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Abstract—Hierarchical link sharing addresses the demand for
fine-grain traffic control at multiple levels of aggregation. At
present, packet schedulers that can support hierarchical link
sharing are not suitable for an implementation at line rates,
whereas deployed schedulers perform poorly at distributing
excess capacity to classes that need additional bandwidth. We
present HLS, a packet scheduler that ensures a hierarchical
max-min fair allocation of the link bandwidth. HLS supports
minimum rate guarantees and isolation between classes. Since
it is realized as a non-hierarchical round-robin scheduler, it is
suitable to operate at high rates. We implement HLS in the Linux
kernel and evaluate it with respect to achieved rate allocations
and overhead. We compare the results with those obtained for
CBQ and HTB, the existing scheduling algorithms in Linux for
hierarchical link sharing. We show that the overhead of HLS is
comparable to that of other classful packet schedulers.

Index Terms—Packet scheduling, link sharing, fairness, Qdisc.

I. INTRODUCTION

Packet scheduling plays a crucial role in the management
of traffic flows, for prioritizing traffic, for flexible service
differentiation, and for achieving performance metrics, such
as flow completion times, throughput, and the tail of the delay
distribution. This paper is concerned with packet scheduling
methods that support traffic control at multiple aggregation
levels. The need for such scheduling methods is largely
driven by content providers that manage traffic within and
between servers, clusters, and data centers. Increasingly, data
centers rely on fine-grain traffic control at multiple levels of
aggregation. The Google B4 inter data center network reports
no less than five levels of traffic aggregation [1], [2]. Traffic
control in support of a hierarchical distribution of available
bandwidth is referred to as hierarchical link sharing.

As an example of link sharing, consider the hierarchy shown
in Fig. 1. The top of the hierarchy, labeled as root, is a link
with a fixed rate of 1000 (units are in Mbps). This bandwidth
is to be divided between three traffic classes A, B, and C
that each receive a minimum rate guarantee, as indicated in
the figure. Traffic class A is further divided into classes A1
and A2, with guarantees of 100 and 200, respectively. Class B
splits the bandwidth between B1 and B2 in the same fashion.
Arriving packets are classified and mapped to leaf classes,
which are the classes at the bottom level of the hierarchy.
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Fig. 1. Link sharing hierarchy.

Clearly, if the aggregate traffic from all leaf classes does
not exceed the link capacity, every leaf class can obtain a
rate equal to its arrival rate. Likewise, if the arrival rate of
every leaf class exceeds its guaranteed rate, then each leaf
class is limited to its guaranteed rate. The bandwidth allocation
becomes less trivial when the aggregate arrival rate from all
classes is larger than the link capacity, and some classes
exceed their guaranteed rates, while others stay well below
their guarantees. In this case, excess capacity left unused by
some classes must be distributed equitably to classes that
desire additional bandwidth.

Several packet scheduling algorithms that support class hi-
erarchies with rate guarantees as shown in Fig. 1 are available,
however, deployed or deployable algorithms show significant
shortfalls while algorithms without such shortfalls are too
complex to be deployable. This paper addresses this dichotomy
by presenting a packet scheduler with provable link sharing
properties and low computational complexity.

For a non-hierarchical setting, a bit-by-bit round-robin al-
gorithm provides link sharing that satisfies a weighted version
of max-min fairness [3]. However, bit-by-bit round robin
assumes fluid flow traffic and is not implementable as a packet
scheduler. Weighted-Fair-Queueing (WFQ) [4] has shown to
have a strictly bounded deviation from the ideal bit-by-bit
round robin [5]. The drawback of WFQ, which extends to
some of its approximations [6], [7], is that it requires to
maintain a priority queue that transmits packets in the order of
assigned timestamps. This involves an O(logN) computation
for each packet, where N is the number of backlogged packets.
Deficit-Round-Robin (DRR) [8] is a packet-level round-robin
scheduler for variable-sized packets, whose link sharing ability
is inferior to WFQ, but with a simpler implementation with a978-1-6654-4131-5/21/$31.00 ©2021 IEEE



constant overhead for each packet. Due to the low complexity,
Linux [9] and line-rate switches [10] generally realize link
sharing with a round-robin scheduler, such as DRR.

For class hierarchies as in Fig. 1, Hierarchical Packet Fair
Queueing (HPFQ) [11] achieves link sharing by employing a
cascade of hierarchically organized WFQ schedulers. Packets
at the head of the queue of backlogged leaf classes engage in a
virtual tournament, with one round of the tournament for each
level of the class hierarchy. The tournament starts at the bottom
of the hierarchy. In each round, the packet with the smallest
timestamp at one level proceeds to the next level. The winner
of the tournament is selected for transmission. While HPFQ
achieves almost ideal link sharing, it involves a considerable
overhead and has not been considered for deployment.1

Attempts to extend DRR to a class hierarchy have so far not
resulted in practical scheduling algorithms. In [13], the class
hierarchy is mapped to a flat hierarchy by interleaving classes
according to their guarantees. This results in good fairness
properties, but rounds grow prohibitively large which may
result in excessive delays between packet transmissions for
some classes. Other efforts in this direction, e.g., [14], [15]
make scheduling decisions in multiple stages, one per level in
the class hierarchy, and thus inherit the drawbacks of HPFQ.

