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Abstract—Network slicing is a promising technology that al-
lows mobile network operators to efficiently serve various emerg-
ing use cases in 5G. It is challenging to optimize the utilization
of network infrastructures while guaranteeing the performance
of network slices according to service level agreements (SLAs).
To solve this problem, we propose SafeSlicing that introduces
a new constraint-aware deep reinforcement learning (CaDRL)
algorithm to learn the optimal resource orchestration policy
within two steps, i.e., offline training in a simulated environment
and online learning with the real network system. On optimizing
the resource orchestration, we incorporate the constraints on
the statistical performance of slices in the reward function
using Lagrangian multipliers, and solve the Lagrangian relaxed
problem via a policy network. To satisfy the constraints on the
system capacity, we design a constraint network to map the latent
actions generated from the policy network to the orchestration
actions such that the total resources allocated to network slices
do not exceed the system capacity. We prototype SafeSlicing on
an end-to-end testbed developed by using OpenAirInterface LTE,
OpenDayLight-based SDN, and CUDA GPU computing platform.
The experimental results show that SafeSlicing reduces more than
20% resource usage while meeting SLAs of network slices as
compared with other solutions.

Index Terms—End-to-End Slicing, Resource Orchestration,
Deep Reinforcement Learning, Constraint-Awareness

I. INTRODUCTION

5G is designed to support three primary use cases, i.e.,

enhanced Mobile Broadband (eMBB), Ultra Reliable Low

Latency Communications (URLLC) and Massive Machine

Type Communication (mMTC), which consequently enable

various new applications such as augmented/virtual real-

ity (AR/VR), 360-degree video streaming, and vehicle-to-

everything (V2X) [1]. These new applications have diverse

requirements of quality of services (QoS), e.g., data rates,

latency, jitters, and reliability. It is thus desirable to cost-

efficiently customize mobile networks and provision network-

ing and computing resources for individual applications ac-

cording to their demands [2].

Network slicing allows mobile network operators (MNOs)

to virtualize physical network infrastructures, e.g., base sta-

tions and servers, and provide network slices with isolated

resources to slice tenants [3]. A network slice is an end-to-

end virtual network customized to fulfill the QoS requirements
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Fig. 1: The architecture of network slicing management

of a particular application based on the service level agree-

ment (SLA) [4]. To accommodate more slices simultaneously

and thus improve the network revenue, MNOs aim to satisfy

the QoS requirement of slices with the minimum resource

usage in multiple technical domains [5]. As shown in Fig. 1,

the slice management [6] is composed of multiple levels, e.g.,

function, programmability, slice and service levels. At the

programmability level, multiple domain managers are devel-

oped to enable the abstraction of network functions (NFs),

e.g., physical, virtual and containerized NFs, and implement

the orchestration decision from the resource orchestrator. An

end-to-end resource orchestrator at the service level dynami-

cally orchestrates the virtual resources (e.g., virtual UL radio

resource) to diverse slices for meeting their performance

requirements. It observes high-dimension network states from

domain managers and slice tenants, and makes orchestration

decisions to assure performance of slices.
It is challenging to orchestrate cross-domain resources due

to the complicated interdependencies in end-to-end network

systems. On one hand, the slice performance is correlated to

many distinct types of resources, e.g., bandwidth in transport

network and CPU/IO in edge servers, where an accurate

mathematical model can hardly be derived [7], [8]. Conse-

quently, model-based approaches fail to precisely represent

the complex network slicing system and might result in

performance degradation if applied. On the other hand, the

varying high-dimensional network states also affect the slice

performance. For example, given a resource orchestration,

the round-trip application latency of an AR/VR slice may

change under different radio channel qualities and traffic of

slice users. In addition, the resource orchestration problem

shows the Markov property, i.e., the next slice performance

and network states depend only upon the current orchestration

decision and observed network states such as service queuing

in edge servers. Therefore, a model-free solution that can978-1-6654-4131-5/21/$31.00 ©2021 IEEE



handle the high-dim interdependencies is needed to orchestrate

cross-domain resources in end-to-end network slicing.

Deep reinforcement learning (DRL) has gained increasing

popularity in managing and optimizing dynamic and complex

network systems in a model-free approach [7], [9], [10], and

achieves promising performance improvements by parameter-

izing policies with the deep neural networks (DNNs). How-

ever, most of the existing DRL solutions derive their policies

within simulated environments and directly apply them into

real networks without any adaptations. These offline simulated

environments are usually built by leveraging approximated

models, e.g., queuing, which cannot completely represent the

complex network systems, especially in end-to-end domains.

