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Abstract—Ternary Content-Addressable Memory (TCAM) is
a popular solution for high-speed flow table lookup in Software-
Defined Networking (SDN). Rule insertion in TCAM is a time-
consuming operation. To ensure semantic correctness, rules
overlapped must be stored in TCAM with decreasing priority
order and many rule movements may be needed to make space
for a single inserted rule. When a rule insertion is in progress, the
regular flow table lookup will be suspended, which could lead to
a degraded user experience for SDN applications. In this paper,
we propose a multiple-TCAM framework named MagicTCAM
to reduce the rule movements during a rule insertion. The core
of MagicTCAM lies in three operations: layering, partitioning
and rotating. By layering, rules with the least overlapping will
be grouped (i.e., layered) into a sub-ruleset. The number of rule
movements is therefore greatly reduced as most of rules in a sub-
ruleset are non-overlapped. To achieve balanced load in TCAMs,
rules in each sub-ruleset are further partitioned and dispatched
into different TCAMs in a rotating manner. In addition, an inter-
TCAM movement algorithm is proposed to allow rules to be
moved between TCAMs for reduced rule movement. Experiment
results show that with two half-sized TCAMs, MagicTCAM
reduces the rule movements by 39% on average compared with
the state-of-the-art work while the computation time is shortened
by half as well.

Index Terms—Ternary Content Addressable Memory, Update

I. INTRODUCTION

The flexibility of Software-Defined Networking (SDN) [1]
allows it to support a variety of application scenarios. The way
to cater for applications is to customize ruleset R in the flow
table. For its ultra-fast lookup, Ternary Content-Addressable
Memory(TCAM) [2] stands out and becomes the most widely
used memory in SDN to store the flow table. However, faced
with the ever-increasing line rate, TCAM update is the main
bottleneck for performance [3].

More and more applications bring gigantic update demands.
For example, when TCAM is used as a cache [4] in OpenFlow
switches, replacement happens frequently. In addition, the
network configuration often needs to be updated in order to
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accommodate various demands in multi-tenant data centers
[5]. What’s more, the emerging Intent-Driven Networking
(IDN) [6] and autonomous networks apply faster rule updates
in real time intelligently.

Despite the huge amount of rule insertion, deletion and
modification, applications require strict update delay [7]–[12].
To avoid congestion or packet loss in carrier network [13],
once failure detected, re-routing rules have to be implemented
within 25ms. Besides, traffic engineering SDN control pro-
grams such as Google’s B4 [14] or Microsoft’s SWAN [15]
leave only a 20ms delay budget for update [16]. Furthermore,
strong performance guarantees are especially needed in secu-
rity systems and critical infrastructures. As the threat detection
is done at line rate and defenses must take effect as soon as
possible, advanced malware quarantine [17] [18] in enterprise
networks has an even stricter delay bound. Similarly, for cyber-
physical systems [19], security relies on the rapid response to
the environment, which makes low update delay indispensable.

The lookup performance also imposes requirements on the
update delay. When the update is in progress, the lookup has to
be suspended. As the recent measurements show, commercial
OpenFlow switches install rules with delay varying from
33ms and 400ms [20] [21], which means 600-7000 packets
suspending on an OC-192 interface. It will be a greater disaster
on the commonly used 100Gbps interface.

There is still a great gap between the modern switches
update delay and the application requirements [4] [22]. Among
TCAM updates, the insertion is the most time-consuming
operation. Insertion delay consists of computation delay and
placement delay. To ensure semantic correctness, rules in
TCAM must be stored in order of decreasing priority. The
condition requires that when a rule comes, existing rules may
need to be moved to make space for it to keep the order
constraint. A solution which achieves the least placement delay
in a short time is pursued by academia and industry.

The placement delay is proportional to the number of rules
that need to be moved per insertion. There is already a
large corpus of literature dealing with TCAM update, devoted
to minimizing the move cost and achieving good average
performance. However, there is still room for improvement.
Previous works have revealed the regularity of the difficulty
in updating TCAM: 1) Rules overlapped must be stored in
TCAM with decreasing priority order [23]; 2) The higher978-1-6654-4131-5/21/$31.00 ©2021 IEEE



the degree of overlapping among the rules, the more rule
movements needed to insert a rule [24].

Based on the above observations, we propose MagicTCAM,
a multiple-TCAM scheme for TCAM update acceleration. The
rationale behind MagicTCAM is to minimize the overlapping
relationship among rules by dividing the ruleset and placing
the sub-rulesets into different TCAMs, thus reducing the rule
movements. To separate the wheat from the chaff, there are
mainly two kinds of TCAMs: DataTCAM and spTCAM.
The complicated dependencies are stored in spTCAM and
DataTCAMs are kept clean. New rules will only be inserted in
DataTCAMs to avoid suffering from complex dependencies.
To eliminate the effect of unbalanced sub-ruleset size, rules
in a sub-ruleset are further partitioned and dispatched into
different TCAMs to make TCAMs space load balanced.

Both putting rules into different TCAMs and partitioning
the rulesets help reduce the overlapping relationship of rules,
which will be small enough in MagicTCAM to guarantee the
placement delay.

The contributions of this paper can be summarized as
follows:

1) We design a novel framework MagicTCAM, which
employs multiple TCAMs to provide an ideal solution
for the challenge of slow rule insertion. It is compatible
with any existing rule insertion algorithm for a single
TCAM.