Class-based queuing (CBQ) [16] and Hierarchical Token
Bucket (HTB) [17] are two packet schedulers for link sharing
in class hierarchies that are actually deployed, even if the
deployment is limited to Linux systems. CBQ provides mini-
mum bandwidth guarantees to traffic classes and distributes
excess capacity to backlogged classes. CBQ measures the
transmission rate of each class to identify traffic classes that
are allowed to transmit, which are then served by a variant
of DRR. HTB tries to improve the efficiency of CBQ by
metering the transmission rates of classes with token bucket
filters. Classes that exceed their rate guarantee can ‘borrow’
bandwidth from classes further up in the class hierarchy. HTB
schedules packets with a set of DRR schedulers, where only
one DRR scheduler is active at a time. In addition to link
sharing, HTB also enforces rate limits. HTB has become
the primary tool for scheduling and shaping of hierarchically
structured traffic flows in Linux servers [18]–[20].

CBQ and HTB implement rules that dictate when a class
with need for additional bandwidth can transmit, however, with
the rules it is not possible to determine (a priori) the allocated
rates for a given traffic load. In contrast, the outcomes of
schedulers such as HPFQ and hierarchical extensions of DRR
schedulers satisfy a hierarchical version of max-min fairness,
which ensures class guarantees as well as isolation between
classes in the hierarchy.

Realizing hierarchical link sharing with round-robin sched-
ulers is attractive, since it does not involve packet timestamps
and priority queues, but has shown to be challenging. Ex-
tensions of DRR to class hierarchies has so far not resulted
in a practical scheduling algorithm. On the other hand, CBQ

1The claim in [12] of realizing HPFQ by a hierarchy of PIFO queues is
incorrect, as counterexamples are easily constructed when packet sizes are
variable and class guarantees are not uniform.

and HTB systematically fail to isolate rate guarantees between
classes in different branches of the class hierarchy. In partic-
ular, they allow classes to manipulate the rate allocation by
reassigning rate guarantees in a subtree of the class hierarchy
(see Subsec. V-C). Until now, there does not exist a round-
robin packet scheduler for class hierarchies that can satisfy
rate guarantees while isolating the allocations in different parts
of the class hierarchy.

In this paper, we present Hierarchical Link Sharing (HLS),
the first round-robin scheduler for hierarchical link sharing
that ensures rate guarantees and isolation between classes, and
that can run at high line rates. The rate allocation achieved by
HLS satisfies a hierarchical version of max-min fairness. This
allocation is strategy-proof, as defined in [21], in the sense
that classes cannot improve their allocation through wrongful
representation of their demand or the demand of their sub-
classes. HLS is a non-hierarchical variant of DRR with a time-
variable quantum for each class. We have implemented HLS as
a Linux kernel module [22]. We present experiments showing
that HLS ensures rate guarantees for and isolation between
classes, with an overhead that is comparable to other classful
schedulers in the Linux kernel.

II. HIERARCHICAL MAX-MIN FAIRNESS

In a non-hierarchical setting, link sharing between classes
can be achieved by fair queueing algorithms that approx-
imate bit-by-bit round robin, resulting in a max-min fair
rate allocation. Hierarchical max-min fairness results when
(weighted) bit-by-bit round-robin approximations are applied
to each group of siblings in the class hierarchy. Expressions
that quantify the solution of this allocation exist for a non-
hierarchical setting, but are not available for class hierarchies.
In the following we quantify both the non-hierarchical and
hierarchical notions of max-min fairness.

A. Terminology

We first introduce terminology needed to describe the rela-
tionships between classes in a class hierarchy. Fig. 2 depicts a
class hierarchy as a rooted tree, where each node represents a
class. The class at the top of the hierarchy, referred to as root,
represents a network interface where the scheduling algorithm
is active. Leaf nodes in the rooted tree represent leaf classes,
which are shown as gray circles. All traffic arrivals are mapped
to leaf classes. Nodes that are neither the root nor a leaf node
represent internal classes. If N is the set of all classes, we
denote by L and I, respectively, the leaf classes and internal
classes, with N = L ∪ I ∪ {root}.

For class i in the figure, the incoming edge connects to
its parent class p(i), and the outgoing edges connect to its
child classes child(i). Other needed terms such as ances-
tors (anc(i)), siblings (sib(i)), descendants (desc(i)), and leaf
descendants (ldesc(i)) are indicated by dashed boxes in Fig. 2.

In a class hierarchy, each class is associated with a weight
or with a rate guarantee. A rate guarantee gi of class i ∈
I ∪ {root} must satisfy the superadditive property gi ≥∑

j∈child(i) gj , with groot = C. An alternative specification
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Fig. 2. Subsets in a link sharing hierarchy relative to class i.

of link sharing is based on weights, where wi > 0 denotes
the weight of class i. If three sibling classes 1, 2, and 3
have weights w1, w2, w3, and all siblings are backlogged, the
weights indicate that they will split the capacity made available
to them as a group in the ratio w1 : w2 : w3. Working with
weights is often more convenient, since it allows to express
link sharing as dividing available bandwidth locally between
siblings. In contrast, rate guarantees appear as global quantities
with constraints across all classes. We note that both concepts
are equivalent, since guarantees can be viewed as weights, that
is wi = gi for each class i. Likewise, given the link capacity C
and weights wi, a rate guarantee of gi can be computed from

gi = C ·
∏

j∈anc(i)∪{i}
j 6=root

wj∑
k∈sib(j) wk

.

In the following we will work with weights. By ensuring that
wi ≥

∑
j∈child(i) wj for each class i, we can use ‘weight’ and

‘rate guarantee’ interchangeably.

B. Max-min fair allocation

We formulate rate allocations for traffic classes with fixed-
rate traffic at a link with fixed capacity C. We define

ri Rate request of class i,
ai Rate allocation to class i (ai ≤ ri),
wi Weight associated with class i.