In other words, there is a discrepancy between the offline

environment and the real network [9], [8], which is not

negligible in practice and cannot be overlooked. As a result,

deploying the offline-trained policy for resource orchestration

in real networks could cause performance degradation of slices

and thus lead to the violation of slice SLAs. Thus, an online

DRL solution is indispensable for eliminating the simulation-

to-reality discrepancy, which allows the policy to be learned

by directly interacting with a real network.

On slicing end-to-end networks, DRL needs to be

constraint-aware for two main reasons. First, the policy should

satisfy the statistical performance requirement derived from

slice SLAs, e.g., 95-percent end-to-end application latency

in a day. Reward-shaping methods are proposed to solve

this problem by shaping the reward function with static

weighted constraints. However, these methods may result in

either violations of SLAs when the weights are too small

or the suppression of exploitation when the weights are too

large. Second, the policy needs to maintain the instantaneous

system limitations at any time slots, e.g., the summation of

the bandwidth allocated to all slices cannot exceed its total

link bandwidth. On learning the orchestration policy, a DRL

algorithm needs to explore the whole action space containing

all possible actions, i.e., resource orchestration of slices, for

seeking better rewards. For example, a widely-adopted random

action exploration strategy adds small deviations, which are

sampled from a Normal distribution, onto the actions generated

by the policy. As these deviated actions are implemented in the

real network, multiple system limitations could be breached.

In this paper, we propose SafeSlicing that allows MNOs

dynamically slice end-to-end network system, i.e., optimizes

the cross-domain resource usage while guaranteeing the per-

formance requirements of slices and maintaining the system

limitations. SafeSlicing is accomplished by a novel constraint-

aware deep reinforcement learning (CaDRL) algorithm in two

steps, i.e., offline training in a simulated environment and

online learning with the real network. First, we develop a

simulated environment to imitate the resource orchestration

in the real network, by using real experimental dataset and

exploiting domain knowledge such as queuing service model.

The environment is designed to reduce the simulation-to-

reality gap, and used to offline train the policy, which thus

boosts the policy performance before online learning. Second,

we allow the policy to be refined in an online learning manner

by interacting with the real network directly. The policy can

quickly adapt to the real network with the CaDRL algorithm

and hence eliminate the simulation-to-reality discrepancy.

The CaDRL algorithm incorporates the statistical perfor-

mance constraints in its reward function by using Lagrangian

primal-dual method and uses a novel constraint neural network

as the output layer appending to the end of the policy network

to regulate the resource orchestration actions. This constraint

network ensures all the actions generated by the policy satisfy

the constraints on instantaneous resource allocations at any

time slots. Because of the constraint awareness, CaDRL can

directly interact with the real network and learn the resource

orchestration policy. We validate the performance of the

CaDRL algorithm and prototype SafeSlicing on an end-to-

end network slicing testbed designed with OpenAirInterface,

OpenDayLight SDN, and CUDA GPU computing platform1.

The contributions of this paper are summarized as follows:

• We design SafeSlicing, the first integrated offline-online

learning system, that can dynamically orchestrate net-

working and computing resources for end-to-end network

slicing and optimize the resource utilization of network

infrastructures while meeting the SLAs of slices.

• We develop a novel constraint-aware deep reinforcement

learning (CaDRL) algorithm that can learn the orchestra-

tion policy directly from the real network. CaDRL can

effectively handle the constraints on the statistical slice

performance and instantaneous resource allocation during

the policy optimization so that the violations of slices’

SLAs approximate to zero.

• We prototype SafeSlicing on a small-scale end-to-end

network slicing testbed, by using OpenAirInterface LTE

to implement the radio access network, SDN with the

OpenDayLight controller to emulate the transport net-

work, and CUDA GPU computing platform for comput-

ing acceleration.

• We conduct extensive experiments to evaluate the perfor-

mance of SafeSlicing. The experimental results show that

SafeSlicing outperforms other existing solutions in terms

of resource usage and slice performance.

