
Receiver-Driven RDMA Congestion Control by

Differentiating Congestion Types in Datacenter Networks

Jiao Zhang†‡, Jiaming Shi†, Xiaolong Zhong†, Zirui Wan†, Yu Tian†, Tian Pan†‡, Tao Huang†‡
†Beijing University of Posts and Telecommunications, Beijing, China

‡Purple Mountain Laboratories, Nanjing, China

Email: {jiaozhang, ricardoming, xlzhong, wanzr, tianyu2992, pan, htao}@bupt.edu.cn

Abstract—The development of datacenter applications leads to
the need for end-to-end communication with microsecond latency.
As a result, RDMA is becoming prevalent in datacenter networks
to mitigate the latency caused by the slow processing speed of
the traditional software network stack. However, existing RDMA
congestion control mechanisms are either far from optimal in
simultaneously achieving high throughput and low latency or in
need of additional in-network function support. In this paper,
by leveraging the observation that most congestion occurs at the
last hop in datacenter networks, we propose RCC, a receiver-
driven rapid congestion control mechanism for RDMA networks
that combines explicit assignment and iterative window adjustment.
Firstly, we propose a network congestion distinguish method to
classify congestions into two types, last-hop congestion and in-
network congestion. Then, an Explicit Window Assignment mech-
anism is proposed to solve the last-hop congestion, which enables
senders to converge to a proper sending rate in one-RTT. For
in-network congestion, a PID-based iterative delay-based window
adjustment scheme is proposed to achieve fast convergence and
near-zero queuing latency. RCC does not need additional in-
network support and is friendly to hardware implementation. In
our evaluation, the overall average FCT (Flow Completion Time)
of RCC is 4∼79% better than Homa, ExpressPass, DCQCN,
TIMELY, and HPCC.

Index Terms—Datacenter, RDMA, Congestion control,
Receiver-driven, PI controller

I. INTRODUCTION

Datacenters are increasingly dominating the market for

different types of high-end computing and distributed data

storage services [1], [2]. These workloads put enormous pres-

sure on datacenter networks to deliver ever faster throughput

and extremely low latency at a low cost. More specifically,

with the tendency of deploying high I/O speed storage media

in datacenters, such as NVMe (Non-Volatile Memory ex-

press), the storage speed and access latency are significantly

improved [2]. Therefore, datacenters become a good fit for

applications with great demand for computation and storage

capacity. However, to take full advantage of the distributed and

high-speed computation and storage resources in datacenters,

the networking stack requires to guarantee high throughput

and microsecond latency communications among distributed

nodes. Otherwise, the communication latency will become the

bottleneck of the applications [3], [4].
Unfortunately, the traditional TCP/IP network stack incurs

a lot of overhead [5]. CPU spends much time managing

data transfers for write-intensive workloads, reducing the

overall performance of these tasks. To solve this issue, the

RDMA (Remote Direct Memory Access) technique is becom-

ing widely used in datacenter networks [3]–[5]. The direct

connection of RDMA NICs reduces the involvement of the

CPU during data transmission. Meanwhile, combined with fast

storage like NVMe, the RDMA can cut end-to-end communi-

cation latencies down from milliseconds to microseconds.

However, deploying RDMA in datacenters poses great chal-

lenges on datacenter networking. Limited by the hardware

resources in NICs, current RDMA congestion control relies

on a simple go-back-N method to recover lost packets. Once

the loss rate becomes higher, the performance of RDMA

connections will dramatically deteriorate. Thus, PFC (Priority

Flow Control) is used to guarantee in-network losslessness.

However, PFC potentially brings fatal problems like PFC

deadlock and PFC pause frame storm [5], [6]. Therefore,

much attempt has been conducted to design RDMA-dedicated

congestion control mechanisms to avoid packet dropping.

The goal of congestion control mechanisms is to allocate the

bandwidth of congested links efficiently. The key challenge

lies in that end-hosts can not obtain accurate information

on network conditions easily. Most of the existing RDMA

congestion control mechanisms use various metrics, such as

ECN mark and RTT, to detect network conditions at the sender

side [4], [7], [8]. Then iterative window adjustment schemes

are proposed to solve network congestion. HPCC [3] suggests

using INT (In-band Network Telemetry) to obtain accurate

information on network conditions and then precisely controls

the congestion window at the sender side to achieve faster

convergence and lower latency. It can not be deployed if INT

support is absent.

In this paper, we instead ask, is it essential to accurately
measure in-network information for congestion control mecha-
nisms in all cases? Most congestion happens at the last hop due

to the many-to-one traffic pattern in datacenter networks, even

in oversubscribed datacenter networks [9]–[12]. We call this

kind of congestion last-hop congestion. The other congestion,

which happens at other places, is referred to as in-network
congestion. A study of Google’s production datacenters reveals

that the predominant source of congestion, accounting for
62.8%, comes from the last hop in datacenter networks [12].

Fortunately, receivers can easily obtain the last-hop congestion

information. Therefore, there is potential for designing a
simple and efficient mechanism to solve the major last-hop978-1-6654-4131-5/21/$31.00 ©2021 IEEE

congestion without obtaining in-network congestion informa-
tion, while the remaining small part of in-network congestion
can be further addressed by another more complicated scheme.

In this paper, enlightened by the above investigation, we

propose a novel RDMA congestion control mechanism, RCC,

that combines explicit assignment and iterative window adjust-
ment at the receiver side. Firstly, we propose a network con-

gestion differentiation method to detect whether the last-hop

congestion happens. Inspired by the fast recovery mechanism

in TCP, we use n consecutive measured RTT values to infer

whether network congestion occurs or not. Then the last-hop

average throughput is used to further distinguish whether last-

hop congestion happens. For last-hop congestion, we propose

an Explicit Window Assignment scheme to adjust the sending

rate according to the connection number at each receiver

side and piggyback the sending window value through ACK

packets to senders. Besides, we combine per-ACK window

adjustment and packet pacing to avoid instantaneous large

queuing caused by Incast flows. In this way, the last-hop

congestion that takes the majority of network congestion in

datacenters can be solved in one RTT. For in-network con-
gestion, we design a new iterative window adjustment scheme

based on the PID (Proportional Integral Derivative) control

theory. By combining the proportional and derivative terms,

RCC can converge to a unique fixed point and achieve high

utilization with near-zero queuing latency. Besides, RCC sets

the upper bound of sending rate through the Explicit Window

Assignment mechanism for each flow. In this way, RCC can

avoid overlarge PID-based iterative window adjustment results.
The main advantages of RCC include: 1) it can achieve

high throughput, near-zero queuing latency, fast convergence,
and fairness simultaneously, 2) it does not need additional
in-network features and thus can be readily deployed with
traditional commodity switches, 3) it requires only a small
amount of extra memory for each RDMA connection, which
makes it friendly to hardware implementation.

