65X

switch [19] using the P4 language [20]. The parameters of

Loom are set properly according to the limitations of P4

switches and the theoretical analysis results. Experimental

results show that Loom significantly improves SRAM utiliza-

tion. The number of connections that can be maintained is

consistent with the theoretical analysis results. Compared with

stateful load balancers, Loom can reduce the percentage of

broken connections by up to 57% under SYN flood attacks in

our experiments.

In sum, the key contributions of the work are as follows:

• We propose a novel classifier-based load balancer idea

to save memory space, which uses a classifier to differ-

entiate connections and maintains different versions of

the hash functions. Thus, each connection can obtain its

correct backend servers based on their corresponding hash

functions.

• We propose a detailed design of the classifier-based load

balancer idea by leveraging multiple Bloom filters and

the proposed circulating update scheme. Then we theoret-

ically analyze how many connections can be maintained

as well as the proper parameters’ values in Loom.

• Based on the analysis results, we implement Loom in a

hardware P4 switch and validate that it can maintain 11 ∼
29x more connections than those directly storing the 5-

tuple of connections and reduce the percentage of broken

connections by up to 57% under SYN flood attacks.

In the remainder of this paper, we summarize the advantages

and disadvantages of load balancers with different imple-

mentation platforms and state management schemes in §II.

In §III and §IV, the basic idea and design details of Loom

are presented. The analysis and implementation of Loom are

described in §V. §VI shows experimental results. Finally, the

paper is concluded in §VII.

II. BACKGROUND AND PREVIOUS WORK

The job of a load balancer is to map connections from VIPs

to DIPs evenly. In general, a load balancer is a middlebox

between servers and clients. Next, we summarize the existing

work and discuss their limitations from the perspective of

platform and state management.

A. Platform

Dedicated load balancers: Initially, load balancers are

implemented in dedicated hardware [3], [4], [21], [22]. But

there are some drawbacks. Thus, dedicated load balancers

are generally more expensive than commodity servers and

switches in data center networks. Secondly, the features and

capacity of dedicated hardware are hard to keep up with

demand. At the same time, the upgrade of a dedicated load

balancer usually needs to change the hardware instead of

upgrading the software, which means a long upgrade period.

Thus, although this kind of load balancer leads to high

performance, there’s an obvious lack of flexibility.

Software load balancers: To overcome the limitations

of dedicated load balancers, some solutions are proposed to

implement load balancers on commodity servers. Maglev [6],

Ananta [5], Coucury [8], and Karan [23] are representative

software load balancers. Their capacity can be easily adjusted

by adding or removing load balancer servers. Meanwhile,

Maglev improves the throughput of a single load balancer

server through batch processing and kernel bypass techniques.

Typically, software load balancers run on thousands of com-

modity servers. This makes them very flexible but also brings

some drawbacks. Firstly, software load balancers typically

need a significant number of servers (up to 3.75% of the total

servers in a data center) to handle large traffic [11]. This leads

to high capital expenditure [9] and high power costs. Since

traffic size of a medium-sized data center is as high as 15Tbps,

which requires more than 4000 SMuxes and costs more than

10 million dollars. For a programmable switch of 3.3 Tbps, it

only costs 10500 dollars. For load balancing of the same traffic

size, the cost of software load balancer is much higher [24].

Secondly, software load balancers introduce a high latency and

jitter while processing packets in software. About 44% of the

total Internet traffic is VIP traffic, and it accounts for about

30% of the total VIP traffic in a data center. The remaining

70% of the VIP traffic comes from the inter-services within a

data center [5], and the traffic intra-DC is sensitive to delay

(e.g., 2-5μs RTT with RDMA [25])

Switch-based load balancers: Dedicated hardware and

commodity servers are two extremes, and each one has its own

flaws. Thus, it is natural to think about using a device that com-

bines the two to implement the load balancing function. Duet

[9] and Rubik [26] are hybrid load balancers that combine

the ECMP ability of commodity switches with software load

balancers. They aim to address the performance bottleneck

of software load balancers by offloading some workload to

commodity switches. However, no matter using the original

ECMP table in common switches or using the OpenFlow

switch, the number of entries that can be stored in a switch is

very limited. Besides, the fixed packet processing procedure

and matching structure of common switches make it difficult

to design complex logic and advanced data structures in the

data plane for future upgrades.

In recent years, some programmable switches are developed,

such as P4 switches [19], and Cavium’s XP70 [27]. These

switches have software-like flexibility and high performance.

SilkRoad [11] aims to ensure PCC during frequent backend

server pool updates with programmable switches. SilkRoad

tracks per-flow state in programmable switches by directly

storing the mapping relationship between every connection and

its corresponding backend server. The relatively small SRAM

size limits the amount of connections SilkRoad can maintain.

This also makes SilkRoad vulnerable to resource exhaustion

attacks.

B. State management

From the perspective of state management, load balancers

can be divided into stateful and stateless ones. However, both

of them have some limitations.

Stateful load balancers: Most existing load balancers keep

per-connection state to ensure connection consistency. Once

a connection is assigned to a backend server, the following

packets of this connection will be routed to the same backend

servers until the connection finishes. These lead to two main

drawbacks. Firstly, saving the state of each connection con-

sumes a lot of memory. Although this is not a big problem

for software load balancers, for hardware load balancers with

very limited resources, the memory used to record the state

of each connection occupies almost all resources, even up to

91.7% [11]. Secondly, while recording per-connection state

works well under normal conditions, stateful load balancers

suffer from state mismatch between the load balancer and the

backend servers since they can always see only one direction

of flows [13]. This state mismatch may exhaust the memory

of the load balancer quickly under circumstances like SYN

flood or break alive connections.

Stateless load balancers: Beamer [13] and Failed [17]

are two stateless load balancers. They both offload state

management to application servers. Stateless load balancers

keep PCC by leveraging the states maintained by backend

servers instead of maintaining connection states locally. One

of the most obvious benefits is that a stateless load balancer

will no longer be affected by SYN Flood attacks since it does

not save connection states. Furthermore, the simple logic of

stateless load balancers improves performance and scalability.