II. BACKGROUND AND MOTIVATION

With dynamic network slicing, the MNO aims to minimize

the usage of cross-domain resources while satisfying the

statistical performance requirements of network slices with the

capacity constraints on physical networking and computing

infrastructures. For example, an AR/VR slice needs uplink

radio resources to upload environment sensing data, transport

resources to transmit data to edge servers, computing resources

to process data, and downlink radio resources for download-

ing augmentation contents. To accomplish this slice’s SLA,

e.g., 500 ms average round-trip latency, multiple resource

1SafeSlicing fits well with 5G architecture that provides open interfaces
and flexible control functions such as O-RAN (open RAN) [11], NWDAF
(NetWork Data Analytics Function), and NEF (Network Exposure Function).
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Fig. 2: a) CDF of app. latency within system and simulated environment under identical policy; b) CDF of app. latency of slices during
online learning with reward shaping; c) the probability distribution of resource usages during online learning with reward shaping.

orchestrations may be feasible, e.g., 10 UL/DL PRBs in RAN,

100Mbps bandwidth in transport network, and 1 dedicated

GPU in the edge server. However, the minimal resource usage

closely depends on the high-dimensional network state, e.g.,

slice traffic, radio channel quality, transport congestion, and

service queuing in servers. For instance, this slice requires

more UL/DL PRBs to maintain a similar performance if the

radio channel quality of slice users is poor, as each PRB carries

less data. Besides, the capacity of resources are constrained

by physical network infrastructures, e.g., the total number of

PRBs, and thus the orchestration of all slices need to be jointly

optimized in case of resource over-requesting. Therefore, we

resort to the deep reinforcement learning (DRL) technique to

deal with complicated interdependencies in the complex end-

to-end slicing system.

Applying DRL in dynamic network slicing faces two chal-

lenges. The first one is the discrepancy between the simulated

environment and real networks, which causes that a DRL

policy trained offline within a simulated environment may not

work well in real networks. The second one is the constraint

violation during the online learning as the intrinsic DRL

exploration mechanism.

Simulation-to-reality discrepancy. To study the impact of

the discrepancy, we develop an end-to-end network slicing

testbed (detailed in Sec. VI) and build a simulated environment

that mimics the resource orchestration in the real network. We

train the DRL policy in the simulated environment and then

apply the policy in the real network without online learning.

Fig. 2 (a) shows the performance comparison of a resource

orchestration policy in the simulated environment and system

testbed. In the simulated environment, the policy obtains the

application latency of slices range from 0.7s to 0.76s with

about 90% of it being less than 0.73s. In contrast, when the

same policy is applied in the system testbed, the application

latency of slices range from 0.69s to 0.83s, and only 62% of it

is less than 0.73s. This result shows the performance degrada-

tion when applying an offline-trained policy to a real network.

This simulation-to-reality discrepancy also exists in various

systems, e.g., data center networks [9], robot system [12],

and video telephony [8], and can be hardly eliminated as real

networks are too complicated to be precisely represented by

simulated environments.

Constraint violation. The problem caused by the

simulation-to-reality discrepancy requires us to design an on-

line DRL approach that can directly interact with and learn the

network slicing policy from real networks. However, during

the online learning, the DRL agent may violate the SLAs

and system capacity constraints. Assume that the maximum

allowable application latency of a slice is 0.6s, and the

resource usage of all slices cannot exceed 80% of the capacity

of individual resources, where the remaining 20% resources

are reserved for conventional non-slicing users. Fig. 2 (b) and

(c) show the performance of an online DRL algorithm that uses

the reward shaping technique to shape the reward function with

fixed weighted constraints [13]. In Fig. 2 (b), it shows that the

probability of satisfying the maximum latency constraint in

slice 1, 2, and 3 are only 57%, 23% and 43%, respectively. In

Fig. 2 (c), we can see that there are many instances in which

the resource usages exceed 80% of the capacity of individual

resources.

These experiment results demonstrate the need of a safe

network slicing system that enables MNOs to dynamically

optimize the resource orchestration among slices without vio-

lating the SLA and capacity constraints.

III. SafeSlicing OVERVIEW

As shown in Fig. 3, SafeSlicing consists of a resource

orchestrator, a simulated environment, and the real network2.