We analyze the stability of RCC based on a mathematical

model and the PID control system theory. Then we use phase

margin analysis to show how to configure parameters in RCC

to ensure stability and convergence.
Furthermore, we evaluate the performance of RCC both in

testbed and ns-3 simulator by conducting micro-benchmark

experiments as well as large-scale simulations using realistic

workloads from Google and Facebook datacenters. We show

RCC outperforms Homa, ExpressPass, DCQCN, TIMELY,

and HPCC in terms of mean and tail flow completion time,

convergence rate, fairness, and queuing latency. Large-scale

simulations show that RCC achieves 55% lower average

FCT and 79% lower 99th percentile FCT than TIMELY and

DCQCN for typical datacenter topology and workload settings.

Compared with HPCC, RCC is fairer and achieves better

performance in multiple scenarios.
In summary, our key contributions are:

• We leverage the characteristic that most of congestion

happens at the last hop to design RCC, a high-performance

transport for RDMA in datacenter networks;

• We propose an Explicit Window Adjustment mechanism to

fairly assign the last-hop bandwidth to senders in one-RTT

for last-hop congestion. And we design a PID-based window

adjustment mechanism to simultaneously achieve fairness

and a guaranteed steady-state latency for in-network con-

gestion. Besides, per-ACK window adjustment and packet

pacing are combined to mitigate instantaneous large queuing

latency;

• We theoretically analyze RCC on its stability and conver-

gence and show how to tune parameters of RCC under

various network conditions;

• We evaluate RCC using a DPDK implementation and large-

scale simulations and compare it to existing typical RDMA

and receiver-driven schemes. Our results show that the

overall average FCT of RCC can be 4 ∼ 79% better than

Homa, ExpressPass, DCQCN, TIMELY, and HPCC.

II. BACKGROUND AND MOTIVATION

A. RDMA in Ethernet

Traditional TCP suffers from high CPU overhead and large

latency [13]. By offloading the transport layer function to the

hardware chip, RDMA is able to access (i.e., read from or

write to) memory on a remote machine without interrupting

the processing of the CPU(s) on that system. RDMA was pre-

viously used in lossless InfiniBand networks. To use RDMA

in Ethernet and IP networks, RoCE [14] is proposed. RoCE

follows the original design of RDMA for lossless networks,

using PFC [15] to avoid packet loss in Ethernet and using a

go-back retransmission mechanism to recover lost packets.

PFC is a hop-by-hop flow control mechanism to prevent

buffer overflow on Ethernet switches and end-host NICs. It

works in the queue granularity and sends PAUSE/RESUME

frames from downstream devices to notify upstream devices

to pause/resume sending packets. Because of a coarse-grained

queue-level operation, PFC possibly leads to poor performance

for individual flows, such as unfairness, flow transmission

and head-of-line blocking. Even worse, unexpected interaction

between PFC and Ethernet packets flooding possibly breaks

the up-down routing and could lead to occasional deadlocks.

Go-back retransmission. The original design of RDMA in

Ethernet employs go-back-0 retransmission to handle occa-

sional packet drops, which suffers from the live-lock problem.

To address this issue, a modified go-back-N retransmission is

employed. Go-back-N scheme solves the live-lock problem but

still wastes time and bandwidth for sending redundant packets,

potentially increasing the probability of congestion.

B. State-of-the-art Congestion Control Solutions

In order to reduce the side effects of the above go-back

mechanisms, flow-based RDMA congestion control solutions

like DCQCN, TIMELY and HPCC, have been proposed.

DCQCN is an end-to-end rate-based congestion control mech-

anism [4] proposed for RoCEv2. It achieves high link utiliza-

tion by fast increasing sending rates similar to QCN and fair-

ness through fine-grained rate control similar to DCTCP [16].

However, due to coarse-grained ECN marks, DCQCN fails to

(a) Topology

(b) DCQCN (c) TIMELY

Fig. 1: Performance of DCQCN and TIMELY in a multi-

bottleneck topology. Flow 1, 2, 3 starts at 0, 100, 200 ms,

respectively.

know the exact congestion in networks and can not converge

to the expected sending rate quickly, as shown in Fig. 1(b).

Furthermore, tunning for parameters in different environments

is tedious and annoying to obtain good performance.

TIMELY is an RTT-based and rate-based RDMA congestion

control mechanism [8]. It iteratively adjusts the sending rate

of flows based on the measured RTT and base RTT. The

measured RTT can provide a more accurate estimation of con-

gestion in networks compared with the ECN mark. However,

as shown in Fig. 1(c), TIMELY can not achieve fairness and

a guaranteed steady-state delay simultaneously by using only

delay as the feedback signal. Its performance is comparable

to or worse than DCQCN [17].

HPCC [3] requires the INT support from switches to obtain

precise link load and uses an iterative algorithm to obtain ap-

propriate sending rates for connections. However, the fairness

and tail latency performance of HPCC degrades under some

circumstances, as shown in §V-B.

C. Most of Congestion Happens at Edge

Topology. Datacenter network topology plays a vital role in

determining the communication bandwidth and latency be-

tween each pair of nodes. The tree-based hierarchical topology

with two or three tiers according to the network scale is widely

used in practice [18]–[21]. These topologies generally have

sufficient cross-sectional bandwidth and the core network will

not become a bottleneck [9].

Communication pattern. Datacenters employ the scale-out

method to support large-scale applications. Generally, an ap-

plication is supported by tens of hundreds of servers [25].

To complete a task, these servers need to communicate with

each other frequently. Due to the sufficient cross-sectional

bandwidth in datacenters and the widely existed many-to-one

or many-to-many communication patterns [10], most conges-
tion happens at network edges in both non-oversubscribed
and over-subscribed datacenters [9], [22], [23]. For example,

some popular applications, such as key-value stores [24], data

mining [25], web search, and parameter server [26] used

in distributed machine learning frameworks, often generate

a number of scatter-gather [10], [27] and batch computing

tasks [28], causing the many-to-one communication pattern.

A study of Google’s production datacenters reveals that the
predominant source of congestion, accounting for 62.8%,
comes from the last hop in datacenter networks [12].

D. Brief Summary

Existing state-of-the-art RDMA congestion control solu-

tions follow a similar rationale: senders iteratively adjust send-

ing rates of flows according to the network congestion signals.

There is still room for improvement from the perspective of

fairness, convergence rate, and end-to-end latency. It is poten-

tial to design a more concise and efficient RDMA congestion

control algorithm by leveraging the special characteristic that

congestion often happens at the last hop in datacenters.

III. DESIGN

A. Basic Idea and Challenges

The key idea of RCC is to leverage the characteristic

that most of the congestion happens at the receiver edge

and allocate bandwidth to connections according to different

kinds of congestion types. We classify network congestion

into two types: C1 happens at the last hop; C2 happens at

other places. The first type of congestion takes the majority

of network congestion in datacenter networks [29] and can

be easily solved at the receiver in one RTT. For the other in-

network congestion, RCC adjusts the bandwidth allocated to

each connection based on the network delay feedback.