2) To accelerate the rule insertion speed and keep TCAM
space load balance, layering, partitioning and rotating
are proposed. Both layering and partitioning split the
rulesets and reduce the dependencies, while rotating the
partitions helps balance the TCAM space load.

3) We creatively propose spTCAM, which stores the ma-
jority of the dependencies that are difficult to cut off. As
new rules are only inserted in DataTCAMs, insertion can
be quickly finished under the shield of spTCAM. Tricks
like inter-TCAM movement are also proposed to further
reduce the rule insertion cost.

4) Through experimental verification, insertion algorithm
using the MagicTCAM framework can improve the
insertion performance and the calculation speed sig-
nificantly. Meanwhile, compared with the state-of-the-
art multiple TCAM update scheme BW-split [25], the
insertion rule movement number is reduced by 39% and
the computation time is shortened by 2.25 times.

II. BACKGROUND AND MOTIVATION

A. Flow Table

Whatever the application, the customized rules are ab-
stracted as r = (prio,match, action) [26]. r.match consists
of zero or more constraints on individual fields, all of which
must be met to satisfy the match. When a packet comes, the
flow table is looked up to find which rule it matches and this
process is called packet classification. For packet forwarding,
the match field is the packet destination IP address, while for
other applications, the match field(s) can be 5-tuple or even
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Fig. 1: Minimum dependency graph and rule placement in
TCAM

more packet header fields. r.action specifies how to process
the packet according to the matched rule. Most commonly used
actions include decreasing TTL, dropping packets, outputting
the packet to a port and so on. Rules in a flow table may
overlap (i.e., ri.match ∩ rj .match 6= ∅). r.prio denotes
the priority of a rule. If multiple rules are matched, the one
with the highest priority should be taken. A smaller number
indicates a lower priority. Zero is usually assigned to the
default rule.

B. Rule Graph for TCAM Update

TCAM is the most widely used memory to store the flow
table. When rules are matched, the principle of TCAM is to
return the lowest address of them. TCAM update includes rule
insertion, deletion, and modification. Deletion is a simple and
fast operation and modification can be constant [27]. As inser-
tion is the most time-consuming operation, we are committed
to reducing the insertion time. To ensure the correctness of
the lookup, rules should be placed in TCAM in descending
priority order. This results in multiple movements to make
room for the newly inserted ri. Fortunately, it is not necessary
to move all rules with low priority. Since non-overlapping rules
will never be matched together, only overlapping rules should
keep the relative descending priority order. This relative rule
position constraint is modeled as the rule dependency. When ri
and rj are matched together, if ri should be returned, we say
rj is dependent on ri and use ri → rj to denote. The TCAM
addresses storing the rules should conform to the condition
[28]:

∀ri, rj ∈ R, if ri → rj , A[ri] < A[rj ] (1)

ri → rj here indicates that ri.prio > rj .prio and ri.match∩
rj .match 6= ∅. A[r] is the TCAM address of rule r. A
movement sequence or a rule placement scheme is valid as
long as the Condition 1 is satisfied.

The minimum rule dependency graph is commonly used
to describe all the dependencies in the flow table [23] [29]
[30]. Each node represents a rule. If rj is dependent on ri,
a directed edge is formed, pointing from ri to rj . We call
their relationship ancestor and child. The path starting from the
oldest ancestor to the youngest child is the dependency chain.
Many chains are intertwined to form the directed acyclic graph
(DAG). When a new rule is to be inserted, chains or a segment
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Fig. 2: Broken dependencies by 2 TCAMs

of chains are candidate movement paths, some of which are
valid while others invalid according to Condition 1. Fig. 1
(a) shows an example of the rule dependency graph formed
by rules r1 ∼ r9 with descending priority. Without loss of
generality, their matching fields consist of F1 and F2. The
rule placement in TCAM is shown in Fig. 1 (b). Rule r10 is
to be inserted, and it overlaps with r3. r10 → r3 → r5 → r7
is the shortest valid movement path and r10 → r3 → r5 → r8
is invalid. If r5 replaces r8, Condition 1 will be violated as
A[r5] > A[r7].

Although focusing only on overlapping rules reduces the
movement steps, it brings a challenge. Non-overlapping rules
are placed in an arbitrary order. If a new rule is inserted in the
TCAM, chances are non-overlapping rules become dependent
and Condition I is violated. For example, it is fine to place
r7 below r9 as they are independent. However, if a new rule
rn is to be inserted, and r7 → rn, rn → r9, then r7 must be
moved above r9 to satisfy Condition I . This is the reorder
update case. The movement cost of reorder case is usually 10
times as large as that of the common case [25].

C. Motivating Example

Recent studies of TCAM update performance [24] [25] have
been devoted to finding the shortest valid movement path
quickly. Here we summarize some of their key findings and
use them to help motivate our design.

The placement cost of insertion is proportional to the num-
ber of movement steps. It is caused by the order constraints
that stem from rule dependency and related to the distribution
of empty entries. In general, the longer the chain length of
the DAG, the more movements are needed. The more evenly
dispersed the empty entries are, the smaller the average cost
of insertion. The worst case happens when all the empty
entries are at the low addresses in TCAM. According to the
Condition I , the number of movements is bounded to the
longest chain length, i.e. the dependency graph diameter. Since
rule dependencies are the root cause of slow insertion, by
deliberately cut the dependencies and make the chain length of
the DAG formed by the rules in a TCAM as short as possible,
the insertion can be accelerated.