The resource orchestrator centrally manages the allocation of

virtual resources in radio access network, transport network,

and edge servers, to all slices. The simulated environment

is designed to imitate the resource orchestration in the real

network for training the CaDRL agent offline. The domain

managers (DMs) implement the resource orchestration issued

by the orchestrator in radio access network, transport network,

and edge servers, respectively. The orchestrator is deployed

in the core network and DMs are instantiated in proximity to

infrastructures, where they exchange data, e.g., state collection

and action notification, through socket communication3. The

network state, e.g., slice traffic and queue, is collected by a

system monitor from domain managers and slice tenants. The

system monitor also collects the performance of slices (i.e.,

end-to-end latency) and stores state-action-performance pairs

2SafeSlicing is aligned with industry efforts on network slicing, e.g., ETSI
ZSM [14], 3GPP Slice LifeCycle Management (LCM) [15].

3The deployment of SafeSlicing can be extended in large-scale operational
networks to support distributed DMs. The communication between the or-
chestrator and DMs can be enhanced by adopting standardized architectures
(O-RAN [11]) and interfaces (ETSI Network Resource Model [16]).
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into a database. The SafeSlicing is accomplished in two steps,

i.e., offline training in the simulated environment and online

learning with the real network, where the offline trained policy

serves as the start point of online learning.

The core of the resource orchestrator is the constraint-

aware deep reinforcement learning (CaDRL) agent. It learns

the orchestration policy either in the simulated environment

or with the real network, and ensures the slice SLAs and

system limitations to be adhered during the exploration of the

policy. The CaDRL agent consists of three main components,

i.e., a policy network, a constraint network, and a multiplier

optimizer. The policy network is responsible for generating

latent actions based on the network states to maximize the

long-term reward. The statistical constraints, e.g., average

application latency of slices, are incorporated in the reward

function so that they can be enforced during the policy

optimization. During the learning, policy network is updated

by using actor-critic method [17] under dynamic multipliers.

The multipliers are updated by an optimizer that runs at a

slower timescale than that of the update of policy network

to maintain the statistical constraints in the network slicing

(detailed in Sec. V-A). The latent actions are then fed into

the pre-trained constraint network which generates the final

resource orchestration actions. The constraint network pre-

vents the orchestration actions from violating the instantaneous

resource constraints, e.g., the system capacity of cross-domain

resources (detailed in Sec. V-B).

IV. SYSTEM MODEL

We consider an end-to-end mobile network that consists of

a cellular base station (BS) in radio access network (RAN),

an edge computing server, and a transport network connecting

the RAN and the server. Denote I and K as the set of slices

and multi-domain resources, respectively. i ∈ I and k ∈ K
represent the ith slice and kth resource, respectively. The end-

to-end mobile network hosts multiple slices according to their

service level agreements (SLAs) that define the performance

requirements, e.g., the maximum latency [18]. To optimize

the performance of slices, the network operator adjusts the

resource orchestration in each domain periodically.

With the consideration of temporal interdependencies and

various constraints in the end-to-end network slicing, the

cross-domain resource orchestration problem can be naturally

formulated as a constrained Markov decision process (CMDP)

denoted as 〈S,A,R, C,P, µ〉. Here, S,A are the set of states

and actions, and R, C are the reward and cost functions, re-

spectively. P : S×A×S → [0, 1] is the transition function, and

µ : S → [0, 1] is the initial state distribution. A parameterized

resource orchestration policy πθ : S → Pr(A) is a mapping

from states to probability distribution over actions, where θ is

the neural network parameters.
The state st ∈ S is observed by the policy πθ, which

represents the status of the end-to-end network. Thus, we

define state as the combination of following components: 1)

the average traffic of slices [f t−1
i , ∀i ∈ I], which provides

useful information about the user traffic at the current time slot

t; 2) the number of users waiting in the queue of each slice

[lt−1
i , ∀i ∈ I], which describes traffic loads inherited from

last time slot t− 1; and 3) the slice performances in last time

slot that consists of the number of users served by each slice

[ut−1
i , ∀i ∈ I], the resource usages [gt−1

k , ∀k ∈ K], and the

performance of slices [yt−1
i , ∀i ∈ I]. This information shows

how the resource orchestration in last time slot performs.
Based on the observed state, the policy πθ generates an ac-

tion, where at ∈ A corresponds to the cross-domain resource

orchestration for slices. We define action at , [ati,k, ∀i ∈
I, k ∈ K], where ati,k ∈ [0, 1] is the kth resource allocated