However, this mechanism makes backend servers involved

in the core functionality of load balancing, which results in

CPU and bandwidth overhead on the server-side. These extra

expenses cannot be ignored in large-scale data centers. In

addition, each backend server needs to be modified to fit

into the load balancing system. Adaptation to different server

platforms will also result in overhead. Although CHEETAH

[28] can achieve stateless load balancing without expanding

the backend servers, CHEETAH needs to insert a cookie in

the header of all packets to assist load balancers to complete

the packet forwarding. This needs to modify clients. Besides,

Fig. 1: Basic idea of stateful load balancers. Maintaining

connection states occupies much memory space.

Fig. 2: Basic idea of Loom. By utilizing a classifier, much

memory space could be saved.

even encoding the cookie in the packet header, such as TCP

timestamp, may affect the normal operation of TCP.

In a word, offloading state management to the backend

servers or packet header is not a proper strategy for all

scenarios, but storing the states of connections directly on

the load balancer also has limitations due to the resource

constraints and state mismatch.

III. DESIGN RATIONALE OF LOOM

A. Basic idea

A desirable load balancer should have the following char-

acteristics: low latency, high flexibility, maintaining a large

number of active connections, resistance to resource exhaus-

tion attacks, and transparency to connection ends.

To design a switch-based load balancer that has the desirable

characteristics, we firstly investigate why a load balancer is
required to save the states of each connection. What a load

balancer requires to accomplish is to send all the packets of

a connection to the same backend server. If the number of

backend servers varies before the connection ends, the rela-

tionship between a hash result and its corresponding backend

server may change. Therefore, the load balancer will likely

send subsequent packets of some connections to the wrong

servers. To address this problem, a straightforward idea is to

record the mapping between each connection and the backend

server. Most stateful load balancers forward packets according

to this procedure as shown in Figure 1.

However, maintaining per-connection state consumes much

memory as the number of connections increases, while the

hash function takes quite a small memory space. If we addi-

tionally save the last hash function and classify incoming pack-

ets into old connections and new ones. Then the packets from

old connections could be hashed using the old hash function

and will not be forwarded to the wrong backend server. Since
maintaining a classifier and multiple hash functions consumes
much less memory compared with maintaining per-connection
state, the efficiency of resource utilization can be significantly
improved. This is also the basic idea of Loom as shown in

Figure 2.

Figure 3 uses a simple example to illustrate the above

basic idea. Let c1, c2 be two connections established before

a DIP pool update, and their corresponding DIP is A and B,

respectively. Connection c3 is a new connection that starts after

the DIP pool update. The old hash function is used to obtain a

proper DIP server for packets without local record before the

DIP pool update, and the new hash function is used to obtain

a proper DIP server for packets without local record after the

DIP pool update. Figure 3 shows how to process packets after

the DIP pool update. A stateful load balancer shown in Figure

3a queries the recorded connection states to obtain the correct

DIP for each packet (for c1 and c2). If the connection state

is not found, then it will use the new hash function to get

a DIP (for c3). However, Loom shown in Figure 3b queries

whether an arrival connection belongs to the set consisting

of c1 and c2. If it belongs, then the packet will be assigned

its DIP according to the old version of route_table and

map_table with the old hash function, otherwise, it uses the

new version of route_table and map_table with new

hash function. This method not only ensures that old and new

connections are correctly forwarded, but also saves space.

In summary, by designing a state compression structure

within the logic of the programmable switch, Loom maximizes

the SRAM utilization and thus stores more active connections

as well as becomes more resistant to SYN flood attacks.

B. Classifing structure

Bloom filter [18] is a space-efficient probabilistic data

structure designed to answer whether an element is in a set.

Due to the space efficiency and quick query speed of Bloom

filter, it has been widely used in databases, storage systems,

networks and so on. However, it has a false positive problem

and difficulty in deleting elements. Thus, a lot of attempts have

been conducted to overcome these shortcomings of Bloom

filters [29]–[31]. Counting Bloom filter [29], Quotient filter

[30], and Cuckoo filter [31] are three typical variants of

Bloom filter. Counting Bloom filter [29] solves the drawback

of Bloom filters that items cannot be deleted. However, it takes

up several times the storage space compared with Bloom filter.

Quotient filter [30] and Cuckoo filter [31] are two structures

that aim to avoid false positive events. If a collision occurs

when an element is inserted in a Quotient filter, the element

at the original position needs to be cyclically shifted to insert

the new element. When a position conflict occurs in the cuckoo

filter, the item to be inserted will take up the conflicted position

while the original item will be moved to an alternate position.

However, these shift or move operations are difficult to be

implemented on a programmable switch [11].

In summary, although the improvements based on Bloom

filter have advantages in storage space and query speed, it is

hard to implement them on programmable switches. Therefore,

in Loom, we propose a circulating Bloom filter data structure

that can be implemented on a programmable switch as well

as save storage space.

IV. DETAILS OF LOOM

In this section, we will firstly describe the framework of

Loom. Subsequently, the proposed circulating Bloom filter

(a) Stateful load balancers (b) Loom

Fig. 3: A simple example to illustrate the basic idea.

structure will be presented.

A. Framework

Figure 4 shows the framework and workflow of Loom.

Following the basic idea of Loom, we use multiple simple

and easily implemented Bloom filters to classify connections

in an SRAM-efficient way. Besides, a novel circulating update

method is proposed to handle DIP pool updates and mitigate

the impact of SYN flood attacks.

There are five major modules in Loom:

(1) Conn table maintains the precise state of a quite small

percentage of connections. It maps the connections to DIPs to

maintain connection consistency when there is a false positive

event (§IV-B2) caused by Bloom filters. To reduce the match

field size, we store the hash value of a connection rather than

its 5-tuple. One entry will be deleted if it has not been hit for

a period of time.