In Fig. 1, at least 3 movements are needed to make room for
r10. However, movement numbers can be reduced by dividing
ruleset into independent subsets and placing these subsets in
different TCAMs. As shown in the Fig. 2 (b), the ruleset is
split into 2 subsets. If we place rules r2, r3, r6, r7, r8, r9 in
TCAM1 and rules r1, r4, r5 in TCAM2, then all the edges
originally created by the overlapping rules will disappear,
which means that no dependency exists. In such induced sub-
graphs composed of independent sets, rules can be placed in
any order. The cost of inserting new rules can be as low as
only one write, which means no movements.

When inserting rule r10, both TCAMs can be chosen to
insert. As shown in Fig. 2 (c), choosing TCAM2 to insert is
better as it requires 0 movement while r3 has to be moved
if r10 is to be placed in TCAM1. As for the lookup, the
two TCAMs are inquired in parallel, and the rule with higher
priority is returned as the result.

III. MAGICTCAM

By reasonably dividing the ruleset and selecting TCAM for
insertion, we can significantly reduce the rule dependency and
achieve fast insertion.

In this section, we first introduce the main idea of Mag-
icTCAM, which proposes layering, partitioning, rotating to
make the chain lengths as short as possible and rules in each
TCAM balanced. Then we show the architecture and work-
flow of MagicTCAM. Finally, we present three optimization
methods. New rules will only be inserted in DataTCAMs to
avoid suffering from complex dependencies and inter-TCAM
movement provides more choice for rule insertion.

A. Insights

1) Layering: Based on the above rationale, we divide
rulesets and put subsets in different TCAMs. In the division
process, the goal is to minimize the rule dependencies in each
TCAM, which brings the least rule insertion cost.

The process is like dividing a photo into multiple layers, as
shown in Fig. 2 (a). The DAG is divided into two layers, in
which Layer1 has 6 rules and Layer2 has 3 rules. A well-
done layering enables the chain of induced sub-graphs in each



TCAM to be short. In the best case, rules do not overlap
with each other and no movements are needed when insertion.
What’s more, each rule has multiple TCAMs to choose from,
which means that we can achieve the least insertion cost under
the controller’s view.

We carve out the maximum independent set from the rule
dependency graph, and put the subset of rules into a TCAM.
An independent set is a layer of rules. This process is repeated
nt times, generating nt layer rule sets. With nt the number
of DataTCAMs in MagicTCAM, each layer is placed into
one DataTCAM. In the experiment, ACL rulesets with various
sizes are used. After taking out 2 maximum independent rules,
no more than 15% rules remain. This portion of rules are
placed in a smaller TCAM called spTCAM. The larger number
of TCAMs, the fewer residual rules.

A problem that cannot be ignored is that the sizes of
independent sets differ greatly. The layer-to-TCAM one-to-
one placement scheme renders the utilization of DataTCAMs
severely unbalanced. Generally, Layer1 will be an order
of magnitude larger than Layer2. As the number of layers
increases, the independent set taken out gets smaller and
smaller. With num(R) representing the size of ruleset R and
Li represents the ith layer, we have num(Li) > num(Lj)
when i < j.

We propose partitioning and rotating to figure out the
unbalance. Not only the number of rules in each TCAM
is balanced, but also the dependency chain between each
partition can be further cut off.

2) Partitioning: In order to solve the unbalance of the
number of rules in layers, we further divide the ruleset of
each layer by evenly partitioning. A simple sort-based heuristic
is opted for where the dimension with the most unique
projections of the rules is chosen. We sort the endpoints of
the projections and evenly split the rules into np partitions.

The number of cross-partition rules is about 15%, which
is determined by the rule distribution and the partitioning
algorithm. It can be reduced by modifying the algorithm. In
order to eliminate the rule replication, we put rules across
multiple partitions into the spTCAM. With several cuts, large
rules are extracted. In this way, space waste caused by rule
replication is reduced, and overlaps among small and large
rules are broken. Although taking away these rules will make
the number of rules in each partition uneven, the degree is
tolerable.

3) Rotating: Supposing that each layer is divided into 2
partitions, A and B with equal size. Namely, Li is divided into
LiA, LiB , and num(LiA) = num(LiB). Since num(L1) >
num(L2), we have num(L1A) > num(L2A), num(L1B) >
num(L2B). If we put L1A and L2B in DataTCAM1, and
L2A and L1B in DataTCAM2, then we can make the
DataTCAMs space load balanced as shown in Fig.3.

It is feasible on modern TCAMs [31] which are organized
in slices. One or multiple slices are mapped to a logical group
to store rules [32]. Groups storing rulesets are called buckets
in this paper. We can designate the slices number for buckets
and the buckets hold partitions from larger layer are allocated

Fig. 3: Mixture of Layer 1 and Layer 2 for balanced size

Fig. 4: Rotating placement of partitions

more slices. For example, if DataTCAM1 stores L1A and
L2B , the bucket for L1A is allocated more slices than the
bucket for L2B . While in DataTCAM2, the bucket for L1B

is allocated more slices than the bucket for L2A. As long
as the partition-to-TCAM placement is determined, the slices
numbers allocation is set correspondingly.