to the ith slice at time slot t. In the system, we consider

four types of resources (see Sec. V-C), i.e., the uplink and

downlink physical resource blocks (PRBs) in radio access

network, the bandwidth in transport network, and the GPU

computing resources in edge servers. By taking action at to

the system under the state st, a reward can be obtained from

the system. We define reward function R : S × A → R

as rt , −
∑

i∈I

∑

k∈K ati,k. By maximizing the long-term

rewards achieved by the policy πθ, we are able to minimize

the utilization of cross-domain resources.
Meanwhile, the resource orchestration has to satisfy two

types of constraints, which are mapped to the cost functions

C : S × A → R. On one hand, the network operator needs to

maintain the slice performances specified by SLAs. Denote yti
is the performance of the ith slice at time slot t, we define the

first cost as ci , yti , ∀i ∈ I. Then, we can maintain the SLA

of slices by letting

Eπθ

[

1

|T |

∑

t∈T
γtci(st,at)

]

≥ Yi, ∀i ∈ I, (1)

where Yi is the performance requirement of the ith slice. For

instance, the ci(st,at) can be defined as 90-percent application

latency of slice users in a slice and Yi is 0.5s.
On the other hand, the resource orchestration subjects to

the constraints of the system capacity, e.g., limited radio and

computing resources, at any time slots. Hence, we define the

second cost as dk ,
∑

i∈I ati,k, ∀k ∈ K. Then, we can satisfy

the constraints on the system capacity by ensuring

dk(at) ≤ Zk, ∀k ∈ K, t ∈ T , (2)



where Zk is the total amount of the kth resource.

On slicing the network, we aim to derive an orchestration

policy π∗
θ that minimizes the utilization of cross-domain re-

sources without violating constraints defined by the SLA and

system capacity, respectively. Therefore, given a time period

T , e.g., 24 hours, we formulate the cross-domain resource

orchestration problem in end-to-end network slicing as

P1 : max
πθ

Eπθ

[

∑

t∈T
γtr(st,at)

]

(3)

s.t. (1), (2).

The difficulties of solving the above problem is multi-

fold. First, the correlations between the orchestration action

at and the slice performance r(st,at) are complicated by the

high-dim network state st (e.g., slice traffic, radio channel

quality and queuing servers), and thus cannot be accurately

represented by mathematical models. Second, the orchestration

action in a time slot would influence not only the current

slice performance but also the future network state and perfor-

mance, which shows a Markov property in end-to-end network

slicing. Therefore, we resort to DRL approaches to deal with

the above problem in complex network slicing system.

V. CONSTRAINT-AWARE DRL

In the cross-domain resource orchestration problem, we

consider two types of constraints. The first type of constraints

are the performance requirements, i.e., the 90-percent end-to-

end latency in a day, derived from SLAs (Eq. 1). Since these

constraints are on the statistical performance of networks over

a period of time, we define them as the statistical constraints.

The second type of constraints are the system capacity con-

straints, e.g., total number of radio resource blocks in the

system (Eq. 2). The violation of these constraints depends

only on every output resource orchestration action. Hence,

we define the second type of constraints as the instantaneous

constraints. In this section, we develop a constraint-aware deep

reinforcement learning (CaDRL) algorithm that handles the

statistical and instantaneous constraints via the policy network

and constraint network, respectively.

A. Handling Statistical Constraints

To handle the statistical constraints in Eq. 1, we utilize

Lagrangian primal dual method to incorporate the constraints

into the reward with multipliers [19]. The Lagrangian function

can be expressed as

L(θ, λ) = Eπθ

[

∑

t∈T

γt

(

r(st,at) +
∑

i∈I

λi

|T |
ci(st,at)

)]

+ C,

(4)

where C = −
∑

i∈I λiYi and λ are multipliers. The dual

function, i.e., the point-wise maximization of Lagrangian with

respect to parameters θ of policy network, can be written as

D (λ) = max
θ∈(2)

L(θ, λ), (5)

where the dual function provides a lower bound on the value

of the Lagrangian in Eq. 4. The tighter the bound, the closer

Latent Actions Orchestration

Actions

(b)(a)

Latent Actions Orchestration

Actions

Fig. 4: Illustration of a) inefficient mapping, b) efficient mapping.

the gap between the policy obtained from dual function and

the optimal solution of problem P1. Thus, the dual problem,

which finds the tightest bound, can be expressed as

min
λ≥0
D (λ). (6)

As indicated in [20], the duality gap between the primal

and dual problem approaches nearly zero if the policy is

parameterized by neural networks. In other words, the problem

P1 can be effectively addressed by alternatively solving the

primal problem in Eq. 5 and the dual problem in Eq. 6.