To realize the basic idea of RCC, there are three main

challenges to be solved.

1. How to differentiate different types of network
congestion at receivers. To obtain the network congestion

type, we first need to detect whether and where network

congestion happens accurately and responsively. Generally,

network congestion can be detected based on some widely-

used information, such as RTT, ECN, loss rate. However, di-

rectly using the instantaneous value of them will possibly lead

to overreaction. On the other hand, using the average value of

them will possibly be unresponsive to network congestion.

2. How to obtain accurate bandwidth sharing when
addressing congestion C1. In order to assign the last-

hop bandwidth accurately and fairly to RDMA connections,

a straightforward method is that receivers count the precise

number of active flows and then explicitly assign the average

bandwidth to each connection. However, consider an Incast

scenario, flows usually start one by one with a quite short

interval. In this case, at first, the receiver may assign a higher

congestion window to senders, causing the aggregate sending

rate of all the flows higher than the last-hop bandwidth.

3. How to achieve fast convergence and near-zero
queuing latency when addressing congestion C2. Due

to the limited information provided by ECN marks, it is

hard to utilize ECN to achieve fast convergence as well as

near-zero queuing latency. Existing delay-based congestion

(a) Workflow (b) RDMA NIC components

Fig. 2: The overview of RCC framework.

control protocols such as TCP vegas [30], FAST TCP [31],

and Compound TCP [32] have inherent limitations to achieve

both fast convergence and low latency in current high-speed

datacenter networks. They only react after queue build-up.

Although TIMELY mitigates the problem by using the delay

gradient, it fails to converge to a fixed point.

B. Framework

Before proceeding to describe the framework of RCC, we

first explain why RCC is window-based and delay-based.

Window-based or rate-based. In rate-based congestion con-

trol schemes, packets are continuously sent before receiving

feedback, which may further aggravate congestion when feed-

back is delayed due to congestion. Window-based solutions

can avoid this problem by limiting the number of inflight

packets even if the feedback is delayed. In this way, congestion

will not be magnified, making the network more stabilized.

Delay-based or ECN-based. ECN is per-hop feedback,

which can prevent packet loss efficiently. However, ECN-based

schemes fail to effectively control the end-to-end queuing

length as the number of hops increases, while RTT is end-

to-end feedback information, which can be used to control the

end-to-end queuing length more effectively.

Fig. 2 shows the framework of RCC. It includes three

main functions: Differentiating Congestion Types (§III-C),

Explicit Window Assignment (§III-D) and PID-based Iterative

Adjustment (§III-E). Each flow starts at line rate like other

RDMA congestion control mechanisms [3], [4], [8]. Each data

packet has a timestamp field to indicate the packet’s sending

time. As shown in Alg. 1, the receiver calculates the one-way

delay by subtracting the timestamp value from the current time

when the packet arrives (Line 3). Besides, if the packet belongs

to a new flow or is the last packet for an existing flow, the

receiver will update the number of active flows and calculate

the new fair share (Line 4).

If the flow has been in PID-based congestion control pro-

cedure, it will stay in this state until the end (Line 6-9). This

is because most flows are quite short in high-speed datacenter

networks and switching between Explicit Window Assignment

and PID-based congestion control may cause in-network queue

oscillation. And the PID-based congestion control results will

be limited by Explicit Window Assignment. Thus, last-hop

congestion will not happen again.

Algorithm 1 RCC Algorithm at Receiver Side

1: INPUT: data packet pkt
2: OUTPUT: sending window cwnd
3: rtt ← CALCULATERTT(pkt)
4: num ← UPDATEFLOWNUMBER(pkt)
5: fair share ← EXPLICITWINDOWASSIGNMENT(num)
6: if flow already in PID-based congestion control then
7: cwnd ← PIDCONTROL(rtt, fair share)
8: return
9: end if

10: if RX rate >= NIC speed ∗ η then
11: cwnd ← fair share
12: else
13: in network ← CONGESTIONDETECTION(rtt)
14: if in network == true then
15: cwnd ← PIDCONTROL(rtt, fair share)
16: else
17: cwnd ← fair share
18: end if
19: end if

Otherwise, the receiver uses one-way delay and other in-

formation to determine if in-network congestion occurs (Line

13). If in-network congestion does not happen, the receiver

explicitly assigns the sending window to the fair share (Line

11 and 17). For in-network congestion, the receiver adjusts

the sending window using the PID-based congestion control

mechanism and the upper bound of the sending window is set

to be the fair share (Line 15). After the adjustment of sending

window, the receiver piggybacks this information by ACK

packets to senders. The sender adjusts its sending window

after receiving each ACK packet.

C. Differentiating Congestion Types

Detecting network congestion. In RCC, each packet carries

the sending timestamp in its header. Upon receiving a packet,

a receiver can obtain the real-time one-way delay of the

corresponding connection. Note that here we assume that the

clock at senders and receivers are synchronized [33].

Let RTT base
i and RTTi(t) represent the base and measured

one-way delay of connection i, respectively. We can use the

difference between RTTi(t) and RTT base
i to infer whether

network congestion happens or not. If the difference between

RTTi(t) and RTT base
i exceeds a threshold, then RCC will

decrease the congestion window of connections.

However, many flows in datacenter networks are extremely

short [34], maybe containing only several packets. Besides,

each connection starts at line rate. Thus, these extremely short

flows possibly incur ephemerally high RTTi(t). If we directly

use RTTi(t) to detect network congestion and decrease the

congestion window of all connections once the instantaneous

RTTi(t) is larger than RTT base
i , network bandwidth will

possibly suffer from being under-utilized.

Enlightened by the fast recovery mechanism in TCP, we
use n consecutive RTTi(t) values to infer whether network

Fig. 3: Structure of PID-based congestion control.

congestion happens or not. Specifically, if n consecutive

RTTi(t) values satisfy the following inequation:

RTTi(t) > RTT base
i × (1 + δ), 0 < δ < 1, (1)

then we can infer that network congestion happens. δ repre-

sents the allowed congestion level caused by queuing.

Determining congestion type. First, we calculate the received

bytes of all connections, BR, in the last round1. The sample

duration is set to RTT base
i . Let η ∈ (0, 1) represent the

expected link utilization of the last hop. If BR > c ×
min
i
(RTT base

i) × η, then we can infer that the bandwidth

of the last hop has been fully utilized, where c represents the

bandwidth of the last hop. Thus, network congestion happens

at the last hop. Otherwise, congestion happens at other places.

D. Explicit Window Assignment

Counting the number of messages, N . Unlike the stream-

oriented protocol TCP, RDMA is a message-oriented one.

Thus, we can easily count the number of transmitted mes-

sages based on the begin/end mark in IB BTH (InfiniBand

Basic Transport Header). For example, in an RDMA Write
operation, the first packet’s opcode field in BTH header is set

to RDMA Write First; the final packet of the message has

an opcode as either RDMA Write Last or RDMA Write
Last With Immediate. Thus, we can track the number of

messages accurately in RDMA NICs by checking the opcode
field of each packet. Similarly, we can also count the number

of messages generated in other RDMA operations.