A DataTCAM has np buckets, assigning one bucket for each
partition. Buckets for a partition can store rulesets from any
layer, as long as the rulesets belong to this partition. After the
rotating, each DataTCAM stores part of multiple layers and
the rulesets in all the DataTCAMs are balanced.

As for the rotating, we place the partitions in DataTCAMs
layer by layer. Firstly, Layer1 is placed, and partitions spread
in order from the first DataTCAM to the last DataTCAM.
If the number of DataTCAMs nt is less than the number
of partitions np, the remaining partitions will continue to be
placed from the first DataTCAM. As for the second layer,
partitions are put from the second DataTCAM. By analogy,
partitions of the i−th layer is put from the i−th DataTCAM.
Use Ti to represent the i − th DataTCAM, the placement
scheme for 4 partitions A,B,C,D of 4 layers are shown in
Fig. 4. We use T1A to represent the bucket assigned to partition
A in T1. T1A stores rules in partition A of layer 1. Partitions
B,C and D are put in T2B , T3C , T4D respectively. Similarly,
rules of layer 4 are put in T4A, T1B , T2C , T3D.

For the convenience of packet classification, partition cut-
ting is performed first, then we layer rules in each partition.
This means that the match domain of the partitions in all layers
are the same and the number of index rules is small, which
equals to np. Even without TCAM, it is easy to quickly find
out which partition a packet belongs to. Finally, rotating is
performed to achieve TCAM balance. When the packet comes,
it will only hit rules in one partition according to index rules
or rules in spTCAM. As each of np partitions is placed in a
TCAM bucket, instead of searching the entire DataTCAMs,



Fig. 5: Architecture of MagicTCAM

only one bucket in each DataTCAM will be enabled. So
only rules in the same bucket (partition) need to maintain
relative priority order and there is no need to pay attention
to dependencies of rules between partitions in a DataTCAM.
In other words, dependencies are further broken.

B. Architecture and Workflow

The architecture consists of 3 kinds of TCAMs, namely In-
dexTCAM, DataTCAM and spTCAM. Layering, partitioning
and rotating are employed during initialization. IndexTCAM
stores index rules for partitions. Independent sets generated
by layering are placed in DataTCAMs. Rules sit in multiple
partitions are held in spTCAM, as well as residual rules apart
from independent sets.

In the system, the number of TCAM nt and the number
of partition np are adjustable parameters. Here we take 4
DataTCAMs and 4 partitions as example to show the archi-
tecture and work flow. The ruleset is first divided into four
partitions: A, B, C, and D. Then each partition is split into
four layers 1, 2, 3, and 4. Finally, subsets are placed in the
buckets according to the rotating scheme. The residual rules
and cross-partition rules are left in the spTCAM. A larger
colored block in DataTCAMs shown in Fig. 5 indicates a
larger bucket allocated more slices.

1) Lookup: The lookup includes three stages. When a
packet comes, first determine which partition it belongs to
according to indexTCAM. Then the corresponding partitions
in the 4 DataTCAMs and spTCAM are activated at the same
time. Finally, the one with the highest priority among all the
matched rules will be the result. With a pipelined design,
MagicTCAM can maintain the line-rate search with just two
clock cycles of extra latency for each packet, with one cycle
spent in indexTCAM and one spent on comparing priorities
of rules returned by TCAMs.

2) Update: The first step of insertion is also identifying
which partition the rule locates. If it crosses multiple par-
titions, the rule is put in spTCAM. Otherwise, the rule is

evaluated whether it will form dependency in the bucket of
the corresponding partition in all DataTCAMs. No dependency
formation is the prerequisite to enter a DataTCAM. Rules that
fail to be placed in DataTCAM will be stored in spTCAM.
In our experiment, about 30% of the rules are put into
spTCAM. Both cross-partition rules and rules that fail to form
independent sets account for about 15% of the total volume.
The law of ratios is the same as mentioned in Section III-A1
and Section III-A2.

All the DataTCAMs and spTCAM are checked for rule dele-
tion and modification. This process can be operated in parallel,
so MagicTCAM does not consume extra time compared with
a single TCAM.

3) Compatibility with Modern Switch: MagicTCAM can be
an enhanced flow table searching and updating engine for the
next generation of programmable switch chips. With the total
TCAM resources not changed, a TCAM can be easily split
into multiple small TCAMs in ASIC design to support the
MagicTCAM architecture. Extended primitives can be added
in the future version of P4 language to support simultaneous
access to multiple TCAMs. Details are reserved for future
work.

C. Optimizations

Although most rules can be inserted directly without mov-
ing, spTCAM’s complex dependencies make insertion in it
more costly. Since all DataTCAMs and spTCAM need to be
activated during a query, the update delay in spTCAM affects
the overall throughput. We take three actions to mitigate the
burden in spTCAM and improve the overall performance.

Firstly, we relax the independent set and allow sub-DAGs
with chain lengths no longer than threshold C when initializa-
tion. Secondly, new rules are placed in the DataTCAM with
the least insertion cost. If the cost exceeds C, to quickly free up
space for the new rule and reduce the terrible reorder cases,
inter-TCAM movement is proposed. Thirdly, cross-partition
rules are replicated and inserted in DataTCAMs.

