
Poster : Loading Programmable Data Plane
Programs to Virtual Plane

YuXin Zhao
Tongji University

Email: zoe.yx.zhao@gmail.com

Abstract—Virtualization of the programmable data plane al-
lows multiple virtual pipelines to be placed on the same physical
programmable device, enabling more flexible network function
composition, debugging, etc. Existing proposals realize virtualiza-
tion with a hypervisor-like program to emulate users’ programs,
which becomes the mainstream of the current methods. In spite
of the progress achieved, their designs lack study of how to load
other programs on this hypervisor. In this poster, we present
HyperC, the first compiler for virtualization in programmable
data plane, which helps to build a complete virtualization system.
HyperC specially optimizes its IR, which makes the hypervisor
acquire a decreasing delay by 26.3% on average. At the same
time, we solve the placement problem of different users under
the restriction of virtual plane resources.

I. INTRODUCTION

Based on the reconfigurable match-action architecture[1],
[2],the Programmable Data Plane(PDP) enables network op-
erators to customize the behaviors of network devices which
used to be functionally fixed. With the help of domain specific
languages like P4[3],NPL[4], more and more Network Func-
tions (NFs) start to be offloaded into network devices which
has been proved that can benefit from both high performance
and spare more CPU power for user applications in servers.

However, some inherent limitations of the PDP hinder the
trend of offloading NFs into PDPs. (1) The existing PDP can
only be customized by one PDP program so it is incapable of
meeting the requirements of multi-tenancy. (2) Dynamically
reconfiguration of the device is impossible. The data plane
has to be interrupted for reloading new program. And it is
hard to maintain the consistency of network states.

Virtualization is one of the solutions to break those limita-
tions. At the moment, the mainstream and hardware-platform-
independent PDP virtualization approach is to provide a ”hy-
pervisor” program[5], [6], which can simulate other programs
through its modular abstraction of the switch pipeline. Multiple
user programs can be ”loaded” on it by translating to its inner
table entries. These entries can be injected by the control plane
and matched by packet headers at running time to choose the
target actions . Re-configuring these ”upper” user programs
actually requires only updating corresponding table entries
without interrupting the data plane.

However, existing works in this direction mainly focus
on the design of this hypervisor PDP program, but do not
study or realize the compiler required to translate and load
other user programs to the hypervisor. They manually compile

the programs used for their experiments. But, realizing this
compiler is not just need to code this manual process.

Translating and loading user PDP programs to the hyper-
visor poses the following research challenges:(1) Translating
high-level language programs into table entries of the hyper-
visor. (2) Optimizing the translated table item structures to
improve the hypervisor efficiency. (3) Placing different users’
programs reasonably according to their requirements under the
condition of limited virtual plane resources.

In this poster, we propose HyperC, which is the first work
to study the compiler for virtualization in programmable
data plane(VPDP). We use ”assignment merging” to optimize
the translated user programs, greatly reducing the actions
to be executed by the hypervisor, which improves its work
efficiency. At the same time, we mathematically model the
placement problem of different user programs into an integer
linear programming problem to make it have the optimal
solution.

II. THE WORKFLOW OF HYPERC

A. Converting AST to DAG

The workflow of HyperC is divided into three main steps.
The first is to convert the program AST into a simpler DAG
by adding a front-end phase to the PDP language compiler[7].
The node of the DAG represents a match-action unit of the
original program, and the link represents dependency between
them. Match-action units, i.e. tables, are the main components
of a PDP program. Packets header matches on these tables’
entries and do actions. The execution order and logical branch
statements determine the dependencies between them. At the
same time, the main body of the hypervisor is a series of
identical special-designed match-action units (named ”slot”).
These special match-action units enumerates all the action
primitives for simulating arbitrary user programs’ writing. We
first convert this DAG into a uniform linear sequence by using
the topological sorting algorithm. Then its node can be mapped
to a slot of the hypervisor and its inner data are translated to
the slot’s table entries. Thus, a user program can be loaded to
the virtual plane.

B. Assignment Merging

The second step is to use assignment merging to optimize
the content in the DAG node.978-1-6654-4131-5/21/$31.00 ©2021 IEEE

We observe that assignment actions account for the vast
majority in general programs and have the possibility of being
optimized for their translated forms.

According to the sample programs provided by P4 tutorial,
the average proportion of assignment actions to all actions is
53% and the average number of assignment statements in one
logical stage is 2.64 which means in many cases, one match
table will call multiple assignments. Without optimization,
these assignments have to be mapped to different slots in the
hypervisor because action primitives enumerated in each slot
are limited. The more slots are used, the lower the performance
will be, and the slots’ remaining quantity may not be enough
for the rest of the user program.