Computing accurate bandwidth sharing. A receiver com-

putes the congestion window for each connection i, W (i) =
C
N . This computed value will be delivered to senders by ACKs.

We mitigate the impacts of the second challenge by combining

per-ACK window adjustment and packet pacing. Receivers

piggyback the assigned window in each ACK packet based

on the current active flow number. Therefore, the improper

larger window sent to the senders will only last a very short

time, that is, the time between two consecutive ACK packets.

Moreover, NICs at senders use the packet pacing to add

space between consecutive packets of all flows. Through these

mechanisms, each ACK packet that carries larger window

information can only trigger a small number of extra data

packets. Correspondingly, the overall sending rate of Incast

flows will not cause too large instantaneous queuing.

1The term ‘round’ here refers to RTT. That is, BR is the sum of the bytes
received by all connections in the previous RTT.

E. PID-based Congestion Control

For in-network congestion, RCC uses a PID controller to

govern the dynamics of the sending window. The controller

continuously adapts the window to the estimated delay in order

to match RTT target
i . RTT target

i controls the tradeoff between

the bandwidth utilization and the steady-state queue length. It

should be a little larger than RTT base
i and smaller than the

RTT value in congestion scenarios. Thus, we let

RTT target
i = RTT base

i × (1 +
δ

2
) (2)

Computing the control factor. Fig. 3 illustrates the structure

of PID-based congestion control by which RCC handles in-

network congestion. It continuously calculates the error value

ei(t) of connection i as the difference between the actual

measured value RTTi(t) and RTT target
i , that is,

ei(t) = RTTi(t)−RTT target
i (3)

To compute the control factor ui(t), which is used to

adjust the sending window, the controller applies a correction

based on proportional, integral, and derivative terms. In RCC,

the parameter of integral term Ki is set to 0. Equation (4)

expresses the overall control function. The proportional term

gives an instantaneous response to the error value ei(t), while

the derivative term is an estimation of the future trend of ei(t).

ui(t) = ui(t−1)+Kp× ei(t)+Kd× (ei(t)− ei(t−1)) (4)

The proportional term can ensure that the PID-based con-

gestion control mechanism converges to a fixed point, while

the derivative term is used to achieve rapid convergence speed.

Finally, with proper settings of these two parameters, RCC can

maintain near-zero steady-state queues in the network without

compromising other performance metrics.

Computing the sending window. RCC uses the control factor

ui(t) to adjust the sending window of flows. If ui(t) > 0,

which indicates that the inflight packets is larger than the

network capacity, RCC will perform a multiplicative window

decrement. Otherwise, a multiplicative window increment will

be conducted since the network has available bandwidth. For

ease of deployment, we use tanh(·) (a function ranges in

(−1, 1)) to scale the window size as follows:

Wi(t) = Wi(t− 1)× (1− tanh(ui(t))) (5)

Due to the derivative term in (4), the increment of window

size will gradually decrease as the window becomes larger,

eliminating the unfairness caused by pure MIMD algorithms.

F. Parameters and Overhead of RCC

Parameters of RCC. The congestion differentiation module

of RCC has three parameters: n, δ, η. n and δ control the

tradeoff between throughput and transient queue length. To

maximize throughput, transient queues are inevitable. We set

n = 3 and δ = 0.2 for high throughput and near-zero queuing.

And the expected utilization of the last hop, η is set to 0.95.

The PID-based congestion control mechanism has two ad-

ditional parameters: Kp and Kd. They control the speed of

TABLE I: State variables of RCC

State Variable Description Size (Byte)

Sender
cwnd Congestion Window 4

snd una Send Unacknowledged 4
snd nxt Send Next 4

Receiver

flow num Current Flow Number 4
rcv nxt Receive Next 4
last rtt The Last Measured RTT 8

last rtt diff The Last RTT Diff 8
cwnd Congestion Window 4

update timer RTT Update Timer 4
base rtt Base RTT 8

Total 52

convergence to fairness and steady-state. The larger the Kd

is, the faster the convergence speed will be. However, larger

Kd will cause oscillation. We will discuss this in detail in §IV.

Overhead of RCC. Table I summarizes all state variables

required to be maintained per RCC connection. Collectively,

RCC uses 52 bytes in the sender and receiver for each

RDMA connection. This memory footprint is comparable

to other state-of-the-art RDMA congestion control protocols.

For example, DCQCN adds ∼ 60 bytes for its ECN-based

congestion control [4].

G. Deployment

Clock Synchronization. The deployment of RCC relies on

high precision clock synchronization throughout the datacenter

network. Some recent research efforts can reduce the upper

bound of clock synchronization within a datacenter to a few

hundred nanoseconds, which is sufficient for our work [35],

[36]. And the recent work, On-Ramp, is also trying to use the

one-way delay to solve datacenter network congestion [37].

Even without high precision clock synchronization, RCC

can still be practically deployed by moving the delay calcula-

tion and PID-based congestion control to the sender side; the

receiver side only calculates and feeds back the flow number

N and the throughput BR. This solves the problem of not

being able to obtain the one-way delay.

IV. THEORETICAL ANALYSIS

In this section, we analyze the stability of RCC by de-

veloping a fluid model for it, along with the control system

theory [38]. Considering N long-lived flows traversing a

single bottleneck link with capacity C, taking account of the

relationship between q and RTT , i.e., Ri(t) = q(t)
C + d,

the non-linear, delay-differential equations below describe the

dynamics of Wi(t), q(t) and Ri(t):

dWi(t)

dt
= −Wi(t)tanh(ui(t))

Ri(t)
(6)

dq(t)

dt
=

N∑

i

Wi(t)

Ri(t)
− C (7)

dRi(t)

dt
=

1

C

dq(t)

dt
(8)

where d is the shared propagation delay, Ri(t) and
q(t)
C denote

the RTT and shared queuing delay, respectively.

Fig. 4: Phase margin as a function of parameter Kp and Kd.

As for the control factor ui(t) in (4), we take bilinear

transformation [39] to convert it into a continuous one:

du(t)

dt
=

Kp

Ri(t)
[Ri(t)−Rref] + (Kd +

Kp

2
)
dRi(t)

dt
(9)

where Rref = RTT target is the expected value in equilibrium.

Equation (6) describes the variation of the sending window

along with the difference between the real value and the refer-

ence value of RTT measured at receiver side, while Equation

(7) indicates the queuing process at the switch. Equations (8)

and (9) capture the evolution of direct and indirect control

signals, respectively. By letting the LHS of (6)-(9) equal 0,

with the assumption that all flows are synchronized and peak

simultaneously (which is obvious), it is easily verified that W ,

q and RTT do not reach the steady-state until they satisfy:

tanh(ui)∗ = 0 and RTTi∗ = Rref (10)

W1∗
RTT1∗ =

W2∗
RTT2∗ = · · · = WN∗

RTTN∗ (11)

where symbol ∗ indicates the value at the fixed points, which

also represents the fairness of all flows in equilibrium.