Rate requests are not made explicitly, but are determined
by traffic arrivals from a class at the link and the resulting
backlog. In a max-min fair allocation without weights, if a
class is allocated less than it requests, it receives at least as
much as any other class. As a consequence, two classes that
do not satisfy their demand have the same allocation. Also,

if the total demand exceeds the capacity then the entire link
capacity is allocated. When specifying a weight wi for each
class i, the weighted max-min fair allocation is defined by the
following rules:

(R1) If ai < ri, then
ai
wi
≥ aj
wj

for each class j ∈ N .

(R2)
∑

j∈N aj = min
(∑

j∈N rj , C
)
.

Rule (R1) states that, if a class is not allocated its entire
request, then its allocation in proportion to its weight is as
least as large as the (also proportional) allocation of any other
class. The second rule simply ensures that either all requests
are satisfied or all resources are allocated.

A weighted max-min fair allocation creates a set S of
satisfied classes, which receive their entire request (ai = ri).
and a set N \S of unsatisfied classes with ai < ri. Rule (R1)
implies that ai

wi
=

aj

wj
for any two unsatisfied classes. The

allocation is strategy-proof since an unsatisfied class cannot
increase its allocation by increasing or misrepresenting its
request.

If there is at least one unsatisfied class i, we define the fair
share f as

f =
ai
wi

,

which results in the allocation aj = min{rj , wjf}.
Supposing that there exist unsatisfied classes, rule (R2)

yields an expression for the fair share given by

f =
C −

∑
j∈S rj∑

j /∈S wj
. (1)

The fair share is uniquely defined, as long as S 6= ∅. Even
though the expression for f is implicit, that is, f is defined in
terms of S , and S is defined in terms of f , the fair share can
be algorithmically computed by a water filling algorithm.

C. Hierarchical max-min fair allocation

Next consider a class hierarchy as given in Fig. 2. The
requests and allocations of internal classes and the root consist
of the total requests and allocations, respectively, of their child
classes. That is, for each i ∈ I ∪ {root},

ri =
∑

j∈child(i)

rj , ai =
∑

j∈child(i)

aj . (2)

With this notation, we can specify a max-min fair allocation
for class hierarchies.

A hierarchical weighted max-min fair (HMM fair) alloca-
tion is defined by these two rules that hold for each i ∈ L∪I.

(R1) If ai < ri, then
ai
wi
≥ aj
wj

for all j ∈ sib(i).

(R2)
∑
j∈L

aj = min
(∑
j∈L

rj , C
)
.

The rules are analogous to those for max-min fairness without
a hierarchy. In essence, each parent allocates the capacity
available to it to its child classes using the max-min fairness
principle. According to (R1), if a class cannot satisfy its
request, then its allocation relative to its weight is at least
as large as the allocation of any of its siblings relative to the



weight of that sibling. The second rule makes sure that all
available capacity is utilized. The allocation is strategy-proof
for each group of siblings since it satisfies max-min fairness
from Sec. II-B, and, therefore, is strategy-proof for the entire
hierarchy. No class can obtain a larger allocation by increasing
or misrepresenting its request.

If the rules for hierarchical max-min fairness are straight-
forward, the computation of the actual rate allocations is much
less so. The reason is that the capacity available at an internal
class depends on the requests of leaf classes in all branches
of the hierarchy. In fact, to the best of our knowledge, an
algorithm to compute an HMM rate allocation does not exist in
the literature. The keys to such an algorithm are the following
two observations, that can be obtained from (2) and rule (R2):

(O1) If ai < ri, then aj < rj for all j ∈ anc(i),
(O2) If ai = ri, then aj = rj for all j ∈ desc(i).
To make observation (O1), note that a class that receives a
smaller rate than it requests will try to get more capacity from
its parent, which, in turn, will seek to acquire capacity from its
own parent, and so forth. Hence, if the request of a class is not
satisfied, the resources of all its ancestors will be exhausted,
leaving them unsatisfied as well. Observation (O2) follows
since requests and allocations of an internal class consist of
the aggregated requests and allocations of their child classes.

With this, we can present the results of an HMM allocation
as specified by the following theorem. We provide a proof
in [23].

Theorem 1. Given a link with capacity C, and a class
hierarchy where each class i has a request rate ri and a weight
wi > 0. Define aroot = min{rroot, C}.
Then, the HMM fair allocation for each class i ∈ I ∪ L is

ai =

{
min

(
ri, wifp(i)

)
, if rp(i) > ap(i) ,

ri , otherwise ,

where the fair share fk for each k ∈ I ∪ {root} is

fk =
ak −

∑
j∈Sk rj∑

j /∈Sk wj
, (3)

and where Sk is defined as

Sk = {j ∈ child(k) | rj < wjfk} .

The theorem lends itself to the development of an algorithm
for computing the fair shares in (3), which is given in
Algorithm 1. The algorithm starts at the top of the hierarchy
and computes the fair share of the root. Then it proceeds to
compute the fair share of children of the root and continues
to traverse the class hierarchy in a top-down fashion (in no
particular order) until a leaf class is reached. The function
MaxMinFair computes the fair share from (1) for a set N
of classes with requests and weights ri, wi ≥ 0 for each
class i ∈ N , and a link capacity C. (MaxMinFair returns a fair
share of infinity if

∑
j∈N ri ≤ C, which yields the correct

allocation ai = ri for this case.) Algorithm 1 invokes this
function for each set of siblings in the class hierarchy.

Algorithm 1: Computing fair shares for HMM fairness.
Input: Link capacity C, a set of N of classes with

ri, wi ≥ 0 for each class i ∈ N , and a class
hierarchy M supporting the operations in Fig. 2.