On one hand, the dual problem is solved by updating the

Lagrangian multipliers with sub-gradient descent as

λ
(m+1)
i =

[

λ
(m)
i − ηi

(

1

N |T |

N
∑

n=0

∑

t∈T

γtci(st,at)− Yi

)]+

(7)

where ηi, ∀i ∈ I are non-negative step sizes and [x]+ =
max(0, x). Instead of evaluating Eπθ

[
∑

t∈T γtci(st,at)
]

, we

approximate it with N times Monte-Carlo sampling.

On the other hand, we note that solving the primal problem,

i.e., minimizing the Lagrangian w.r.t. the parameters θ, approx-

imately corresponds to learning a policy with reinforcement

learning algorithms such as policy gradient [21] or actor-critic

method [17]. Thus, we solve the primal problem by updating

θ(m+1) ≈ arg max
θ∈(2)

L(θ, λ(m)). (8)

B. Handling Instantaneous Constraints

When updating policy network with parameters θ, we need

to maintain that the orchestration actions satisfy the instan-

taneous constraints in Eq. 2 at any time slots. Since the

intrinsic DRL exploration seeks the better reward by exploring

the nearby space of actions (e.g., adding noise sampled from

Normal distributions), the instantaneous constraints could be

easily violated by these deviated actions. To address this issue,

we design a constraint network with parameters µ to map

the latent actions generated by policy network to the resource

orchestration actions that satisfy the instantaneous constraints.

The constraint network is pre-trained and appended to policy

network as illustrated in Fig. 3.

On the designing the constraint network, we aim to map

the latent actions to final orchestration actions such that the

DRL agent can efficiently explore the entire space of the

orchestration actions as illustrated in Fig. 4(a). A common

mapping method, i.e., clamping [22], may result in an inef-

ficient mapping in which a disproportional number of latent

actions are mapped to a single orchestration action as shown



in Fig. 4(b). With the clamping method, the latent actions

that not satisfying the instantaneous constraints are mapped to

the boundary of the space defined by the constraints. When

the DRL is exploring actions outside the constraint space,

the random action exploration mechanism fails as all these

explored actions are clamped. As a result, the efficiency of

exploring the action space is decreased, and thus degrading

the performance of DRL.

To achieve an efficient mapping, we formulate the problem

of designing the constraint network as

P2 : min
µ

Eµ [DKL (p(a)||q(â))] (9)

s.t. Eµ [dk(â)] ≤ Zk, ∀k ∈ K,

where DKL is the Kullback-Leibler divergence [23], p(a)
and q(â) are the distribution of input actions a and output

actions â, respectively. We solve problem P2 by using the

Lagrangian primal-dual method. Specifically, the training loss

of the constraint network is designed as

Lossµ = DKL (p(a)||q(â)) +
∑

k∈K

βk (dk(â)− Zk), (10)

where βk, ∀k ∈ K are Lagrangian multipliers that are updated

β
(m+1)
k =

[

β
(m)
k + ξk (A− Zk)

]+

, ∀k ∈ K, (11)

where A = max{dk(ân), ∀n = 1, 2, ..., N} is the maximum

value of the instantaneous constraint under N times Monte-

Carlo sampling, and ξk, ∀k ∈ K are non-negative step sizes.

On training the constraint network, the inputs are sampled

from the space of the latent actions uniformly. Here, we aim

to build a deterministic mapping from the latent actions to the

orchestration actions. As the pre-trained constraint network is

appended to policy network, we can rewrite the primal problem

in Eq. 8 as

θ(m+1) ≈ argmax
θ
L(θ, λ(m)). (12)

From the perspective of policy network, its learning be-

comes unconstrained, and thus various exploration techniques

can be applied without concerning the violation of instanta-

neous constraints. Since the constraint network is based on

neural network architecture, which is differentiable, it is com-

patible with the backpropagation of gradients during policy

network learning. Hence, the orchestration actions outputted

from the constraint network are not required to be close to

the latent actions outputted from policy network in terms of

Euclidean distance.

C. The SafeSlicing Workflow

Deploying Safeslicing mainly consists of three stages: of-

fline constraint network training, offline policy network train-

ing, and online policy network learning.