After optimization, all new rules are placed in DataTCAMs
instead of spTCAMs. Subsets of rules with complex depen-
dencies are sealed in spTCAM, escorting rule updates in
DataTCAM. Although the first and the third actions will make
chain lengths in DataTCAMs a little longer, these actions
effectively improve the overall insertion speed.

1) Bounded Chain Length: As spTCAM only works for
lookup, given the limited capacity of spTCAM, the fuller
the spTCAM, the better the insertion performance. There
are too many rules in the original spTCAM. With limited
capacity and TCAM numbers, we no longer extract the largest
independent sets as layers, but take the largest independent
branches, allowing all nodes whose formed chain lengths do
not exceed C to be put together. The residual rules are still put
in spTCAM, of which the number is much smaller. The larger
C, the fewer residual rules are put in spTCAM. The number
of cross-partition rules in spTCAM is fixed, so we can adjust
C to fill up spTCAM when initialization.



Fig. 6: Unbounded BW-split chain

Fig. 7: Bounded MagicTCAM chain

Bounded chain length also helps MagicTCAM further re-
duce the insertion cost with the well limited dependencies.
It outperforms BW-split, which tries to break dependency by
coloring rules in black and white. BW-split first color rules
without ancestors in black. For the residual rules, they are
colored in a color opposite to the majority of their direct
ancestors. Black rules and white rules are placed in different
TCAMs. From Fig. 6 and Fig. 7, we can see that if ri
is to be inserted, the expected least cost in BW-split is 3:
ri → r5 → r7 → r9. while in MagicTCAM, only 2
movements are needed. The worst case in BW-split can be
very large in some cases, which can be reduced by our rule
placement which bounds chain length.

Strictly bounded chain length is mainly maintained when
initialization. As the rules insertion number increases, the
chain length will inevitably exceed the bound. To reduce
the placement cost in single rule insertion while avoiding
large chain length increment, we heuristically place new rules
in DataTCAM with the least insertion cost. Inter-TCAM
movement is proposed to limit the number of moves in each
bucket not to exceed C. Although the chain length will exceed
the bound, the inter-TCAM movement can reduce the insertion
cost in most cases.

2) Inter-TCAM Movement: Set the rule movement cost
value C in a bucket is 2, and the placement of rules in T1A
and T2A is shown in Fig. 8. The rule dependency graph is

(a) (b)

Fig. 8: The power of inter-TCAM movement

also depicted. When the new rule ri comes, it can be placed
in either of T1A and T2A. The insertion movement costs in
both buckets are the same and ri is to be inserted into T1A.
Its optimal movement path is r1 → r2 → r3 as shown in Fig.
8 (a). However, the least movement cost in T1A is 3, which
exceeds C.

Instead moving along the optimal path, we kick out the first
node r1 on the path to make room for ri and find the optimal
insertion for r1 in T2A. As r1 does not overlap with rules in
T2A, it can be inserted into T2A with 0 movements as shown in
Fig. 8 (b). Finally, the insertion of ri only needs 1 movement,
which is greatly improved. The insertion cost of ri is changed
to 1+cost(r1), which can be abstracted as 1+costavg. Many
bad cases can be avoided.

During the process of inter-TCAM moving, once the opti-
mal insertion movement cost does not exceed C in a bucket,
the insertion is successful. Otherwise, we continue to perform
inter-TCAM movement until a successful insertion or the
number of iterations is larger than K. In rare cases, too many
iterations are needed, then the inter-TCAM moving fails and
the rule is placed in the original TCAM bucket. By moving
among TCAMs, the growth rate of chain length is limited,
which means a lower average movement cost. Meanwhile,
entries can be fast freed for insertion.

Inter-TCAM movement also helps reduce reorder cases.
Supposing that there are two rules ra, rb in TCAM and
ra.prio > rb.prio, A(ra) > A(rb). Originally there is no
dependency between ra and rb, but due to the insertion of rn,
the rules ra and rb form an indirect dependency. According
to the Condition 1, there should be A(ra) < A(rn) < A(rb).
FastUp [28] proposes an efficient solution to reorder cases.
In FastUp, the rules can be moved in any direction. Firstly
the reorder is eradicated by moving ra up or rb down, and
then rn is inserted. However, not all insertion algorithms have
solutions for the case. The reorder can be reduced by kicking
rb to other TCAMs, thus any insertion algorithm with our
MagicTCAM architecture can deal better with the reorder
case. Once reorder cases are detected, inter-bucket movement
is triggered as well, so that the order of rules can be adjusted
to avoid difficulty in updating.

3) Rule Replication: Before optimization, the cross-
partition rules are placed in spTCAM. Since they have a
large match fields domain, long dependency chains are easily



formed, making the update cost in spTCAM large. To avoid
huge insertion cost, we put the cross-partition rules in all
the partitions they locate when updating. Replicated rules
are inserted independently, choosing the best TCAM on their
own. Multiple TCAMs can perform the insertion in parallel.
Obviously, the insertion movement cost should be bounded as
well.

Any insertion algorithm for a single TCAM can be utilized
to insert rules and MagicTCAM is responsible for choosing
the best DataTCAM to place rules. The general process of rule
insertion is as follows.