Output: Fair shares {fi}i∈I∪root from (3).
Function HMaxMinFair(N , M , {ri}i∈N , {wi}i∈N , C):

foreach i ∈ I ∪ {root} do
ri ←

∑
j∈ldesc(i) rj

L← {root}
aroot ← min(rroot, C)
do

i← Select an element from set L
L← L \ {i}
if i /∈ L then

fi ← MaxMinFair
(
child(i), {rj}j∈child(i),
{wj}j∈child(i), ai

)
foreach j ∈ child(i) do

aj ← min(rj , wjfi)
L← L ∪ {j}

while L 6= ∅
return {fi}i∈I∪{root}

III. THE HLS SCHEDULER

We next present the Hierarchical Link Sharing (HLS) sched-
uler which allocates rates according to the principle of HMM
fairness. We have implemented HLS as a Qdisc in the Linux
kernel [22].

The design of HLS departs from that of HTB and CBQ,
which both track the transmission rates of classes using
moving averages in CBQ and token buckets in HTB. If
a class requires additional bandwidth, both HTB and CBQ
allow the class to borrow bandwidth from other classes in a
greedy fashion. (HTB and CBQ descriptions prefer the term
‘borrow,’ but the bandwidth so acquired is never returned.)
In contrast, HLS does not measure the transmission rates of
classes. Instead it gives transmission quotas to classes such that
HMM fairness is satisfied. Minimum rate guarantees follow as
a consequence of achieving HMM fairness.

In HLS, each class i is associated with an integer weight
wi > 0, which can be set to the rate guarantee of the class (see
Sec. II-A).

At its core, HLS is a non-hierarchical DRR scheduler with
a time-variable quantum for each class, which we refer to as
quota. Each round of the round robin visits each class that is
designated as active, one by one, in an arbitrary order. A leaf
class is active if it is backlogged at the start of a round. An
internal class is active if at least one of its child classes is
active. We distinguish two kinds of rounds, main rounds and
surplus rounds, where each main round may be followed by
one or more surplus rounds. The quota of a class is recomputed
and assigned during a visit in a main round. If at the end
of a main round some classes have unused quota, a surplus
round is started, where the unused quotas are distributed to



active classes. An additional surplus round is started if after
the completion of a surplus round there is still unused quota
left.

Each active leaf class is visited once per round (main or
surplus). The determination of the set of active classes is
done at the start of a round. If a class becomes idle during
a round, it remains idle until the end of that round, even if
there is an arrival to that class in the middle of the round. We
use Lac and Iac, respectively, to denote the set of active leaf
and internal classes in a round.

Each class i maintains a balance, denoted by Bi, which
maintains the number of bytes that the class is allowed to
transmit (if i ∈ L) or that its leaf descendants are allowed to
transmit (if i ∈ I) in the current round. The initial setting is

Bi =

{
Q∗ , if i = root ,

0 , otherwise ,

where Q∗ > 0 denotes the total number of bytes from all
classes that can be transmitted in a round. In Section IV, we
address how to select Q∗. In a main round, the root distributes
its balance across its child classes, who, in turn, distribute
their balance to their own child classes, and so forth. The root
and active internal classes also maintain a residual, denoted
by Ri (i ∈ Iac ∪ {root}), which contains permits for the
transmission of bytes that were collected from descendants in
the previous round, with initial setting Ri = 0.

In each round, all active internal classes recompute the
number of bytes that a child class with weight set to one can
transmit in the round, which is referred to as the fair quota
and denoted by Fi for class i. For a class i ∈ Iac ∪ {root},
the fair quota is defined as

Fi =

⌊
Bi

wac
i

⌋
, (4)

where
wac

i =
∑

k∈child(i)∩(Lac∪Iac)

wk

denotes the sum of the weights of the active child classes
of class i. The rounding by the floor function avoids floating
point operations in the Linux kernel. The root class recomputes
Froot only in a main round and sets Froot = 0 in all surplus
rounds.

Before computing the fair quota, each class i ∈ Iac∪{root}
updates its balance and residual. For the root class the update
is

Broot = Broot +Rroot , Rroot = 0 , (5)

that is, the residual is added to the balance and then reset. For
an active internal class, the update is

Bi = Bi +Ri + wiFp(i) , Bp(i) = Bp(i) − wiFp(i) , Ri = 0 .
(6)

Here, the balance of class i is increased by wiFp(i), and the
balance of the parent p(i) is reduced by the same amount. We
refer to wiFp(i) as the quota of class i. Also, the residual Ri

3. Request Froot

2. Request Fgp(i)

1. Request Fp(i)

7. Update Bi

root

i

p(i)

gp(i)

4. Update Broot, Froot

5. Update Bgp(i), Fgp(i)

6. Update Bp(i), Fp(i)

Fgp(i)

Fp(i)

Froot

Fig. 3. Updating fair quotas and balances.

is added to the balance and then reset. Since the quota of an
internal class depends on the fair quota of the parent class, the
update of balances and computations of the quota is performed
in a top down fashion. Without the rounding in (4), every
internal class would have a zero balance after the update. With
rounding, the remaining balance of a class i ∈ Iac ∪ {root}
after the update of all its active child classes is bounded by
Bi < wac

i . Note that the unit of wac
i is in bytes, since it is the

remainder of the integer division in (4).
Before an active leaf class i ∈ Lac transmits in a round, it

performs the update

Bi = Bi + wiFp(i) , Bp(i) = Bp(i) − wiFp(i) . (7)