(2) Bloom filter is used as a classifier for differentiating

new connections and old connections. There could be several

Bloom filters in our design. Figure 4) uses three Bloom Filters

as an example to illustrate how Loom works. One Bloom filter

(new Bloom maintains new connections. The other two store

old connections and answer which version of route_table
should be used. We refer them as query Bloom as shown

in Figure 4. There is only one new Bloom in Loom, but the

number of query Bloom could be larger than 1. The number

of query Bloom means how many different old versions of

route_table will be recorded.

(3) Syn table triggers a false positive event if the processing

packet is an SYN packet and one query Bloom filter gives

a positive answer. This is because an SYN packet is the first

packet of a connection, it indicates that a false positive event

happens if an SYN packet matches in the query Bloom
filters. If it is not an SYN packet, then the route_table
with old versions can be used to forward this packet. syn table

stores entries that include [Match Key: syn flag, version of the

hit Bloom Filter; Action: resubmit, generate digest]. Using the

syn_table rather than syn flag enables that we can flexibly

change the entry and perform the corresponding operations

according to the Match-Action results.

(4) Route table maps each connection to a DIP server

based on the weights which can be set by inserting different

numbers of entries. The entry stored in route_table is

[Match key:hash mod, version; Action value: DIP index]. The

match fields include hash mod and version fields. Hash
mod is obtained by modulo e of the 5-tuple hash result.

Here e is the total number of route_table entries in a

single version. The version field allows route_table

Fig. 4: Framework of Loom.

to record the route_table entries before updates. Thus,

one route_table with different versions of entries can

distinguish different DIP pools. The input of route_table
are hash mod and version, and output is the index of

DIP. With the classification ability of the query Bloom
filters, the subsequent packets of old connections can be sent to

the correct backend servers according to the route_table
entries with an old version.

(5) Map table is added to implement the mapping from

DIP index to DIP. Because the action field also occupies a lot

of SRAM on the hardware switch, we add a map_table
at the end of all tables to compress the storage space for

DIP. Using DIP index in the action fields of conn_table
and route_table can effectively improve the utilization

efficiency of SRAM. Adding map_table is also beneficial

to simplifying the controller’s handling of DIP update.

(6) Controller updates route_table when there is a

pool update event and handles false positive events. Thus,

false positive events will not affect the connection consistency.

Besides, each pool update event will trigger the controller to

perform a circulating update (§IV-B3).

Workflow of Loom. 1) A packet that hits conn_table
can be directly sent to the corresponding backend server

without passing through other tables. 2) Once a packet misses

the conn_table, it queries query Bloom filters to obtain

which version of route_table should be used. The two

Bloom filters used for the query correspond to the past two

versions of route_table. Whether a connection has already

been established in the past can be determined by whether the

two query Bloom filters are matched. 3) If the connection

that the packet belongs to does not exist in these two query

Bloom filters, we can infer that it is a new connection. Then the

latest version of route_table can be used to forward the

packet. This packet is then inserted into the new Bloom filter

to record the new connection. 4) If this connection exists in one

of the query Bloom filters, then syn_table will be used

to determine whether a false positive event happens. 5) If a

false positive event is detected by syn_table, the controller

will get the 5-tuple of this connection. Then, the controller will

insert an entry in conn_table. The following packets of this

connection that may suffer false positive will never be checked

in the query Bloom filters. 6) If no false positive event

happens, then the packet will be sent to its backend server

according to the corresponding version of route_table.

B. Circulating Bloom filter

1) Bloom filter: In Loom, the Bloom filter is used to answer

whether a packet should be applied to an older version of

route_table. It is proved that the Bloom filter can be

constructed with two hash functions without any loss in the

asymptotic false positive rate (e.g., gi(x)=h1(x)+ih2(x)) [32].

That is to say, new hash functions can be constructed through

the addition and left shift operations in P4 [33].

2) Influence of false positive: The most obvious limitation

of the Bloom filter data structure lies in possible false positive

match, which means that a Bloom filter may produce a wrong

result for elements that are not in the set [34].

First, we need to analyze the impact of false positive events

on different kinds of connections. For an old connection,

since there are already corresponding records in one query
Bloom filter, all subsequent packets will hit the query Bloom

filter and then be forwarded according to the route_table
with the corresponding old versions. For a new connection, If

the first packet, SYN packet, hits the query Bloom filters,

which means that a false positive event happens. Then we

can distinguish this new connection that suffers false positive

by syn_table in Loom. After this connection is detected,

the state of this special new connection will be added to the

conn_table by the controller to prevent subsequent packets

of the connection from entering the query Bloom filters

for query. In order to guarantee a non-SYN packet being

dispatched to the correct DIP even if it hits multiple query

Bloom filters, we set the ASIC processing logic to forward

only according to the first query bloom filter matched by

the packet. In this way, the false positive problem could be

addressed.

By controlling the number of elements in Bloom filters and

the circulating update (§IV-B3), we can control the maximum

False Positive Rate (FPR). The specific value of FPR can

be adjusted by controlling the ratio of the storage space

taken by the conn_table and the Bloom filters in the

implementation. More details will be shown in §V-A.

3) Circulating update: The circulating update scheme for

the Bloom filters is designed for two main goals. First, it is

Fig. 5: Example of a circulating update.

used to handle the pool update events. After one server pool

update, the new Bloom filter will become a query Bloom filter

for classifying incoming connections, and the oldest Bloom

filter will be cleared and reused to record the new connections

with a new version value. Second, the circulating update of

Bloom filters is used for maintaining normal FPR. Elements

in a Bloom filter cannot be removed. However, the FPR will

increase as the number of elements increases in a Bloom filter.

Thus, when the number of elements in the new Bloom filter

reaches a threshold, Loom will also execute the circulating

update.