1) When a rule comes, first lookup the IndexTCAM to find
in which partition it lies, so that the candidate buckets
in all DataTCAMs are determined. If it crosses multiple
partitions, insert all the replicates into corresponding
partitions. Go to Step 2. Replicates are deemed as an
independent new rule.

2) If the insertion of the new rule does not cause a reorder
case, and the least cost is less than C, then go to step
4. Otherwise, go to step 3.

3) Perform the inter-TCAM movement to deal with the
reordering and guarantee that movement cost in a bucket
caused by a rule does not exceed C. If the accumulated
number of iterations is larger than K, go to step 4,
otherwise, repeat the rule kickout into other TCAMs
until the number of iterations exceeds K.

4) Insert the rule into the corresponding bucket in the
TCAM with the least insertion cost.

IV. EVALUATION

MagicTCAM is a framework whose core lies in breaking the
dependency by splitting rulesets and it is compatible with any
insertion algorithm in a single TCAM. We use two practical
algorithms shown in PoT [25] to perform the insertion. One
is cost based(CoB), which computes the moving path with the
minimum length and huge computation time; and the other
is chain based(ChB), which quickly selects the child node
with the highest priority each time. In addition to revealing
how our framework improves the performance of the insertion
algorithm, we also compare it with the BW-split algorithm.

The test rulesets are Access Control List (ACL), FireWall
(FW) and IP chain (IPC) with sizes ranging from 10k to
100k, which are generated by ClassBench [33]. As mentioned
earlier in Section II, the cost of insertion movement is not only
related to the average chain length of the dependency graph
formed by rules, but also to the distribution of empty entries.
In the experiment, all empty entries are placed at the bottom
positions, i.e., at the high address positions.

In order to reduce the lookup suspending caused by updates,
speeding up the updates should not only reduce the rule
insertion move path length, but also reduce the time to make
a decision about which TCAM to insert and how to insert.
Therefore, our main metrics are the insertion placement time
and the computation time. Placement time is measured by #N,
which stands for the number of movement steps.

(a) Performance improvement on ChB

(b) Performance improvement on CoB

Fig. 9: Performance comparison for ChB and CoB with and
without MagicTCAM

A. Update Cost Improvement on CoB and ChB

In testing the performance improvement of the MagicTCAM
framework for the insertion algorithms, our parameters are set
to 2 for the number of DataTCAMs nt, 4 for the number of
partitions np, 3 for the chain length bound C and 2 for the
max number of iterations K. spTCAM accounts for 15% of
the total TCAM capacity and DataTCAMs share the rest of
the capacity equally. For the fairness of the experiment, the
capacity of a single TCAM is the same as the total capacity of
DataTCAMs and spTCAM. These are also the default settings
in other tests.

Fig. 9 shows the performance improvement on ChB and
CoB by MagicTCAM in ACL rulesets. We use Magic ChB
and Magic CoB to represent MagicTCAM employing ChB
and CoB to insert rules. As can be seen in Fig. 9 (a), compared
with ChB, the average movement cost of Magic ChB is
reduced by 77 times. Magic ChB is also 1.7 times better for
computation time. As for CoB shown in Fig. 9 (b), the average
movement number and the computation time are reduced by
104 and 18 times respectively. The reduction in computation
time is mainly because the ruleset is layered and partitioned
into smaller subsets and the sizes of rulesets for calculation
are decreased.

B. Comparison with Other Ruleset Splitting Algorithms

We demonstrate the superiority of MagicTCAM by com-
paring it with the state-of-the-art BW-split algorithm and
employing the random cutting (RC) algorithm as a baseline.
10k-80k ACL, FW and IPC rulesets are used for tests. To
ensure fairness, with 2 DataTCAM and 1 spTCAM for Mag-
icTCAM，we assign three TCAMs to BW-split and random



Fig. 10: Performance comparison with BW-split and random
cutting in ACL Rulesets

Fig. 11: Performance comparison with BW-split and random
cutting in FW Rulesets

cutting with the same total TCAM capacity. BW-split renders
unbalance ruleset size in TCAMs, while random cutting is
balanced. All of them employ ChB algorithm to insert rules.
Random cutting is to randomly divide the rule into three
even parts and put them into different TCAMs. Compared to
random cutting, we have a significant improvement in insertion
performance. The rationale of BW-split is similar to ours,
which heuristically reduces the dependencies between rules
according to coloring. We still perform better in insertion, and
our balanced TCAM load ratio is more practical.

Fig. 10 shows the performance comparison in ACL rulesets.
Compared with BW-split, MagicTCAM reduces the average
movement number by 39%, with computation time reduced
2.25 times. As for random cutting, the two metrics are
shortened by 20 and 2.85 times respectively. Performance
comparison in FW rulesets is shown in Fig. 11. The average
movement cost is reduced by 17% and the computation time
is shortened by 2.38 times over BW-split. The two metrics are
reduced by 3.19 and 2.79 times for random cutting. As Fig.
12 shows, the performance in IPC rulesets is similar to that of
ACL rulesets, 32% of movement cost and 2.95 times the com-
putation time is reduced over BW-splitting. Compared with
random cutting, MagicTCAM decreases average movement
cost and computation cost by 16 and 3.36 times respectively.
The improvement on the two algorithms in FW rulesets is the
least, this is because FW has many large rules [34]. These
large rules are likely to bring many dependencies and cross
partitions. When new rules come, MagicTCAM will insert all
the replicates. A better partitioning algorithm will be helpful
to increase performance gains.