In the HLS Qdisc implementation, the update of balances
in (5)–(7) and the computation of fair quotas in (4) is initiated
by the leaf classes, which is illustrated in Fig. 3. In the figure,
node i represents an active leaf class. When this class is visited
in the current round it requests the fair quota Fp(i) from its
parent. If the parent has not previously computed its quota in
the current round, it sends a request for the fair quota Fgp(i) to
its own parent gp(i) (we use gp(i) to denote the grandparent of
class i), and so forth. If the root is reached and the scheduler is
in a main round, the balance Broot and the fair quota Froot is
computed, and then Froot is passed to gp(i). In a surplus round
the root returns Froot = 0. Next, the internal classes gp(i)
and p(i) use the fair quotas from their respective parent to
update their balances and compute their own fair quotas. In
the last step, leaf class i updates its own balance. When the
requests (steps 1–3 in Fig. 3) reach a class that already has
computed its quota in the current round, no further upstream
requests are made. In this fashion, each class i ∈ I ∪ {root}
updates its quota only once and updates its balance at most
1 + |child(i)| times per round.

When an active leaf class i is visited by the round robin,
it updates its balance Bi according to (7) before transmitting
packets. If the packet at the head of the queue has length L
and Bi ≥ L, the packet is transmitted, followed by the update

Bi = Bi − L , Broot = Broot + L . (8)

By increasing Broot for each transmitted packet, the root
accrues a balance that will be distributed in the next main
round. Class i can continue transmitting packets as long as it
has a sufficient balance. If the packet at the head of the queue



has size L and Bi < L, the scheduler turns to the next class
in the round robin. If a leaf class i is served and has no more
packets to transmit, it becomes idle and returns its remaining
balance to its parent. Say, class i becomes idle with a balance
of Bi. Then it performs the update

Rp(i) = Rp(i) +Bi , Bi = 0 . (9)

If a leaf class that has become idle during a visit of the round
robin has returned its balance to its parent, and the parent has
no other active child classes then the parent becomes idle, and
performs itself the steps in (9).

Now we see the role of the residual. The residual Ri of
an internal class i or the root collects the returned balances
from child classes that became idle in the current round. The
rationale for not adding the returned balance of an idle child
class immediately to the balance of the parent is to prevent the
returned balance from being used in the current round. Doing
so would favor leaf classes that are visited later in the round
robin. By adding the residual to the balance only at the start
of a new round, we ensure that all descendants can obtain a
portion of the unused balance.

HLS starts a new main round only if the sum of all
quotas that has been distributed to classes has been used for
transmissions. Note that a class does not use up its full quota
only if it became idle in the current round. This results in the
unused balance (‘surplus’) being added to the residual of the
parent class. If this happens, the residuals accrued in a round
will be distributed to descendant classes in subsequent surplus
rounds. The condition to start a surplus round is that at least
one internal class i satisfies Bi + Ri ≥ wac

i , meaning that
the class computes a nonzero quota in (4) using its balance
and residual. A surplus round operates just like a main round.
First, all backlogged classes are marked as active followed by
a complete round robin of active classes with the updates from
(4)–(9). The only difference to a main round is that Froot is
set to zero, meaning that no new quota is distributed from the
root. If, at the end of a surplus round, there still exists an
internal class j with Bj + Rj ≥ wac

j another surplus round
is started. This continues, until no internal class satisfies the
condition, in which case a new main round is started.

With the updates of the balance counters in (5)–(9), the sum
of balances and residuals of all classes satisfies the invariance

∑
i∈N

Bi +
∑

i∈I∪{root}

Ri ≡ Q∗ .

Since balances are permits for transmission and the residuals
are unused permits for transmission, maintaining the invari-
ance ensures that the maximum amount of traffic transmitted
in a round does not drift.

IV. ANALYSIS

In this section we derive a sufficient condition for a lower
bound on Q∗, which is the maximum number of bytes that
can be transmitted in a round. We also investigate how well
HLS approximates a hierarchical bit-by-bit round robin. In this

section, we use Lmax
i to denote the maximum packet size of

class i ∈ L.

A. Selection of Q∗

Since Q∗ determines the duration of a round, it should
not be selected too large, otherwise, the scheduler reacts too
slowly to changes of the set of active leaf classes. At the same
time, if Q∗ is selected too small, the quotas that are passed
down to leaf classes may not allow the transmission of any
packet. If this happens, the scheduler is looping indefinitely
through main rounds without any transmission. The following
theorem, which is proven in the appendix, presents a lower
bound on Q∗.

Theorem 2. Setting

Q∗ =
∑

i∈L∪I
wi +

∑
i∈Lac

Lmax
i

ensures that at least one packet can be transmitted in each
main round.

Note that the first term is constant and that the second term
depends on the set of active leaf classes.

We take advantage of the theorem in the Linux Qdisc imple-
mentation, where we adjust Q∗ dynamically to the set of active
leaf classes at the start of each round, using the residual Rroot.
When a class i becomes active we set Rroot = Rroot +Lmax

i ,
where Lmax

i is set to the MTU of 1500 bytes. When a class i
becomes idle, we set Rroot = Rroot−Lmax

i , which may result
in Rroot < 0 and, after the update in (5), in Broot < 0. In this
case, we set the fair quota of the root to Froot = 0 for the
next round.

B. Fairness Analysis

To evaluate how well HLS realizes an HMM fair allocation
for time-variable traffic, we use a fairness metric that measures
the deviation from the allocation of an ideal hierarchical bit-
by-bit round-robin scheduler. The fairness metric is defined as
follows.

Definition 1. A scheduling algorithm is HMM(α) fair if, for
any two sibling classes i and j that are backlogged in an
arbitrary time interval [t1, t2], it holds that∣∣∣∣Di(t1, t2)

wi
− Dj(t1, t2)

wj

∣∣∣∣ ≤ α,
where Di(t1, t2) is the number of bytes that class i or its leaf
descendants transmit in the interval [t1, t2].