Denoting all Wi∗ as W0, referring to the linearization and

Laplace transformation method used in [40]–[42], we finally

get the open-loop transfer function of the whole system:

G(s) = K
1 + s

z

s2(s+ 1
Rref

)
(12)

where K = Kp/R
2
ref and z = Kp/((Kd +Kp/2)Rref).

According to the Bode Stability Criteria, the system is stable

only if the phase margin in the Bode diagram of the transfer

function G(s) is above 0. And the higher the phase margin, the

more stable the system. Taking the setting mentioned above

for parameter δ with 0.2, i.e., Rref = 13.2μs, Fig. 4 shows

the variation of the phase margin relative to different pairs of

Kp and Kd. As shown in Fig. 4, setting Kp ∈ [1, 104] and

Kd ∈ [103, 105] ensures an acceptable phase margin above 30

degrees. Besides, to make the system more stable, Kp should

be one or two orders of magnitude smaller than Kd. Larger

values of Kp and Kd provide a faster response to the control

signal but will lead to a heavy reduction on stability.

(a) HPCC (b) RCC

Fig. 5: Fast convergence and fairness.

V. EVALUATION

In this section, we evaluate the performance of RCC in hard-

ware testbed and ns-3 simulator by conducting both micro-

benchmarks and large-scale experiments. For simulations, we

use the ns-3 RDMA open-source code [17] to implement RCC.

A. Evaluation Setup

Network topology. A fat-tree topology is used in large-scale

simulations. It consists of 320 hosts, 20 ToR switches, 20

aggregation switches, and 16 core switches. Hosts and ToRs

are connected with 100 Gbps links, while all switches are

connected via 400 Gbps links. The delay of each link is set

to 1μs, which gives a 12μs base RTT. The switch buffer size

is set to 32MB according to real device configurations [3].

Schemes compared. We compare RCC with DCQCN,

TIMELY, HPCC, Homa [43] and ExpressPass [44]. Homa and

ExpressPass are typical receiver-driven transport protocols,

although they are not designed for RDMA networks. We use

the open-source code of DCQCN [17], Homa [45] and HPCC

in our evaluation with η = 0.95 and maxStage = 5 for

HPCC. As for ExpressPass and TIMELY, we implement them

in ns-3 based on their algorithms.

Parameter settings. For RCC, we set δ = 0.2, which leads

to a 13.2μs RTT target
i . Then, we set Kp = 1 × 104 and

Kd = 1×105 based on the analysis in §IV. For other schemes,

we use the parameters suggested in the corresponding papers.

We also scale the ECN marking threshold proportional to the

link bandwidth suggested in [3] for DCQCN.

Benchmark workloads. We use four kinds of realistic data-

center workloads that are widely used in prior literature, web

search [16], data mining [19], web server [11], and cache

follower [11]. Due to the high overhead of end-host processing

caused by the traditional TCP/IP network stack, there is a trend

to employ RDMA in these workloads [46], [47].

Performance metrics. The performance of RCC is evaluated

using the following metrics: (1) goodput, (2) convergence

speed/fairness, (3) average FCT, (4) tail FCT, and (5) in-

network queuing length.

B. Micro-benchmarks

We compare RCC with HPCC in several micro-benchmarks

since HPCC is regarded as the best solution for the time being.

1) Fast convergence and fairness. We show that RCC

flows can quickly react to changes in available bandwidth

and rapidly converge to appropriate flow rates. Besides, we

evaluate the fairness of RCC.

(a) Goodput (b) CDF of FCT

Fig. 6: Goodput and FCT in the Incast scenario.

Setup: We use a dumbbell topology, where 4 senders and

1 receiver are connected with the same 100 Gbps bottleneck

link. 4 senders transmit one flow to the receiver in turn with

an interval of 100ms. The lengths of the 4 flows are 4.4, 2.2,

1.1 and 0.27 GB, respectively.

Result: Fig. 5 shows the goodput of the 4 flows in RCC

and HPCC. RCC quickly throttles the rate of existing flows

upon a new flow starts, and recovers the rate of other flows

after a flow ends. This is because the receiver has precise

information about the flow number being transmitted. When

a flow finishes, RCC only needs one RTT to re-assign the

sending window for existing flows to fully utilize the newly

available bandwidth. As a result, the overall goodput of RCC is

more stable. However, HPCC needs several RTTs to converge

to a stable rate after a flow arrives/finishes.

Fig. 5 also illustrates the fairness of RCC and HPCC. RCC

provides better fairness even in a short time scale. All flows

evenly share the bottleneck bandwidth and grab their fair share

quickly. Specifically, when N varies from 1 to 4, each flow’s

goodput quickly converges to ∼ 100×0.95
N Gbps, giving a Jain

fairness index within 0.998 ∼ 0.999 (1 is optimal). However,

flows in HPCC can not get the fair share under a various

number of concurrency and the goodput suffers oscillation.

2) Incast. Next, we evaluate the performance of RCC under

the Incast scenario.

Setup: One receiver initiates connections with 1000 senders

and requests 200KB data from each sender simultaneously.

This workload is similar to the workload used in [48]. Besides,

there is also a long-lived background flow to the receiver. We

evaluate the overall FCT and the goodput of flows.

Result: Fig. 6 illustrates how RCC and HPCC react to

congestion caused by Incast. The aggregate goodput of RCC

and HPCC is similar. The total goodput of the 1000 flows

remains stable as time goes on, at around 94.98Gbps. As for

the average FCT of Incast flows, RCC performs much better

than HPCC. RCC improves the median of FCT by about 5.2%
and improves the 99th percentile FCT by about 4.1%.

3) Low queuing latency. Incast traffic likely causes instan-

taneous large queuing latency due to its burstiness. We next

show the queuing latency of RCC in this scenario.

Setup: We use the same Incast traffic as above and measure

the queue length at the bottleneck switch.

Result: Fig. 7 shows the queue length of HPCC and RCC

under the Incast scenario. RCC keeps near-zero queuing length

since it explicitly assigns window size and combines per-ACK

feedback and packet pacing. In HPCC, the queue builds up to

(a) HPCC (b) RCC

Fig. 7: Queuing length under Incast scenario.

900KB due to its slow responsiveness to the large number of

concurrent flows.

C. DPDK Evaluation

Because current RDMA NICs do not provide flexible pro-

gramming capabilities to implement the algorithms in RCC1,

we use DPDK [49] to cross-validate with simulation results.