As shown in Figure 5, Loom uses three Bloom filters,

Bloom 1, Bloom 2, and Bloom 3. They correspond to the

route_table from the oldest version to the latest version.

Before updating, Bloom 1 and Bloom 2 are used for query

of connections, and Bloom 3 is used to store newly arrived

connections. The entire update process is a cyclic shift of

Bloom 1, Bloom 2, and Bloom 3. After a circulating update

happens, Bloom 1 will clear its content and be placed at

position 3, Bloom 2 will be placed at position 1, and Bloom

3 will be placed at position 2. This forms a complete circu-

lating update. After the circulating update, an empty Bloom

filter is obtained for storing new connections, while the old

connections are saved in Bloom filters at position 1 and 2.

As for the connections that are cleared from Bloom 1, the

probability that these connections still keep alive is very low

since a significant fraction of data center flows last under a

few hundreds of milliseconds [35]. Besides, the probability

of connections being broken can be further reduced by using

the consistent hashing in route_table. This cyclic shift

does not require multiple copy operations and only needs

to change the pointer operated by each function, leading to

negligible overhead. Note that since P4 does not support

pointer operations, we add a flag to each Bloom filter in

metadata to distinguish whether a Bloom filter is a query

Bloom filter or not. The controller can change the flag to

achieve circulating update.

The circulating update can effectively mitigate the impact

of resource exhaustion attacks like SYN flood. When the SYN

flood attacks cause a large number of new connections to be

quickly inserted into the Bloom filter, the circulating update

will be triggered frequently even without DIP updates. In such

cases, SYN attacks without subsequent packets are removed

from Bloom filters, and those normal flows with subsequent

6 7 8 9 10 11

x

8

9

10

11

12

13

14

15

16

17

B
o
p
t

a
v
r
(x

)

k=4 k=5 k=6 k=7

c=5

c=4

c=3

c=2

Fig. 6: Relationship between x = m
n and the optimal number

of bits occupied by each connection, Bopt
avr(x).

packets can continue to be recorded in the Bloom filters. Thus,

the cleared normal connections that use the latest version of

route_table can keep PCC.

V. ANALYSIS AND IMPLEMENTATION

In this section, we will analyze how many connections could

be maintained and the optimal values of parameters in Loom.

Then we describe the implementation of Loom based on the

theoretical analysis results. At the same time, some additional

constraints on the implementation were presented.

A. Number of connections

First, we analyze the compression efficiency of the connec-

tion states in Loom.

In the following analysis, the space occupied by syn table,

route table, and map table will be ignored, because they only

occupy less than 0.5 MB of SRAM with 65535 DIPs. Several

parameters are defined as follows:

• k represents the number of hash functions used by one

Bloom filter.

• m is the number of bits taken by a Bloom filter, that is,

the SRAM size occupied by a Bloom filter.

• n stands for the number of elements currently stored in

a Bloom filter.

• c represents the total number of Bloom filters used in

Loom.

Eq. (1) shows the theoretical value of the FPR of a single

Bloom filter expressed with the variables k, m, and n [36].

FPR1 =

(
1−

(
1− 1

m

)kn
)k

≈ (
1− e−k n

m

)k
(1)

There are total c Bloom filters in Loom. Thus, we can get

that there are (c − 1) query Bloom filters and one new
Bloom filter. The probability that no query Bloom filters

generate false positive events is (1 − FPR1)
c−1. Therefore,

the total FPR can be expressed as

FPRtot = 1− (1− FPR1)
c−1 (2)

In Loom, the number of bits occupied by each connection,

Bavr, can be expressed as Eq. (3)

Bavr = FPRtot ×Bconn + (1− FPRtot)×Bbloom (3)

Fig. 7: Implementation framework of Loom on the pro-

grammable hardware switch.

where Bconn represents the bits occupied by each connection

stored in conn_table, and Bbloom equals the ratio of m to

n. Since Bbloom is significantly smaller than Bconn, Bavr will

decrease as FPRtot becomes smaller. To minimize FPRtot,

FPR1 needs to be minimized. According to Eq. (1), FPR1

has a minimum value when

k = ln2× m

n
. (4)

Assume that a 48-bit hash value is used in the match field

of conn_table, and the action field takes up 16 bits. Then

a connection takes up a total of 64 bits in the conn_table,

that is Bconn = 64. Assume the value of Bbloom is x. Then

k = xln2. Thus, the optimal number of bits occupied by each

connection Bopt
avr(x) can be expressed as Eq. (5).

Bopt
avr(x) = (x− 64)(1− 0.6185x)c−1 + 64 (5)

Figure 6 depicts how Bopt
avr(x) changes with different x and

c. Since the derivative of this function is a transcendental

function, the analytical solution of the minimum value point

cannot be obtained. However, the numerical solution can be

easily obtained. Furthermore, since k (the number of hash

functions) is an integer and the reasonable values of x are quite

limited, for a given c (the number of Bloom filters), we can

find the optimal value of k and x = m
n that minimize Bopt

avr(x).
As for the value of c, it represents a tradeoff between the

compression efficiency and the connection consistency. Larger

c causes an increase in FPR. Thus, smaller c could lead to

better compression results. As shown in Figure 6, smaller c
leads to smaller Bopt

avr(x).
Taking c = 3 as an example, the optimal compression effi-

ciency occurs when k = 6 or x = 8.66, and the corresponding

average SRAM occupied by each connection is 10.37 bits.

Thus, Loom can maintain about 50MB
10.37bit

≈ 40.4 million con-

nections in theory. Taking c = 2 can have a better compression

rate. However, c is too small to store different versions of

connections, and thus the circulating update will clear more

old connections. In order to ensure the reliability and high

compression ratio of Loom, we take c = 3. In contrast, directly

storing one IPv4 connection requires 120 bits, while the entire

5-tuple information of one IPv6 connection needs 312 bits.