The left-hand side of the equation is the weighted difference
between the number of bytes that two classes i and j transmit.
Since the difference is zero in an ideal (fluid flow) scheduler,
the bound α expresses how far a particular scheduling algo-
rithm deviates from an ideal link sharing scheduler.



The next theorem provides the HMM fairness metric of
HLS. The proof is provided in our technical report [23]. The
theorem requires the following definitions:

Ãi =

{
Lmax
i − 1, i ∈ L,∑
j∈desc(i) wj +

∑
j∈ldesc(i) L

max
j , i ∈ I ,

Āi = Ãrc(i) + wrc(i)

(
1 + max

j∈child(root)

Ãj

wj

)
, (i ∈ I ∪ L) ,

with rc(i) denoting the ancestor of class i that is a child class
of root, given by

rc(i) =

{
i, i ∈ child(root),

rc(p(i)), otherwise,

With this notation, the fairness bound of HLS is given as
follows.

Theorem 3. HLS is HMM(α(HLS))-fair with

α(HLS) = max
i∈N ,j∈sib(i)

{
Āi

wi

+
Āj

wj

}
.

Let us compare the fairness bounds of HLS and with the
bound derived for HDRR in [13], denoted by α(HDRR) for
the hierarchy in Fig. 1, where we set the weight of a class to
its rate guarantee and set the maximum packet size of each
leaf class i to Lmax

i = 1500 bytes. For HDRR, we also set its
quantum Q to the maximum packet size of 1500 bytes. We
obtain

α(HLS) = 103.5 bytes , α(HDRR) = 1522.5 bytes .

Here, HLS clearly has a better fairness metric. In general, due
to the very different operations of HLS and HDRR, it is not
feasible to show that HLS always has a better fairness metric.
In fact, for deep hierarchies, the fairness metric of HDRR can
be better than that of HLS.

In our technical report [23] we also analyze and compare
a second performance metric, referred to as transmission gap,
which bounds the elapsed time between two visits of the same
class and the time until a newly backlogged class receives
service in a round-robin scheduler.

V. EVALUATION

We have implemented HLS as a kernel module in Linux
kernel 4.15.0-101-generic [22]. A description of the imple-
mentation is available in [24]. Here we present measurement
experiments of the HLS Qdisc in Linux and compare them
with measurements of the existing link sharing schedulers
in Linux, CBQ, and HTB. Other fair scheduling methods
available in Linux, such as DRR, Fair Queueing (FQ), and
Stochastic Fair Queueing (SFQ) are not considered in our
experiments since they do not apply to class hierarchies.
All experiments are conducted on the Emulab testbed at the
University of Utah [25].

A. Experimental Setup

The topology of the experiments involves three Linux
servers as shown in Fig. 4, designated as traffic generator,
scheduler, and traffic sink. Each server is a Dell PowerEdge
R430 with two 2.4 GHz 8-Core CPUs, 64 GB RAM, a dual-
port/quad-port 1GbE PCI-Express NICs, and a dual-port/quad-
port Intel X710 10GbE PCI-Express NICs. The servers run
Ubuntu 18.04LTS. The traffic generator and the scheduler are
connected by a 10 Gbps Ethernet link, and the scheduler and
the traffic sink are connected by a 1 Gbps Ethernet link.
Routing tables of all servers are set up statically so that all
traffic is routed from the traffic generator to the traffic sink.
The link sharing schedulers are configured at the egress of the
1 Gbps interface at the scheduler node. The traffic generator
uses FIFO scheduling. With this setup we can saturate the
outgoing link at the scheduler without overloading its CPUs.

In the first two experiments, the traffic generator sends
UDP/IPv4 datagrams with a length of 1000 bytes, where des-
tination port numbers are mapped to classes at the scheduler
node. Our graphs plot the transmission rates of traffic classes
using jumping windows with length 0.2 s. The rate at which
the traffic generator sends packets is such that it ensures that
each active leaf class is permanently backlogged at the egress
of the scheduler node. The design of the experiments is similar
to experiments in [11], [16], [17], [26] or, more recently, in
[27]. By turning traffic sources and and off, the experiments
show how quickly a scheduler reacts to changes of the traffic
load as well as the resulting rate allocations.

B. Experiment 1: Validation of HMM fairness

In this experiment, which is a scaled version of an exper-
iment in [16], [26], we show that HLS quickly converges to
an HMM fair allocation when the set of active flows changes.
The class hierarchy of the experiment is as shown in Fig. 1
for a 1 Gbps link, but with the following rate guarantees:

Class: A B A1 A2 B1 B2
Rate guarantee: 700 300 300 400 100 200

In the experiment, all leaf classes are initially active and
transmit packets with a fixed packet size of 1000 bytes. At
certain time intervals, one class becomes idle, in the following
sequence:

Interval (in seconds): [4, 7] [11, 14] [19, 22]
Inactive class: B1 A1 A2

The throughput of the classes is shown in Fig. 5. The plot
for each class is labeled. Dashed gray lines show the aggregate
traffic of the internal classes A and B. The dashed line with
label ‘Total’ indicates the aggregate traffic from all classes,
which is at or close to the link capacity of 1 Gbps.

Fig. 5(a) shows the HMM fair allocations from Theorem 1.
The measured rates for HLS in Fig. 5(b) show that HLS
satisfies HMM fairness for all classes at all times. When all
leaf classes are active, they each obtain their class guarantees.
If one class drops out, the sibling class consumes the guarantee
of its sibling.
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Fig. 5. Experiment 1: HMM fairness.