Fig. 12: Performance comparison with BW-split and random
cutting in IPC Rulesets

Fig. 13: Latency comparison with BW-split

Supposing TCAM runs at 500 MHz clock rate (2 ns per
clock cycle) and the TCAM data bus width is 64 bits. The
estimated total number of TCAM accesses for adding a 356-
bit OpenFlow rule [35] is 12, loading both rule and its mask
which must be installed to set the corresponding wildcard bits
[36]. When a packet comes, it costs 6 cycles to load the search
key (namely the corresponding packet headers). Assume the
sizes of packets are 128 bytes, TCAM can support packet
lookup as fast as 85 Gbps without rule updates. Setting the
packet arrival rate as λ and the new rule arrival rate as U ,
we measure the throughput and latency of MagicTCAM with
different U .

Fig. 13 shows the average packet latency when U =
0.0004 − 0.0008 (200k-400k new rules per second) with λ
increasing from 0.2 to 1.0 (representing a packet arrival rate
of 16.7M-83M PPS). We use the TCAM cycle to measure
the packet latency. Compared with BW-split, MagicTCAM
reduces the latency significantly. Fig. 14 shows the lookup
throughput of MagicTCAM and BW-split. When U = 0.0005,
BW-split can work well and achieve a 89% lookup throughput.
While when U > 0.0005, its lookup throughput degrades
rapidly due to the lookup suspension during rule updates. We
can see that MagicTCAM performs even better with U =
0.0008 than BW-split with U = 0.0006. The development
of virtualization technology enables a controller to support
multiple applications, resulting in ever-increasing update rates.
MagicTCAM will be an attractive option for the frequent
update scenarios. Due to space constraints, we do not show
the packet loss rate, which is also greatly reduced.



Fig. 14: Throughput comparison with BW-split

Fig. 15: Performance comparison with and without Inter-
TCAM movement

We carry some further experiments on MagicTCAM to
verify the tricks proposed in optimization.

C. Effect of Inter-TCAM Movement

In order to verify the effect of the Inter-TCAM movement,
ACL rulesets of 10k to 50k are used. The comparison of the
average insertion cost and the worst insertion cost with and
without Inter-TCAM movement is presented in Fig. 15. As
mentioned earlier, inter-TCAM movement is mainly aimed at
bad cases, so the improvement on average movement cost
is relatively small. With huge rulesets, the improvement is
still attractive. Inter-TCAM movement works effectively in the
worst cases, where multiple replicates are installed for a rule
and some or all of them trigger reorder problems. Any of
the replicates successfully utilize inter-TCAM movement will
reduce the cost. The larger the max number of iterations K,
the more choices for rules, and the better inter-TCAM works.

D. Sensitivity to The Number of DataTCAMs and Partitions

We use ACL rulesets with sizes ranging from 10K to 50K
to test the influence of the number of DataTCAMs, that is,
the effect of the number of layers on insertion performance.
The total capacity of DataTCAMs is kept the same. With
the increase in the number of DataTCAMs, the dependency
between rules can be broken more thoroughly, and thus the
number of moves required for rule insertion is reduced. The
results are shown in Fig. 16. When the number of DataTCAMs
is 4, the average performance is almost twice better than that
of only 2 DataTCAM. The performance of 6 DataTCAMs only
improves 32% and 39% on average movement cost and worst
movement cost over 4 DataTCAMs. The improvement is only
14% by 2 more DataTCAMs. The benefits of increasing the
number of DataTCAMs are diminishing and the performance

Fig. 16: Update performance with different number of DataT-
CAMs

TABLE I: Expansion by cross-partition rules

Sum Ruleset Size Trans Rep Trans Ratio Rep Ratio
15729 13558 1186 2171 0.087 0.160
16772 14651 1539 2121 0.105 0.145
30305 26753 1968 3552 0.074 0.133
41858 36644 2837 5214 0.077 0.142
52544 46275 3567 6269 0.077 0.135
60991 54649 3568 6342 0.065 0.116
70816 63502 4175 7314 0.066 0.115

is good enough when 2 or 4 DataTCAMs are employed, so 2
and 4 DataTCAMs are recommended.

As for partitioning, on the one hand, it breaks the de-
pendency among rules, on the other hand, it introduces rule
replication. Replication not only brings additional TCAM
space overhead, but also makes a rule need to be inserted into
multiple partitions. This leads to an irregular effect of partition
numbers on rule insertion. The main purpose of partitioning is
to solve the problem of unbalanced rule numbers in TCAMs.
In order to facilitate the balancing of the number of rules, we
set the number of partitions to 4.

E. Replicate Ratio

Partitioning introduces additional replicates, and the repli-
cate ratio has been verified on ACL rulesets ranging from 10k
to 60k. The results are shown in Table I. The number of cross-
partition rules accounts for 6% to 10% of the total number
of rules. The final rule expansion rate is 11% to 16%. Per
cross-partition rule has fewer than 2 replicates, this is because
some cross-partition rules are installed in spTCAM during
initialization. Only new rules which cross partitions have to
be replicated. Compared to our performance improvement, we
think the replicate is an acceptable sacrifice. Our partitioning
algorithm is rather simple, and a better algorithm can be
utilized to reduce the replicate. We leave this for future work.