Note that the Bloom filter itself is a classifier that indicates

which version of route_table is used, so the Bloom filters

in Loom do not need an action field. In other words, Loom can

store about 120
10.37 ≈ 11 to 312

10.37 ≈ 30 times more connections

in the same SRAM space than those directly storing the entire

5-tuple of each connection. Besides, SilkRoad uses a 28 bits

entry in ConnTable to store a connection [11]. Thus, Loom

can achieve about 28
10.37 ≈ 2.7x over it. The remaining SRAM

can be used for other important switch functionality, such as

routing and tunneling [37]. As a load balancer, SRAM is the

most important and bottleneck resource that affects the number

of connections that can be maintained, other resources such

as hash units, ALUs are enough in our system.

B. Implementation of Loom

We implement a prototype system using the P4 language

[20] on the Edgecore Wedge100BF-65X [19] programmable

hardware switch. The implementation framework of Loom

is shown in Figure 7. Due to the hardware resource and

logical limitations on the hardware switch, we made some

modifications to our design. The details are as follows:

(1) The running process is adjusted to fit into the limita-

tions of the hardware switch. From an abstract logical point

of view, there is no change in the entire process. But because

of the pipeline limitations of the hardware switch, we add

a resubmit operation to complete the insert operation

of new connections. After adding the resubmit operation,

the workflow of Loom has to be modified. Specifically, upon

arrival of a packet, Loom will go through all the Bloom filters

and keep all the query results. The packet that needs to be

inserted into one of the Bloom filters will be resubmitted and

inserted into the corresponding Bloom filter.

Note that Loom only resubmits some packets. The upper

bound of the proportion of packets that need to be resubmitted

is the reciprocal of the average connection length. Besides, this

is done within the logical framework provided by the hardware

switch. Thus, there is almost no overhead. Meanwhile, since

the hardware switch is based on the pipeline architecture of

P4 switches, querying all Bloom filters for every packet does

not cause an increase in processing latency. Because as long

as the application is adapted to the logic of the P4 pipeline,

there will be no significant difference in processing latency

[11], [38].

(2) The ratio of the storage space occupied by Bloom

filters and conn_table also needs to be adjusted. Since

not all SRAM in a hardware switch can be used to implement

Bloom filters, some SRAM can only be used to implement

conn_table. In other words, Eq. (3) needs to be subject to

inequality (6), where r is a hardware-related parameter that

indicates the ratio of space occupied by conn_table to

Bloom filters. Thus, the space used by Bloom filters is further

reduced with larger r. In our implementation, r = 2
3 . If c = 3,

then according to Eq. (3) and (6), we will choose x = 7.2 and

k = 5 to get an optimal Bopt
avr.

FPRtot ×Bconn

(1− FPRtot)×Bbloom
> r (6)

(3) The RPC framework, thrift [39], is used for commu-

nication between the controller and the Tofino data plane.

The controller will get the false positive events generated by

Fig. 8: Memory cost to store different

number of states.

Fig. 9: Normal 5-tuples take up 25%

space

Fig. 10: FPR difference between theoret-

ical analysis and experimental results.

syn_table through the thrift API, process the information

carried in it, and then add the corresponding entries into

conn_table through the thrift API. Once a DIP pool update

event happens, the route_table and map_table need to

be changed. This is also conducted by the controller through

the thrift API. Besides, the circulating update also utilizes the

thrift API to clear the oldest query Bloom filter and set it

as the new Bloom filter to store new connections.

VI. EVALUATION

In this section, we will evaluate the performance of Loom

based on two types of evaluations:

1) Algorithm micro-benchmark based on the open-source

and reproducible code provided by [8]. We compare Loom

with three existing typical stateful load balancer algorithms:

Maglev [6], SilkRoad [11], and Concury [8]. The server we

used to implement Loom and the open-source code of the three

compared schemes has Intel(R) Xeon(R) Gold 6230 CPU,

2.10GHz, 27.5M L3 cache shared by 8 logical cores, and

16GB RAM. Besides, we use the linear feedback shift register

that can generate more than 200M states (5-tuples) per second

to generate uniformly different states.

2) Hardware-testbed evaluation from four aspects: balance,

FPR, average SRAM usage, and impact of SYN flood. Our

testbed consists of several Linux containers as servers and an

Edgecore Wedge100BF-65X hardware switch running our P4

code as a load balancer.

In all scenarios, c = 3 and k = 5 unless otherwise specified.

A. Algorithm micro-benchmark results

1) Memory usage: In this experiment, we send different

numbers of 5-tuples and record the memory usage of these

load balancers. Figure 8 shows the memory usage of SilkRoad,

Maglev, Concury, and Loom to store different numbers of 5-

tuples. The number of backend servers is 32. The experimental

results are displayed on a logarithmic axis. As the number

of states increases, we found that the storage space occupied

by SilkRoad, Maglev, Concury is about 3.2, 14, 2.8 times of

Loom, respectively. Loom only needs less than 10MB to store

8.39 million concurrent 5-tuples. Compared with the state-of-

art stateful load balancers, Loom needs the least memory space

to store the same number of 5-tuples.

2) PCC under SYN flood attacks: An SYN flood is a

typical and severe resource exhaustion attack on stateful load

balancers. We will show that Loom has a good defense ability

against SYN flood attacks. There are 32 backend servers in

this test. In the beginning, let the DIP pool consist of the first

16 servers. After sending some SYN flood 5-tuples and normal

5-tuples, the DIP pool is updated to the last 16 servers. Then,

we re-sent the normal 5-tuples. A 5-tuple mapped to different

backend servers is recorded as a connection that violates PCC.