At the same time, in order to adapt to arbitrary programs,
all users’ packet headers and metadata definitions have already
mapped to a whole data bus in the hypervisor program that
the hypervisor should lookup some special tables to distinguish
them. Then just like many IO optimization methods used in
the computer system, data assigned in one logical stage does
not actually need to be partitioned for their original meaning
but can be seen as a whole block and be processed only once.

In our HyperC, we select variables operated only by one
DAG node while the operation is assignment action. Then
we construct a new variable combining their bit widths as
the variable of actual deployment. Due to the restrictions we
have imposed, this merge operation will not increase table
entries which aren’t needed originally, but simply reduce the
operations required by the hypervisor.

C. Multiple User Pipeline Placement Problem

The third step is to output the placement scheme of multiple
user programs on the hypervisor.

We model this problem as an integer linear programming
problem. At a certain moment, there are M users’ programs:
P1, P2...Pm. For users’ program i, it has nbUi match-action
units and for one of its match-action unit u, it needs ri,u
resources in the hypervisor and can be assigned to use x
resources of slot s, we denote it as xi,u,s. Our first objective is
to minimize the number of recirculations T . We define that the
hypervisor has N slots in real but infinite slots in logical that
the slots with the same result of module N belongs to the same
real slot and share the resources R . (Through recirculation,
the customer program may still lack resources, and we will say
that the hypervisor can not support deployment at this time).
Let χi denotes the max number of slot id assigned to program
i. Then our objective is : min

∑M
i=1 dχi/Ne where for any

program i : if xi,u,s > 0, χi ≥ s
When the first objective is met, we further want to min-

imize the total number of used slots to improve the perfor-
mance. This objective can be transformed as the following:
min

∑M
i=1

∑nbUi

u=1

∑χi

s=1 dxi,u,s/Re
Dependency Constraint : Like[8], we use boolean variable

DA,B to indicate whether unit B behinds A in the linear
sequence, and the start and end slot ids assigned for unit u
are denoted as Su and Eu. We have the dependency constraint
:∀DA,B > 0, EA < SB

Assignment Constraint:All users’ units must be assigned
their required resources somewhere in the hypervisor pipeline,
i.e. ∀i, u,

∑χi

s=1 xi,u,s ≥ ri,u
Capacity Constraint: For each real slot, it can not al-

locate more resources than it has, i.e. ∀n ∈ {0, 1, ..., N −
1},

∑M
i=1

∑nbUi

u=1

∑
s∈{a|a mod N=n} xi,u,s ≤ R

We can now use the integer linear programming tool to
obtain the optimal solution.

III. EVALUATION

We evaluate the performance improvement due to Assign-
ment Merging. We use a server with 2×6 Intel i5-10400F
2.90Ghz cores and 16GB memory to run the experiment. The
4 test program are the same as HyperVDP uses in their experi-
ments. Figure 1 shows that compared with HyperVDP, HyperC
helps to reduce use of slots and tables therefore a decreasing
delay by 26.3% on average is gained. More importantly, a
complete VPDP system can be built with HyperC.

Fig. 1. Comparison of table/slot usage and delay time.

REFERENCES

[1] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown,
M. Izzard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis:
Fast programmable match-action processing in hardware for sdn,”
vol. 43, no. 4, p. 99–110, Aug. 2013. [Online]. Available:
https://doi.org/10.1145/2534169.2486011

[2] S. Chole, A. Fingerhut, S. Ma, A. Sivaraman, S. Vargaftik, A. Berger,
G. Mendelson, M. Alizadeh, S.-T. Chuang, I. Keslassy, A. Orda,
and T. Edsall, “Drmt: Disaggregated programmable switching,” in
Proceedings of the Conference of the ACM Special Interest Group
on Data Communication, ser. SIGCOMM ’17. New York, NY,
USA: Association for Computing Machinery, 2017, p. 1–14. [Online].
Available: https://doi.org/10.1145/3098822.3098823

[3] The p4 language consortium. [Online]. Available: https://p4.org
[4] Npl 1.3 specification. [Online]. Available: https://github.com/nplang/NPL-

Spec
[5] D. Hancock and J. van der Merwe, “Hyper4: Using p4 to virtualize

the programmable data plane,” ser. CoNEXT ’16. New York, NY,
USA: Association for Computing Machinery, 2016, p. 35–49. [Online].
Available: https://doi.org/10.1145/2999572.2999607

[6] C. Zhang, J. Bi, Y. Zhou, and J. Wu, “Hypervdp: High-performance
virtualization of the programmable data plane,” IEEE Journal on Selected
Areas in Communications, vol. 37, no. 3, pp. 556–569, 2019.

[7] P416referencecompiler.[Online].Available : https :
//github.com/p4lang/p4c

[8] L. Jose, L. Yan, G. Varghese, and N. McKeown, “Compiling packet
programs to reconfigurable switches,” in 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 15). Oakland,
CA: USENIX Association, May 2015, pp. 103–115. [Online]. Available:
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/jose