We plug in a Mellanox ConnectX5-EN NIC on each of

the two Dell PowerEdge R730 servers to act as sender and

receiver, respectively. Each NIC has two 25Gbps Ethernet

ports, so the server can work as two senders or receivers. We

build a two-tier network topology with three switches and then

connected the servers to the two leaf switches. The rate of all

links is 25Gbps. Each server in this topology is equipped with

two Intel Xeon E5-2609 v4 CPUs (8 cores, 1.7 GHz), 128 GB

2133 MT/s DDR4 RAM. We run two different experiments on

both the testbed and ns-3 simulator, and measure throughput

and switch egress queue length. In both testbed and simulator,

the RTT is about 12μs. So the parameters are set to be the

same in hardware experiments and ns-3 simulations.

In the first experiment, each sender generates one flow to

the same receiver, which results in the last-hop congestion.

Fig. 8a shows that the sending rate stabilizes at 12Gbps with

a near-zero queue length for both the testbed and simulation.

In the second experiment, each sender generates one flow to

different receivers, which results in the in-network congestion.

Fig. 8b shows that the sending rate stabilizes at 12Gbps
for both the testbed and simulation. In the steady-state, the

throughput of two senders oscillates with low amplitude in

both testbed and simulation and the queue length is limited to a

very low level. From the testbed experiments, we conclude that

RCC would behave as expected under real datacenter network

environments, and the results of the simulations are valid.

D. Large-scale Simulations

Now, we evaluate the performance of RCC in large-scale

scenarios. We use the fat-tree topology mentioned in §V-A

and generate traffic according to the four realistic workloads.

1) Overall performance.
Result: Fig. 9 shows the average FCT achieved by each

scheme under the four types of workloads and different

link loads. The performance of RCC is better than Homa,

ExpressPass, DCQCN, TIMELY and HPCC. In the web search

workload, the overall average FCT with RCC is up to 9%,

1This is claimed from the perspective of the implementation of self-defined
algorithms.

(a) Last-hop congestion scenario. (b) In-network congestion scenario.

Fig. 8: Testbed experiments.

11%, 11%, 30% and 45% lower compared with HPCC, Homa,

ExpressPass, DCQCN and TIMELY, respectively. And the

results change to 7%, 4%, 15%, 18% and 19% under the data

mining workload. Besides, RCC delivers the best performance

under the web server and cache follower workloads. The

improvement of RCC over HPCC in the overall average FCT

is also obvious: 5 ∼ 11% for the web server workload and

∼ 14% for the cache follower workload.

2) FCT breakdown based on flow size.
Result: We break down the FCT across flow sizes as shown

in Fig. 10 and Fig. 11. We omit the results of web server and

cache follower workloads since the performance is consistent

with the other workloads.

For short flows, though under which Homa is proved to be

highly effective, RCC performs better than it and HPCC, and

greatly outperforms ExpressPass, DCQCN and TIMELY. This

is because RCC keeps near-zero queue length and handles

congestion rapidly by combining the Explicit Window As-

signment mechanism with the PID-based congestion control,

while the core packet spraying scheme used in Homa may

encounter various issues. Fig. 11(a) and 11(b) show that RCC

has a slightly better performance than HPCC both in average

FCT and 99th percentile FCT under the data mining workload.

Besides, RCC improves the average FCT by 10 ∼ 25% and

improves the 99th percentile FCT by 21 ∼ 50% compared to

DCQCN. In the web search workload, RCC still achieves bet-

ter performance than HPCC and gains similar FCT reduction

over the other four schemes as under data mining workload.

As for long flows, RCC performs better than all other

schemes. In the data mining workload, RCC performs better

than HPCC in terms of the average FCT and 99th percentile

FCT. RCC also achieves great performance for long flows in

the web search workload. Compared to DCQCN, RCC reduces

by 25 ∼ 31% for the average FCT and up to 37% for the 99th

percentile FCT. This is because RCC can rapidly reach the fair

share by the Explicit Window Assignment algorithm.

E. RCC Deep Dive

In this section, we dig deeper into RCC’s design by con-

ducting a series of targeted simulations.

1) Impact of time jitter and parameter n.
Setup: To explore the impact of clock synchronization and

congestion detection parameter n on RCC, we run RCC, RCC-

async (with random time jitter), RCC-sender (modified as

elaborated in §III-G) and RCC(n=1) (setting parameter n to

1 based on RCC-async) using the same settings in §V-B-2).

(a) Web Search (b) Data Mining (c) Web Server (d) Cache Follower

Fig. 9: Overall performance.

(a) 0-100KB average FCT (b) 0-100KB tail FCT (c) >100KB average FCT (d) >100KB tail FCT

Fig. 10: Overall performance in web search workload.

(a) 0-100KB average FCT (b) 0-100KB tail FCT (c) >100KB average FCT (d) >100KB tail FCT

Fig. 11: Overall performance in data mining workload.

Fig. 12: The impact of time jitter and parameter n on RCC.

Result: Fig. 12 illustrates that time jitter caused by clock

synchronization does lead to a deterioration on the goodput,

but not pretty severe as the result in RCC-sender achieves

similar steady and high throughput compared with RCC, which

again verifies the deployment choice in §III-G. Besides, the

difference between RCC-async and RCC(n=1) reveals that

instantaneous delay rag would fuzz up congestion detection.

Actually, RCC gives a similar performance when n > 2, and

we choose n = 3 as the default one for simplicity.

2) Effect of Explicit Window Assignment and PID-based
Congestion Control.

Setup: To evaluate the effect of the schemes in §III-D

and §III-E, we compare the complete RCC with RCC-PID

(RCC without Explicit Window Assignment) and RCC-EWA

(RCC without PID-based Congestion Control) in the fat-tree

topology with the web search workload.

Result: Fig. 13 shows the average FCT of RCC, RCC-PID

and RCC-EWA. We observe that there is always a gap in the

FCT results with RCC in the last two schemes, which indicates

that both EWA and PID are vital for better performance in

RCC. Specifically, RCC outperforms RCC-PID and RCC-

EWA by up to 28% and 19% on average, and the result of

tail FCT breakdown is similar. The gap would be remedied

by equipment with either the EWA or PID part, as detailed in

the next simulation.

3) The effects of EWA and PID in more detail.
Setup: We run RCC-PID, RCC-EWA and RCC using the

multi-bottleneck topology in Fig. 1(a) with three flows to

quantify the benefits of combining these two schemes. Flow 1
begins to transmit data at line rate, then we start flow 2, 3 at

200ms and 300ms to construct both in-network and last hop

congestion with flow 1. Besides, we add flags in EWA and PID

units to check the validity and accuracy of congestion detection

Fig. 13: RCC deep dive in web search workload.

(a) RCC-PID (b) RCC-EWA

(c) RCC (d) Queuing length

Fig. 14: RCC deep dive with multi-bottleneck topology.

and differentiation algorithms. All links are 100Gbps.