In this case, we can clearly obtain the total number of PCC

violation connections caused by an SYN flood attack.
Figure 9 shows the number of PCC violation connections

with different load balancer mechanisms. The total number

of normal connections established before DIP pool updates

equals 25% of the amount that can be stored in SilkRoad. The

results show that Loom can reduce the PCC violation prob-

ability by up to 40%, 37%, and 60% compared to SilkRoad,

Concury, and Maglev. This is because Loom has the circulating

update mechanism and keeps different versions of Bloom

filters and corresponding route_table. In contrast, Maglev

uses a hash table to store connection states and consistent

hashing to evenly distribute traffic. SilkRoad uses ConnTable

to store connection states with different versions and Multi

hash tables to distribute traffic. Concury uses OthelloMap to

store connection states and weighted randomizer to distribute

traffic. After the DIP pool update, the connections that are not

stored in these load balancers will have to be sent to the last

16 servers and thus violate PCC.

B. Hardware-testbed evaluation results
1) False positive rate: Firstly, we show that the FPR of the

Bloom filters implemented on the hardware switch is in line

with the theoretical analysis results presented in §V-A. The

tcpreplay tool is used to replay a pcap file containing a

large number of SYN packets with different 5-tuple. In this

way, a large number of connections will be injected into the

load balancer to achieve a specific m
n of the Bloom filter. Then

some TCP connections will be generated and the number of

false positive events reported by syn_table will be counted

on the controller to get the FPRexp
tot value at a specific m

n .
The results are shown in Figure 10. It can be seen that

the experimental results on the hardware switch are consistent

with theoretical analysis results. Furthermore, the number

Fig. 11: Effect of k on FPR with different

ratio of m to n.

Fig. 12: Percentage of requests received

by each server with DIP pool updates.

Fig. 13: Average SRAM usage to store

different number of states in hardware P4

switch.

of connections that the system can store can be estimated

according to Eq. (3) and FPRexp
tot . By calculation, we obtain

that the state of a connection consumes an average of 10.72
bits in our testbed. Thus, Loom can store nearly 39.2 million
connections using only 50 MB SRAM space. It achieves 11x
to 29x more compression of storage space than those directly
storing the entire 5-tuple information of connections and 2.6x
more than those with per-entry compression [11].

The effect of k on FPR with different m
n values is shown in

Figure 11. The experimental setup is the same as that in Figure

10. As the number of hash functions increases, FPR decreases

when m
n is smaller than 7, but increases when m

n is larger

than 7. Given a fixed m
n , the number of connections that can

be supported in Loom will be maximized with the minimum

FPR. From the experimental results, we can see that when
m
n = 7, using k = 5 hash functions in each Bloom filter leads

to the best performance. This is the same as the theoretical

analysis result in §V-A.

2) Server pool update: In this subsection, the ability of

balancing requests and handling pool update events will be

evaluated. A Flask-based [40] web service runs on each DIP

server. Flask [40] is a micro web framework for rapid develop-

ment and deployment of services written in Python. This web

service converts the format of the image file contained in the

request into GIF and then sends it back to clients. Clients send

post messages through python’s request library to generate

TCP connections and traffic.

This experiment consists of 16 backend servers. We count

the number of newly received requests per second on each

server. At the same time, several pool update events are

performed, and the number of broken connections is counted

to evaluate the ability of maintaining connection consistency

when there is a pool update event under Loom.

The results are shown in Figure 12, where the x-axis stands

for time and the y-axis represents the percentage of new

requests received by servers in one second. In the beginning,

severs S0 − S7 are used to provide services. Then servers

S8 − S15 are added into the DIP pool in sequence. Finally,

servers S0 − S3 are removed from the DIP pool. Figure 12

shows the workload variations. The percentage of requests

received by S0 − S3 is highlighted using red color. It can be

seen that at the beginning, S0−S3 receive about 50% of new

requests per second since there are totally 8 servers S0 − S7

in the DIP pool. After S8 − S11 are added, the percentage

received by S0−S3 and S4−S7 drops to about 33%. At time

150s, S8 − S15 is added, then the workload on each cluster

decreases to about 25%. Finally, S0−S3 are removed from the

DIP pool at 250s, S0−S3 no longer receive any new requests.

New requests are evenly distributed to the remaining servers.
This shows that Loom can evenly distribute requests to all

backend servers even when DIP pool updates occur. Besides,

we found that no connection was broken off or reset during

this experiment, which means that the consistency of each

connection was maintained.
3) Average SRAM usage: In this subsection, we compare

the average SRAM usage of Loom and SilkRoad* on hardware

switch. Since SilkRoad is not open-source, we do our best

to achieve SilkRoad’s hardware logic called SilkRoad* which

only uses conn_table without Bloom filters. The average

SRAM usage is defined as the sum of percentage SRAM

usage in every pipeline divided by 12 pipelines. We firstly

set the entry number of conn table in SilkRoad*, and the

entry number of conn table and Bloom filter size in Loom

to support different numbers of connections. Then we use the

visualization function in our hardware P4 switch to record the

average SRAM usage. Figure 13 shows, the compression rate

of Loom grows with the increase of states. Loom achieves 2.7x

more compression of storage space than SilkRoad* when the

number of states is more than 1 million, which is in accord

with the theory results.
4) Impact of SYN flood: The method of this experiment

is similar to the previous benchmark (§VI-A2), the difference

is that we use a hardware testbed and real TCP connections.
We know the number of bits a connection needs in both

SilkRoad* and Loom. Thus, we inject different numbers of

connections into them to make them occupy the same SRAM

size. The total number of normal connections established

before the DIP pool update equals 50% of the amount that

can be stored in conn_table of the SilkRoad* in Figure

14(a) and Figure 14(c). And we change this ratio to 25% in

Figure 14(b) and Figure 14(d). Besides, normal connections

in Figure 14(a) and Figure 14(b) are all long flows that will

not finish until the simulation ends. In Figure14(c) and Figure

0 2 4 6 8 10 12 14

Ratio of SYN Flood to Normal Connections

0

20

40

60

80

100

P
ro

b
a
b
il
it

y
 o

f
C

o
n
n
e
c
ti

o
n
 R

e
s
e
t

(%
)

Stateful Loom

Loom,c=2

Loom,c=3

Loom,c=4

(a) Normal connections take up 50% space and
all connections are long flows.