F. TCAM Balance

BW-split faces a severe unbalance in TCAM space load.
Three subsets are generated by 2 iterations of black and white
coloring. They are placed in three TCAMs which we call black
TCAM, white TCAM and green TCAM here. It is difficult to
maintain complete same load all the time, and we demonstrate
that MagicTCAM shows a good balance.

As shown in Fig. 17, the difference in the TCAM space load
of BW-split can reach up to 19.4 times between the largest



Fig. 17: Balanced MagicTCAM vs Unbalanced BW-split

Fig. 18: TCAM load changs with rule insertion

one and the smallest one. In contrast, the ratio of the number
of rules in MagicTCAM is controlled to be around 0.94 to
1.07. As the rules continue to come, Fig. 18 shows that the
number of rules inserted into DataTCAM1 and DataTCAM2
is basically the same. Therefore, under our framework, the
number of rules in TCAM is always well balanced.

V. RELATED WORK

A. Insertion Algorithm in Single TCAM

Recently, there has been a lot of work studying how to insert
rules quickly and correctly in a TCAM. PoT [25] applies par-
tial order theory to derive fundamental constraints on any rule
ordering on TCAMs. In PoT, dynamic programming is used
with the least movements but huge computational overhead.
Instead of the O(n2) dynamic programming solution, FastRule
applies a greedy algorithm and Bit Indexed Tree to calculate
the best choice with time complexity of O(cavg(logn)

2),
where cavg means the average diameter in the dependency
graph. Employing Sequential Stack-based Algorithm, Fastup
[28] further shortens the computation time and the average
insertion movement cost, and the overlooked reorder problem
is solved. MagicTCAM can cooperate with any of them.

B. Multiple TCAMs for Update Acceleration

Works applying multiple TCAMs for update acceleration
include TreeCAM [37], Hermes [27] and BW-split [25]. The
core idea of the TreeCAM and Hermes update schemes is:
the insertion time is proportional to the number of entries
that must be moved and they can bound the insertion time
by limiting the number of rules in the flow table. Instead
of limiting the ruleset size, BW-split focuses on breaking the
dependency among rules.

TreeCAM proposes dual versions of decision tree: a coarse
tree with a few thousand of rules per leaf and a fine tree
version with tens of rules per leaf, which are maintained in
TCAM and slow control memory respectively. The authors

leverage the fine tree to reduce the TCAM’s update cost in
the coarse tree subarray. The rationale is that a leaf’s rules
have to be ordered in the TCAM only among each other but
not with other leaves’ rules. A leaf is similar to our bucket,
but rules in a leaf are consecutive in match domain and can
not be split freely, while MagicTCAM can utilize layering to
break dependencies. In addition, due to the small granularity
of the fine tree, it brings a large number of rule replicates,
which is 35% more overhead [25].

As to Hermes, it bounds insertion time by restricting the
size of the flow table. In Hermes, a monolithic TCAM table
is carved into two tables: a small table (in size) that’s called
the shadow table and a full sized table called the main
table. The shadow table is kept relatively empty and all the
rule insertion/modification requests are served by it. From
the perspective of these requests, the TCAM is small and
mostly empty, which means only a few steps are needed when
inserting a new rule. However, it supports a limited insertion
arrival rate, which may be unsuitable for applications with
frequent update. What’s more, it needs precise prediction to
avoid shadow table overloading.

Different from TreeCAM and Hermes, BW-split cuts the
rule set while focusing on simplifying rule dependencies.
The authors believe that the high cost of updates is caused
by the order constraints that stem from rule overlapping.
These overlapping relationships correspond to the edges in
the overlap graph. Cutting these edges minimizes the number
of constraints between the rules in each subset. Despite the
NP-hard cutting problem which can be modeled as MAX-
CUT, they use a simple heuristic to color rules in black and
white. Although BW-split has greatly improved the average
update cost by reducing rule dependencies, it fails to notice
the unbalance in the number of black and white nodes.

VI. CONCLUSION

In this paper, we propose a novel multiple-TCAM frame-
work, called MagicTCAM, to efficiently address the issue of
terrible rule insertion cost via two rounds of ruleset split-
ting (layering and partitioning), delicate sub-ruleset place-
ment (rotating) and inter-TCAM movement. The rationale of
MagicTCAM is to divide the ruleset into subsets with as
least overlapping relationship as possible, thereby reducing the
number of moves required per rule insertion. We also propose
to use spTCAM to store sub-rulesets whose dependencies are
hard to break, protecting DataTCAMs from large insertion
cost.

Testing rulesets with various sizes, we show that MagicT-
CAM performs well in update and balance: 1) Compared to the
state-of-the-art rule splitting algorithm BW-split, MagicTCAM
reduces the rule movements by 39% on average, with com-
putation time shortened by 2.25 times. 2) Insertion algorithms
employing the MagicTCAM architecture can improve both the
computation delay and placement delay. 3) As rules continue
to come, the ruleset sizes in each TCAM keep balance. With
an increasing update rate and stricter latency requirements,
MagicTCAM will likely be an attractive option.
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