Offline Constraint Network Training. The constraint

network is trained to translate latent actions into resource

orchestration actions that satisfy the system constraints. First,

the input batches are sampled uniformly from the latent action

space. Then, these batches are fed into constraint network that

Algorithm 1: The CaDRL Algorithm

Input: Yi, ∀i ∈ I; Zk, ∀k ∈ K; η, ξ.

Output: πθ+µ

1 / ∗ ∗ constraint network training phase ∗ ∗/;

2 Initialize parameters µ, multipliers βk, ∀k ∈ K;

3 for m = 0, 1, ... do

4 Sample batches B ← latent actions;

5 µ(m+1) ← argmin
µ

Lossµ;

6 if time to update then

7 β
(m+1)
k ← Eq. 11, ∀k ∈ K;

8 if convergence then

9 break;

10 Append constraint network to policy network;

11 / ∗ ∗ offline training phase ∗ ∗/;

12 Initialize parameters θ, multipliers λi, ∀i ∈ I;

13 for m = 0, 1, ... do

14 for t = 0, 1, ..., T − 1 do

15 ati,k, ∀i ∈ I, k ∈ K,← πθ+µ;

16 yti , ∀i ∈ I,← system;

17
∑

i∈I ati,k, ∀k ∈ K,← system;

18 θ(m+1) ← argmin
θ
L(θ, λ(m));

19 if time to update then

20 λ
(m+1)
i ← Eq. 7, ∀i ∈ I;

21 if convergence then

22 break;

23 / ∗ ∗ online learning phase ∗ ∗/;

24 Repeat the procedures between Line 13 and Line 22;

25 return πθ+µ;

generates the output actions â. The loss function in Eq. 10

is calculated, which is used to update constraint network

accordingly. After multiple constraint network updates, we

follow Eq. 11 to update the multipliers βk, ∀k ∈ K. This

procedure repeats until the multipliers become stable.

Offline Policy Network Training. We offline train the

CaDRL agent with a simulated environment before we conduct

the online learning. The simulated environment is developed

to imitate the resource orchestration in the real network by

leveraging experimental dataset and exploiting domain knowl-

edge. As shown in Fig. 5, we implement a FIFO queue in

the environment to simulate the service process for individual

slices. Since the service rates of the queues determine the

performance of the slices, it is important to accurately predict

the service rater under different resource orchestrations to

approximate the performance of the real network. Hence, we

design a regression model with scikit-learn [24] tool in each

slice to predict the service rates according to the experimental

dataset collected from a real network. By using the real traffic

trace that records the arrival timestamps of user requests, and

the predicted service rates, we simulate the enqueuing, serving

and dequeuing process of user requests in slices in each time

slot. At the end of a time slot, the application latency of
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Fig. 5: The design of the simulated environment.

all slices and resource usages are outputted as the costs and

rewards, respectively.
During the offline training of policy network, we design the

agent to observe the following states, i.e., the average traffic of

slices, the number of slice users in service queues, the number

served users of slices, the performance of slices and the re-

source usage at the last time slot. Based on the observed state,

the CaDRL agent generates 4-dim resource orchestration for

each slice, which are uplink and downlink physical resource

blocks (PRBs) in RAN, bandwidth in transport network, and

the GPU computing resources in edge servers. The resource

orchestration is then fed into the simulated environment shown

in Fig. 5, which updates slice users in service queues according

to the traffic trace of slices. The CaDRL agent retrieves the

resource usage and end-to-end latency of slices from the

simulated environment as the reward and cost, respectively.
Online Policy Network Learning. In this phase, we allow

the CaDRL agent to directly interact with domain managers,

continuously update its policy network, and gradually adapt to

the real network. At runtime, the resource orchestrator collects

the state space (same with that of offline training) from domain

managers and app servers of slices by using TCP sockets.

As the state space is fed into policy network and constraint

network in the CaDRL agent, an orchestration action is gener-

ated. The action is sent to the corresponding domain manager

for the action implementation in network infrastructures. For

example, the transport bandwidth allocation of slices are sent

to the transport domain manager. The orchestrator adapts the

resource orchestration every 15 minutes. The reward and cost

of the orchestration action are defined as the average resource

usage and average end-to-end application latency of slices over

the 15 minutes period, respectively. The rewards and costs are

collected from domain managers and app servers of slices,

respectively4. We define the length of an episode as a day, i.e.,

96 transitions per episode5. In the online learning, the CaDRL

agent continues exploring the action space and learning from

interactions toward the optimal policy in the real network.