2 4 6 8 10 12 14

Ratio of SYN Flood to Normal Connections

0

20

40

60

80

100

P
ro

b
a
b
il
it

y
 o

f
C

o
n
n
e
c
ti

o
n
 R

e
s
e
t

(%
)

Stateful Loom

Loom,c=2

Loom,c=3

Loom,c=4

(b) Normal connections take up 25% space and
all connections are long flows.

0 2 4 6 8 10 12 14

Ratio of SYN Flood to Normal Connections

0

5

10

15

20

P
ro

b
a
b
il
it

y
 o

f
C

o
n
n
e
c
ti

o
n
 R

e
s
e
t

(%
)

Stateful Loom

Loom,c=2

Loom,c=3

Loom,c=4

(c) Normal connections take up 50% space and
connections are consisted of 80% short flows and
20% long flows.

2 4 6 8 10 12 14

Ratio of SYN Flood to Normal Connections

0

5

10

15

20

P
ro

b
a
b
il
it

y
 o

f
C

o
n
n
e
c
ti

o
n
 R

e
s
e
t

(%
)

Stateful Loom

Loom,c=2

Loom,c=3

Loom,c=4

(d) Normal connections take up 25% space and
connections are consisted of 80% short flows and
20% long flows.

Fig. 14: Percentage of broken connections after DIP pool updates under an SYN flood attack.

14(d), the traffic is mixed of 80% short flows (less than 10

Kbytes) and 20% long flows to reflect more realistic traffic

load in data centers [41], [42].

As shown in Figure 14(a), Loom can reduce the connection

reset probability by up to 35%, 49%, and 57% when c equals

2, 3, and 4 compared to SilkRoad*, respectively. This is

because Loom compresses the state of connections and can

store more connections than SilkRoad*. Thus, given the same

amount of SYN flood packets, fewer connections are reset

in Loom. Besides, the increase of c causes Loom to reset

fewer connections since more query Bloom filters are used

to store the information of old connections. However, as c
increases, Loom is more susceptible to SYN flood attacks

due to reduced compression efficiency. Furthermore, for a

fixed c, the percentage of broken connections is stable as

the SYN flood attack becomes more severe in Loom. This is

because the circulating update will make most of the normal

connections be dispatched to their correct DIP servers even

with the increase of SYN flood packets (§IV-B3).

When the normal connections established before the DIP

pool update only take 25% conn_table space of SilkRoad*,

connection reset happens with more SYN flood packets since

more memory space can accommodate SYN flood packets.

However, the connection reset probability is almost the same

as that in Figure 14(a) given a fixed c. This is because the

proportion of normal connections stored in each Bloom filter

is almost identical with the same c. Thus, once a Bloom filter

is cleared, almost the same proportion of normal connections

will be reset.

At last, Figure 14(c) and Figure 14(d) illustrate that the

change in flow size distribution decreases the connection reset

probability by about 80% compared with Figure 14(a) and

Figure 14(b), respectively. This is because short flows finish

quite quickly. After the DIP pool update, only part of the 20%

long flows suffer from connection reset.

VII. CONCLUSION

In this paper, the design and implementation of a layer-4

load balancer, Loom, are presented. By using a classifier and

maintaining multiple hash functions, Loom does not need to

keep per-connection state directly like existing stateful load

balancers. It also does not offload state management burden

to backend servers as some recently proposed stateless load

balancers do. By designing a state compression structure based

on the Bloom filter and a circulating update of multiple Bloom

filters, Loom supports more concurrent connections and keeps

the consistency of connections. Besides, it is more tolerant

to SYN flood attack. Loom is implemented in a hardware

P4 switch. Experimental results indicate that Loom could

maintain as many connections as theoretical analysis shows

and is more resistant to SYN flood attacks.

ACKNOWLEDGMENT

We gratefully appreciate the anonymous reviewers and our

Shepherd, Timothy Wood, who helped us improve the quality

of this paper. This work is supported in part by National

Natural Science Foundation of China (NSFC) under Grant No.

61872401, Fok Ying Tung Education Foundation under Grant

No. 171059, and Huawei collaboration 20201124006.

REFERENCES

[1] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: A Scalable and Flexible
Data Center Network,” in ACM SIGCOMM, 2009.

[2] M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable, Commodity
Data Center Network Architecture,” in ACM SIGCOMM, 2008, pp. 63–
74.

[3] “A10 Networks ax Series.” [Online]. Available:
http://www.a10networks.com/

[4] “F5 Load Balancer.” [Online]. Available: https://f5.com/

[5] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg, D. A. Maltz,
R. Kern, H. Kumar, M. Zikos, H. Wu et al., “Ananta: Cloud Scale Load
Balancing,” in ACM SIGCOMM, 2013.

[6] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith, R. Kononov, E. Mann-
Hielscher, A. Cilingiroglu, B. Cheyney, W. Shang, and J. D. Hosein,
“Maglev: A Fast and Reliable Software Network Load Balancer.” in
USENIX NSDI, 2016.

[7] Y. Yu, X. Li, and C. Qian, “SDLB: A Scalable and Dynamic Software
Load Balancer for Fog and Mobile Edge Computing,” in ACM SIG-
COMM Workshop on Mobile Edge Communications, 2017.

[8] S. Shi, Y. Yu, M. Xie, X. Li, X. Li, Y. Zhang, and C. Qian, “Concury:
a fast and light-weight software cloud load balancer,” in Proceedings of
the 11th ACM Symposium on Cloud Computing, 2020, pp. 179–192.

[9] R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye, L. Yuan, and
M. Zhang, “Duet: Cloud Scale Load Balancing with Hardware and
Software,” in ACM SIGCOMM, 2015.

[10] R. Wang, D. Butnariu, J. Rexford et al., “OpenFlow-Based Server Load
Balancing Gone Wild,” Hot-ICE, 2011.