C. Experiment 2: Isolating class guarantees

This experiment illustrate the need for isolating class guar-
antees, and the inability of the existing link sharing schedulers
CBQ and HTB to realize isolation between classes. The
experiment uses the class hierarchy from Fig. 1 (in Sec. I).
In addition to the guarantees shown in the figure, we vary
the guarantees of classes A1, A2, B1, B2 to evaluate three
scenarios, labeled as ‘L’, ‘M’, ‘H’, which stands for low,
medium, and high differences between the guarantees. The
guarantees in the scenarios (in Mbps) are as follows:

Class: A1 A2 B1 B2 A B C
Low ‘L’ 140 160 140 160 300 300 400
Medium ‘M’ 100 200 100 200 300 300 400
High ‘H’ 60 240 60 240 300 300 400

The ‘M’ scenario corresponds to the guarantees shown in
Fig. 1. The guarantees of classes A, B, and C are the same
in all three scenarios, and are as shown in Fig. 1.

In the experiment, three leaf classes (A1, B2, C) gen-
erate traffic. In the middle of the experiment, in the in-
terval [10, 20] s, class C pauses transmissions. Since leaf
classes A1 and B2 compete with each other at the level of
their respective parent classes A and B, their allocation should
be determined by the guarantees of the parents. If this is
the case, A1 and B2 receive the same allocation in all three
scenarios.

Fig. 6(a)–6(c) show the measured throughput of the HLS
Qdisc. In all three scenarios, the throughput of active classes
corresponds to the HMM fair allocation. When all three
classes are active (in [0, 10] s and [20, 25] s) they split the
allocation in the ratio 3 : 3 : 4, according to the guarantees
of classes A,B,C. When class C drops out, A1 and B2 split
the capacity evenly, since A and B have the same guarantee.

The second row of graphs in Fig. 6 presents measurements
of the HTB Qdisc. First note that, for all scenarios the
minimum rate guarantees of internal and leaf classes are
maintained at all times. When all three classes are active, they
have the same allocation as HLS. However, when class C
drops out, classes A1 and B2 do not split the freed up link

capacity evenly. Instead, the throughput appears to depend on
the guarantees of the active leaf classes A1 and B2. As seen in
Figs. 6(e) and 6(f), by increasing the guarantee of class B2 and
decreasing that of A1, the allocation becomes more lopsided.

The throughput in the scenarios under CBQ, depicted in the
last row of graphs in Fig. 6, shows that CBQ allocates rates
in a similar fashion as HTB. That is, sharing of bandwidth at
the level of internal classes does not respect the guarantees of
the internal classes. As with HTB, the allocation appears to
be again determined by the guarantees of the leaf classes.

The observed link sharing of CBQ and HTB indicates a lack
of isolation between classes in the hierarchy. Here, class B
can manipulate its allocation by bundling its traffic in a single
descendant class, at the cost of class A. The HMM fair
allocation of HLS does not allow this to happen.

D. Experiment 3: Overhead

We next measure the processing overhead of HLS and
compare it to that of CBQ and HTB. Since all schedulers
are implemented as Linux Qdiscs, they share the performance
limitations of the Qdisc framework, in particular, the single
Qdisc lock. In order to move the bottleneck of the experimental
setup to per-packet processing, we replace the 1 Gbps link in
Fig. 4 between the scheduler and the traffic sink by a 10 Gbps
link, and we send small packets. We verified that the servers
that run the traffic generator and traffic sink are not bottlenecks
in the experiment.

The experiment uses NetPerf TCP-RR [28], similar to an
experiment in [19, Fig. 6]. TCP senders and receivers send
1-byte packets in each direction in a ping-pong fashion. One
round of the ping-pong is called a transaction. The traffic from
each TCP sender is mapped to a separate leaf class at the
scheduler node (in Fig. 4). The performance metric is the total
number of completed transactions per second.

We consider two class hierarchies: a full binary tree and a
flat hierarchy. In a binary tree, with N leaf classes, the total
number of classes, including the root, is 2N − 1. In the flat
hierarchy, the root class has N children which are all leaf
classes. For HLS we set the weight of every class to one in
both scenarios. For HTB and CBQ, the rate guarantees are
divided evenly between the leaf classes. In addition to the
hierarchical scheduling algorithms HLS, HTB, and CBQ, we
also include measurements with FIFO scheduling. Since FIFO
is a classless scheduler, outcomes are not sensitive to the class
hierarchy.

Fig. 7(a) shows the transactions per second as a function of
the number of leaf classes for the binary tree hierarchy. All
schedulers show roughly the same performance. The number
of transactions initially increases linearly with the leaf classes
and saturates at around 300K transactions (100K = 105). Since
HTB limits the number of levels in the class hierarchy, the
binary tree hierarchy cannot be increased beyond 128 leaf
classes. The fact that FIFO sometimes has worse results than
the hierarchical schedulers indicates the degree of randomness
in experiments that involve a large number of TCP flows.
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(a) HLS Low (‘L’) scenario.
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(b) HLS Middle (‘M’) scenario.
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(c) HLS High (‘H’) scenario.
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(d) HTB Low (‘L’) scenario.
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(e) HTB Middle (‘M’) scenario.
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(f) HTB High (‘H’) scenario.
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(g) CBQ Low (‘L’) scenario.
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(h) CBQ Medium (‘M’) scenario.
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(i) CBQ High (‘H’) scenario.

Fig. 6. Experiment 2: HLS is HMM fair. With HTB and CBQ, class B can increase its allocation by bundling its guarantee and traffic in one child class.