Result: Fig. 14 shows the goodput of 3 flows in each

scheme. We observe from Fig. 14(a) that RCC-PID requires

several iterations to reach the proper sending rate every time

the number of flows changes. Fig. 14(b) and 14(d) show that

flow 1 and 2 can not share the bottleneck bandwidth fairly

and build a large queue in the network. However, Fig. 14(c)

illustrates that RCC handles different kinds of congestion

perfectly by combining EWA and PID parts and achieves near-

zero queuing length. Moreover, the consistency of detected

congestion type with constructed congestions (denoted as ×)

in Fig. 14(a)-(c) indicates that the congestion detection and

differentiation in RCC are effective and accurate.

VI. RELATED WORK

Congestion control is a sustained topic, and here we briefly

introduce some closely related work.

Sender-based congestion control: DCTCP [16] is the first

ECN-based congestion control algorithm used in datacenter. It

adjusts each flow’s sending rate by observing the ECN marks

in each RTT. With the popularity of RDMA in datacenter

networks, some sender-based congestion control mechanisms

are proposed, which passively adjust the transmission behavior

of each flow according to various feedback congestion signals.

DCQCN [4] reacts to ECN marks, TIMELY [8] and Swift

[50] use RTT variation, while HPCC [3] relies on precise

link load information. These solutions require several RTTs

to iteratively converge to the fair share, which is relatively

slow for short flows that last only a handful of round-trips.

Receiver-driven congestion control: To avoid possible per-

formance degradation under the Incast scenario, some pro-

posals suggest shifting the control entity to the receiver side.

ExpressPass [44] prevents congestion by explicitly sending a

proper number of tokens to senders. However, RDMA NICs

are hard to maintain different timers to implement the pacing

of tokens for every flow. Homa [43] uses priority queues to

schedule packets dynamically. However, since the core packet

spraying [51] scheme likely incurs packet reordering, it is

not well-supported in RDMA networks. Besides, pHost [52]

and Homa can address congestion at the last hop, but their

effectiveness depends on the assumption that the congestion

occurs on the ToR downlink, which is not always true [12].

Switch-driven solutions: RoCC [39] and BFC [53] are two

typical mechanisms whose control entity locates at the switch.

RoCC proactively computes the fair flow rate and piggybacks

it to the sender based on PI controller at the switch, while

BFC tracks active flows to achieve accurate per-hop per-flow

flow control and is compatible with end-to-end solutions.

VII. CONCLUSION

This paper presents RCC, a receiver-driven transport for

RDMA in datacenters. It can efficiently utilize the network

bandwidth while keeping near-zero in-network queue length.

By differentiating network congestion types, RCC employs

novel Explicit Window Assignment and PID-based congestion
control to address the last-hop and in-network congestion,

respectively. The results of the testbed experiments and large-

scale simulations validate that RCC achieves low queuing la-

tency, high bandwidth utilization, and fairness simultaneously.

ACKNOWLEDGEMENT

We gratefully appreciate the anonymous reviewers and our

Shepherd, Chen Qian, who helped us improve the quality

of this paper. This work is supported in part by National

Natural Science Foundation of China (NSFC) under Grant No.

61872401 and Fok Ying Tung Education Foundation under

Grant No. 171059.

REFERENCES

[1] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril and D.
Dzhulgakov, “Applied machine learning at facebook: a datacenter in-
frastructure perspective,” in Proc. IEEE HPCA, 2018, pp. 620–629.

[2] A. Klimovic, C. Kozyrakis, E. Thereska, B. John and S. Kumar,
“Flash storage disaggregation,” in Proceedings of the Eleventh European
Conference on Computer Systems, 2016, pp. 1–15.

[3] Y. Li, R. Miao, H.H. Liu, Y. Zhuang, F. Feng and Z. Cao, “HPCC:
high precision congestion control,” in Proc. ACM SIGCOMM, 2019,
pp. 44–58.

[4] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn and Y. Liron, “Con-
gestion control for large-scale RDMA deployments,” ACM SIGCOMM
Computer Communication Review, 2015, 45(4), pp. 523–536.

[5] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye and J. Padhye, “RDMA over
commodity ethernet at scale,” in Proc. ACM SIGCOMM, 2016, pp.
202–215.

[6] K. Qian, W. Cheng, T. Zhang and F. Ren, “Gentle flow control: avoiding
deadlock in lossless networks,” in Proc. ACM SIGCOMM, 2019, pp.
75–89.

[7] Y. Gao, Y. Yang, T. Chen, J. Zheng, B. Mao and G. Chen, “DCQCN+:
taming large-scale incast congestion in RDMA over ethernet networks,”
in IEEE ICNP, 2018, pp. 110–120.

[8] R. Mittal, V.T. Lam, N. Dukkipati, E. Blem, H. Wassel and M. Ghobadi,
“TIMELY: RTT-based congestion control for the datacenter,” in Proc.
ACM SIGCOMM, 2015, pp.537–550.

[9] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A.W. Moore and G.
Antichi, “Re-architecting datacenter networks and stacks for low latency
and high performance,” in Proc. ACM SIGCOMM, 2017, pp. 29–42.

[10] S. Kandula, S. Sengupta, A. Greenberg, P. Patel and R. Chaiken, “The
nature of data center traffic: measurements and analysis,” in Proc. ACM
SIGCOMM, 2009, pp. 202–208.

[11] A. Roy, H. Zeng, J. Bagga, G. Porter and A.C. Snoeren, “Inside the
social network’s (datacenter) network,” in Proc. ACM SIGCOMM, 2015,
pp. 123–137.

[12] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead and R.
Bannon, “Jupiter rising: a decade of Clos topologies and centralized
control in google’s datacenter network,” ACM SIGCOMM computer
communication review, 2016, 45(4), pp.183–197.

[13] I. Marinos, R.N. Watson and M. Handley, “Network stack specialization
for performance,” ACM SIGCOMM Computer Communication Review,
2014, 44(4), pp.175–186.

[14] Infiniband Trade Association. Supplement to InfiniBand Architecture
Specification Volume 1 Release 1.2.2 Annex A17: RoCEv2 (IP routable
RoCE). 2014.

[15] “802.1Qbb - Priority-based Flow Control,”
http://www.ieee802.org/1/pages/802.1bb.html.

[16] M. Alizadeh, A. Greenberg, D.A. Maltz, J. Padhye, P. Patel and B.
Prabhakar, “Data Center TCP (DCTCP),” in Proc. ACM SIGCOMM
2010, pp. 63–74.

[17] Y. Zhu, M. Ghobadi, V. Misra and J. Padhye, “ECN or delay: lessons
learnt from analysis of DCQCN and TIMELY,” in Proc. ACM CoNEXT,
2016, pp. 313–327.

[18] M. Al-Fares, A. Loukissas and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM Computer Communica-
tion Review, 2008, 38(4), pp.63–74.

[19] A. Greenberg, J.R. Hamilton, N. Jain, S. Kandula, C. Kim and P. Lahiri,
“VL2: a scalable and flexible data center network,” in Proc. ACM
SIGCOMM, 2009, pp. 51–62.