[11] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “SilkRoad: Making
Stateful Layer-4 Load Balancing Fast and Cheap Using Switching
ASICs,” in ACM SIGCOMM, 2017.

[12] N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown, and R. Johari,
“Plug-n-Serve: Load-balancing Web Traffic Using OpenFlow,” in ACM
SIGCOMM, 2009.

[13] Olteanu, Vladimir, A. Agache, A. Voinescu, and C. Raiciu, “Stateless
Datacenter Load-Balancing with Beamer,” in USENIX NSDI, 2018.

[14] “Barefoot’s Tofino Chip and P4 Could Replace Load Balancers,”
https://www.sdxcentral.com/articles/news/barefoots-tofino-chip-and-p4-
could-replace-load-balancers/2017/10/.

[15] “Barefoot Scores Tofino Deals with Alibaba, Baidu, and Ten-
cent,” https://www.sdxcentral.com/articles/news/barefoot-scores-tofino-
deals-with-alibaba-baidu-and-tencent/2017/05/.

[16] W. Eddy, “TCP SYN Flooding Attacks and Common Mitigations,” RFC
4987, 2007. [Online]. Available: https://rfc-editor.org/rfc/rfc4987.txt

[17] A. J. Taveira, L. Saino, L. Buytenhek, and R. Landa, “Balancing on
the Edge: Transport Affinity without Network State,” in USENIX NSDI,
2018.

[18] B. H. Bloom, “Space/Time Trade-offs in Hash Coding with Allowable
Errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[19] “Edgecore Wedge 100BF-65X.” [Online]. Available: https://www.edge-
core.com/productsList.php?cls=1&cls2=180

[20] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Program-
ming Protocol-Independent Packet Processors,” in ACM SIGCOMM,
2014, pp. 87–95.

[21] “Array Networks.” [Online]. Available: https://www.arraynetworks.com/

[22] “Load Balancer.org.” [Online]. Available: https://www.loadbalancer.org/

[23] “Katran: A High Performance Layer 4 Load Balancer.” [Online].
Available: https://github.com/facebookincubator/katran

[24] M. Zhang, G. Li, S. Wang, C. Liu, and J. Wu, “Poseidon: Mitigating
volumetric ddos attacks with programmable switches,” in Network and
Distributed System Security Symposium, 2020.

[25] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye,
S. Raindel, M. H. Yahia, and M. Zhang, “Congestion Control for Large-
Scale RDMA Deployments,” in ACM SIGCOMM, 2015.

[26] R. Gandhi, Y. C. Hu, C.-K. Koh, H. H. Liu, and M. Zhang, “Rubik:
Unlocking the power of locality and end-point flexibility in cloud scale
load balancing.” in USENIX Annual Technical Conference, 2015, pp.
473–485.

[27] “XPliant© CNX780XX/CNX680XX Family,”
https://cavium.com/xpliant-ethernet-switch-xp60-and-xp70-family.html.

[28] T. Barbette, C. Tang, H. Yao, D. Kostić, G. Q. Maguire Jr, P. Pa-
padimitratos, and M. Chiesa, “A High-Speed Load-Balancer Design with
Guaranteed Per-Connection-Consistency,” in USENIX NSDI, 2020, pp.
667–683.

[29] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary Cache: A Scal-
able Wide-area Web Cache Sharing Protocol,” IEEE/ACM Transactions
on Networking (TON), vol. 8, no. 3, pp. 281–293, 2000.

[30] M. A. Bender, M. Farach-Colton, R. Johnson, R. Kraner, B. C. Kusz-
maul, D. Medjedovic, P. Montes, P. Shetty, R. P. Spillane, and E. Zadok,
“Don’t Thrash: How to Cache Your Hash on Flash,” VLDB, vol. 5,
no. 11, pp. 1627–1637, 2012.

[31] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher,
“Cuckoo Filter: Practically Better Than Bloom,” in ACM CoNext. ACM,
2014, pp. 75–88.

[32] A. Kirsch and M. Mitzenmacher, Less Hashing, Same Performance:
Building a Better Bloom Filter, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2006, vol. 4168, pp. 456–467. [Online].
Available: http://dx.doi.org/10.1007/11841036 42

[33] “Open-source P4 implementation of features typical of an advanced
L2/L3 switch,” https://github.com/p4lang/switch.

[34] A. Broder and M. Mitzenmacher, “Network Applications of Bloom
Filters: A Survey,” Internet Mathematics, vol. 1, no. 4, pp. 485–509,
2004.

[35] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement, 2010, pp. 267–280.

[36] P. Bose, H. Guo, E. Kranakis, A. Maheshwari, P. Morin, J. Morrison,
M. Smid, and Y. Tang, “On the false-positive rate of bloom filters,”
Information Processing Letters, vol. 108, no. 4, pp. 210–213, 2008.

[37] R. Cohen, M. Kadosh, A. Lo, and Q. Sayah, “Lb scalability: Achieving
the right balance between being stateful and stateless,” arXiv preprint
arXiv:2010.13385, 2020.

[38] Z. Hang, M. Wen, Y. Shi, and C. Zhang, “Programming protocol-
independent packet processors high-level programming (p4hlp): Towards
unified high-level programming for a commodity programmable switch,”
Electronics, vol. 8, no. 9, p. 958, 2019.

[39] K. Rakowski, Learning Apache Thrift. Packt Publishing Ltd, 2015.
[40] M. Grinberg, Flask Web Development: Developing Web Applications

with Python. ” O’Reilly Media, Inc.”, 2018.
[41] T. Benson, A. Akella, and D. A. Maltz, “Network Traffic Characteristics

of Data Centers in the Wild,” in ACM SIGCOMM Conference on Internet
Measurement, 2010, pp. 267–280.

[42] T. A. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding
Data Center Traffic Characteristics,” in ACM Workshop on Research on
ENterprise networking, 2009, pp. 65–72.