Fig. 7(b) depicts the results for the flat hierarchy. Here,
the number of transactions initially increases and plateaus at
around 300K transactions, similar to the binary tree scenario.
After around 256 leaf classes, however, the performance of
the classful schedulers declines. A comparison with FIFO
points to a performance bottleneck that arises during packet
classification, which impacts all classful schedulers in the same
way. The classification compares the packet destination port
to the port associated to each leaf class, and the number of
comparisons grows linearly with the number of leaf classes.

The experiment leads us to conclude that the HLS Qdisc
does not incur a performance penalty, compared to HTB and
CBQ. In fact, since the schedulers perform similarly to FIFO,
none of the hierarchical schedulers presents a bottleneck.

We emphasize that the outcome of this experiment is
sensitive to the configuration of filters that map packets to
traffic classes. In Fig. 7, the mapping of packets to classes
is done progressively. Each internal node in the hierarchy

has (two) filter expressions for mapping traffic to its child
classes. Alternatively, the mapping can be performed at the
root Qdisc for all leaf classes. If this is done, the results show
a precipitous drop of completed transactions when the number
of leaf classes exceeds 100.

VI. RELATED WORK

There are several reasons for the recent surge of interest
in shaping and scheduling algorithms. First, the increased
flexibility of recent programmable packet switches has en-
abled customization of scheduling algorithms to application
requirements [12], [29], [30]. Second, the Ultra-Reliable Low-
Latency Communication service category in 5G networks,
which guarantees latencies below 1 ms has led to standard-
ization efforts by the IEEE (for Layer-2) and by the IETF (for
Layer-3) for compatible protocol frameworks [31] and traffic
control algorithms [32]. Third, an increased demand for fine-
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Fig. 7. Experiment 3. Overhead.

grain control of traffic in data centers has created a need for
advanced packet scheduling methods at servers [1], [2].

These efforts benefit from an intense period of research in
the 1990s that created many of the scheduling and shaping
algorithms in use today [4], [8], [16], [33]. Recent research
on packet scheduling has put emphasis on generality, e.g.,
PIFO [12], UPS [34], and efficient implementations, for ex-
ample, Carousel [19], Eiffel [20], Loom [27], CQ [35].

Most relevant to our paper is the claim in [12] of realizing
HPFQ by a hierarchy of PIFO queues. However, the claim
holds only when packets have a fixed size. For variable-sized
packets and classes with different weights the arrival of a
packet may require changing the relative order of packets in
the PIFO buffers. By design, PIFO does not support reshuffling
buffered packets.

BwE [18] performs a centralized rate allocation for hier-
archically organized inter-data center traffic, which computes
end-to-end max-min fair rate allocations for a network setting,
which are enforced by HTB ceiling rates. Interestingly, in [18,
Sec.9] it is argued that fair queueing is not suitable since
‘weights are insufficient for delivering user guarantees.’ By
showing the equivalence of rate guarantees and weights in
Sec. II-A, our paper invites a correction of the above statement.

We have not included HFSC [36], [37] in this paper, even
though it is another hierarchical scheduler available in Linux.
HFSC is hybrid scheduler that deterministically guarantees

service curves and shares excess bandwidth with fairness
objectives. As pointed out in [36] it is, in general, not possible
to simultaneously guarantee the service curves of HFSC and its
fairness criteria. Since HFSC resolves conflicting guarantees
by giving priorities to service curves, the role of link sharing
is limited. We also note that HFSC realizes so-called ‘lower
service curves’ [38]. Rate guarantees of these service curves
share a drawback with the VirtualClock scheduler [39], where
a class that is served above its guaranteed rate for some time,
may be later served at a rate below its guarantee. Differently,
fair scheduling algorithms realize ‘strict service curves’ [38],
which ensure rate guarantees for every time interval where a
class is backlogged.

VII. CONCLUSIONS

We presented a round-robin scheduler for hierarchical link
sharing that ensures rate guarantees and isolation between
classes, and which is suitable for supporting high line rates.
The presented HLS scheduler resolves shortcomings of de-
ployed hierarchical link sharing algorithms when distributing
excess capacity to traffic classes. The link sharing in HLS
is strategy-proof in that a class that needs more bandwidth
cannot increase its allocation by increasing its transmissions
or misrepresenting the class hierarchy of its descendants. We
have shown that the implementation of HLS does not create
a performance bottleneck. The paper does not study how
network interface card (NIC) offloading interferes with the
HLS scheduler. Other future work is an extension of the Qdisc
implementation of HLS to also enforce maximum (ceiling)
rates.

APPENDIX

We can ensure that, in any main round, at least one packet
can be transmitted by satisfying the condition∑

i∈Lac

Bi ≥
∑
i∈Lac

Lmax
i . (10)

Then, by the pigeon hole principle, there is at least one active
leaf class i with Bi ≥ Lmax

i .
Consider the start of a round before any transmission

in the round. Without changing the outcome, suppose all
classes perform the updates of (5)–(7) at once. Then, we have∑

i∈N Bi = Q∗, and we can write (10) as

Q∗ ≥
∑

i∈I∪{root}

Bi +
∑
i∈Lac

Lmax
i .

Recall that, after updating the balances of all classes, the
remaining balance of an internal class or the root satisfies Bi <
wac

i , which we relax to Bi < wc
i , where wc

i =
∑

j∈child(i) wi

is the aggregate weight of all child classes. Summing up we
obtain ∑

i∈I∪{root}

Bi ≤
∑

i∈I∪{root}

wc
i =

∑
i∈I∪L

wi .

Hence, by setting Q∗ as given in the theorem, we ensure
that (10) is always satisfied, meaning that there is at least
one packet transmission in each main round.
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