[20] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang and Y. Shi, “BCube: a
high performance, server-centric network architecture for modular data
centers,” in Proc. ACM SIGCOMM, 2009, pp. 63–74.

[21] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang and S. Lu, “DCell: a scalable
and fault-tolerant network structure for data centers,” in Proc. ACM
SIGCOMM, 2008, pp. 75–86.

[22] V. Jeyakumar, M. Alizadeh, D. Mazières, B. Prabhakar, A. Greenberg
and C. Kim, “EyeQ: Practical network performance isolation at the
edge,” in Proc. USENIX NSDI, 2013, pp. 297–311.

[23] Q. Zhang, V. Liu, H. Zeng and A. Krishnamurthy, “High-resolution
measurement of data center microbursts,” in Proc. ACM IMC, 2017,
pp. 78–85.

[24] A. Kalia, M. Kaminsky and D.G. Andersen, “Using RDMA efficiently
for key-value services,” in Proc. ACM SIGCOMM, 2014, pp. 295–306.

[25] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” Communications of the ACM, 2008, 51(1), pp.107–113.

[26] M. Li, D.G. Andersen, J.W. Park, A.J. Smola, A. Ahmed and V.
Josifovski, “Scaling distributed machine learning with the parameter
server,” in Proc. USENIX OSDI, 2014, pp. 583–598.

[27] D. Zats, T. Das, P. Mohan, D. Borthakur and R. Katz, “DeTail: reducing
the flow completion time tail in datacenter networks,” in Proc. ACM
SIGCOMM, 2012, pp. 139–150.

[28] M. Isard, M. Budiu, Y. Yu, A. Birrell and D. Fetterly, “Dryad: distributed
data-parallel programs from sequential building blocks,” in Proc. ACM
SIGOPS/EuroSys, 2007, pp. 59–72.

[29] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D.G. Andersen and
G.R. Ganger, “Safe and effective fine-grained TCP retransmissions for
datacenter communication,” ACM SIGCOMM computer communication
review, 2009, 39(4), pp.303–314.

[30] L.S. Brakmo and L.L. Peterson, “TCP Vegas: end to end congestion
avoidance on a global Internet,” IEEE Journal on selected Areas in
communications, 2005, 13(8), pp.1465–1480.

[31] C. Jin, D.X. Wei and S.H. Low, “FAST TCP: motivation, architecture,
algorithms, performance,” in IEEE INFOCOM, 2004, pp. 2490–2501.

[32] K. Tan, J. Song, Q. Zhang and M. Sridharan, “A compound TCP
approach for high-speed and long distance networks,” in Proc. IEEE
INFOCOM, 2006.

[33] IEEE. 1588-2019 - IEEE Approved Draft Standard for a Precision Clock
Synchronization Protocol for Networked Measurement and Control
Systems. 2019.

[34] A. Kalia, M. Kaminsky and D. Andersen, “Datacenter RPCs can be
general and fast,” in Proc. USENIX NSDI, 2019, pp. 1–16.

[35] Y. Geng, S. Liu, Z. Yin, A. Naik, B. Prabhakar and M. Rosenblum,
“Exploiting a natural network effect for scalable, fine-grained clock
synchronization,” in Proc. USENIX NSDI, 2018, pp. 81–94.

[36] Y. Li, G. Kumar, H. Hariharan, H. Wassel, P. Hochschild and D. Platt,
“Sundial: fault-tolerant clock synchronization for datacenters,” in Proc.
USENIX OSDI 2020, pp. 1171–1186.

[37] S. Liu, A. Ghalayini, M. Alizadeh, B. Prabhakar, M. Rosenblum and A.
Sivaraman, “Breaking the transience-equilibrium nexus: a new approach
to datacenter packet transport,” in Proc. USENIX NSDI, 2021, pp. 47–
63.

[38] F. Gene, Franklin, J. David, Powell and Abbas Emami-Naeini. Feedback
Control of Dynamic Systems. Prentice Hall PTR, 2001.

[39] P. Taheri, D. Menikkumbura, E. Vanini, S. Fahmy, P. Eugster and T.
Edsall, “RoCC: robust congestion control for RDMA,” in Proc. ACM
CoNEXT, 2020, pp. 17–30.

[40] M. Alizadeh, A. Kabbani, B. Atikoglu and B. Prabhakar, “Stability
analysis of QCN: the averaging principle,” in Proc. ACM SIGMETRICS,
2011, pp. 49–60.

[41] C.V. Hollot, V. Misra, D. Towsley and W.B. Gong, “A control theoretic
analysis of RED,” in Proc. IEEE INFOCOM, 2001, pp. 1510–1519.

[42] R. Pan, P. Natarajan, C. Piglione, M.S. Prabhu, V. Subramanian and
F. Baker, “PIE: a lightweight control scheme to address the bufferbloat
problem,” in Proc. IEEE HPSR, 2013, pp. 148–155.

[43] B. Montazeri, Y. Li, M. Alizadeh and J. Ousterhout, “Homa: a receiver-
driven low-latency transport protocol using network priorities,” in Proc.
ACM SIGCOMM, 2018, pp. 221–235.

[44] I. Cho, K. Jang and D. Han, “Credit-scheduled delay-bounded conges-
tion control for datacenters,” in Proc. ACM SIGCOMM, 2017, pp. 239–
252.

[45] Homa simulation. https://github.com/PlatformLab/HomaSimulation/
[46] C. Mitchell, Y. Geng and J. Li, “Using one-sided RDMA reads to build

a fast, CPU-efficient key-value store,” in USENIX ATC, 2013, pp. 103–
114.

[47] J. Xue, Y. Miao, C. Chen, M. Wu, L. Zhang and L. Zhou, “Fast
distributed deep learning over RDMA,” in Proc. ACM EuroSys, 2019,
pp. 1–14.

[48] Y. Chen, R. Griffith, J. Liu, R.H. Katz and A.D. Joseph, “Understanding
TCP incast throughput collapse in datacenter networks,” in Proc. ACM
WREN, 2009, pp. 73–82.

[49] “DPDK,” https://www.dpdk.org/.
[50] G. Kumar, N. Dukkipati, K. Jang, H.M. Wassel, X. Wu and B. Montaz-

eri, “Swift: delay is simple and effective for congestion control in the
datacenter,” in Proc. ACM SIGCOMM, 2020, pp. 514–528.

[51] A. Dixit, P. Prakash, Y.C. Hu and R.R. Kompella, “On the impact of
packet spraying in data center networks,” in Proc. IEEE INFOCOM,
2013, pp. 2130–2138.

[52] P.X. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Ratnasamy and
S. Shenker, “pHost: distributed near-optimal datacenter transport over
commodity network fabric,” in Proc. ACM CoNEXT, 2015, pp. 1–12.

[53] P. Goyal, P. Shah, N.K. Sharma, M. Alizadeh and T.E. Anderson,
“Backpressure flow control,” in Proc. Workshop on Buffer Sizing, 2019,
pp. 1–3.