VI. SYSTEM IMPLEMENTATION

Testbed Setups. We prototype SafeSlicing on an end-to-

end network slicing testbed as depicted in Fig. 6. The system

4For the deployment in large-scale operational networks, the rewards and
costs can be measured via standardized interfaces (e.g., DRM [16]) that
support data collections from domain managers and app servers.

5Although modern cellular networks have relatively long configuration
intervals [25], e.g., 30 mins or 1 hour, we are seeing several efforts on open
network architectures that enable real-time or near-RT configurations such as
O-RAN [11], which would significantly improve the sampling efficiency for
online learning.

Radio Access Network
Transport

Network

USRP

B210

Core Network &

Edge Server

Slice Users

RF 
Antenna

Fig. 6: The overview of system testbed.

Component Hardware Software

UEs 3x Smartphones Android 7.0
eNodeB 1x Intel i5 Computer OpenAirInterface [29]

RF Front-End 1x Ettus USRP B210 N/A
Transport 1x OpenFlow Switch OpenDayLight [30]

Core Network 1x Intel i7 Computer OpenAir-CN [31]
Edge Server 1x Nvidia GTX 1070 CUDA 9.0 [32]

TABLE I: Details of the system testbed

testbed is composed of radio access network (RAN) with an

eNodeB, transport network with an OpenFlow switch, core

network, and edge server with a CUDA GPU. The details of

hardware are summarized in Table I. The domain managers

of radio, transport and compute resources are deployed in

the computers running eNodeB, a SDN controller and core

network, respectively. The eNodeB is configured with 10MHz

(50 PRBs) wireless bandwidth. The total bandwidth of the

transportation network between the eNodeB and the edge

server is 100Mbps. The total amount of the computing re-

source in the edge server is 51200 CUDA threads.

Orchestrator. We implement the resource orchestrator by

using Python 3.7 and PyTorch 1.40 [26] and co-locate the

resource orchestrator with the core network. We employ a

state-of-the-art reinforcement learning algorithm, i.e., deep

deterministic policy gradient (DDPG) [27], to update policy

network. In particular, we use a 2-layer fully-connected neural

network, i.e., [512, 512], in both actor and critic networks

in DDPG. The constraint network, which is appended at the

end of actor network of DDPG, is implemented with 2-layer

fully-connected neural network, i.e., [128, 128]. For both

policy network and constraint network, we use Leaky Rectifier

and sigmoid [28] activation functions for the intermediate

layers and output layer, respectively. On training the resource

orchestrator, we conduct extensive and empirical tuning on

the hyper-parameters. The initial multipliers βk = 0.01, ∀k ∈
K, λi = 0.01, ∀i ∈ I. The step sizes of multiplier update

ξk = 0.1, ∀k ∈ K, ηi = 0.1, ∀i ∈ I. The learning rates of both

actor and critic networks in DDPG and constraint network are

5e-4. The batch size is 512. The discounted factor for cumu-

lative reward is γ = 0.99. We add a decaying Gaussian noise

starts from N (0, 0.1) to N (0, 0.001) on actions during the

training phase for balancing the exploitation and exploration.

Experimental Dataset. We collect experimental dataset



from the testbed and use it in the simulated environment

for training the regression models as shown in Fig. 5. We

obtain the dataset of the resource orchestration and application

latency pairs for each slice, by traversing different combina-

tions of resource orchestration with the grid search method.

Since the dimension of the resource orchestration space is

very high, it is impractical to collect all pairs of the resource

orchestration and application latency. Hence, we collect the

data with the granularity of resource allocation equaling 6%
for all the resources. At the runtime, the resource orchestration

generated by the resource orchestrator may not be found in

the dataset. To predict its application latency, we use the

adjacent resource orchestration pairs in the dataset to fit the

regression model. Once the model is fitted, the regression

model predicts the application latency of the slice under the

resource orchestration.

Domain Managers. Domain managers are developed to

virtualize the physical infrastructures and dynamically imple-

ment cross-domain resource orchestrations received from the

resource orchestrator into multiple technical domains. In the

radio access network, the radio domain manager is designed

based on OpenAirInterface [29], that allocates both uplink and

downlink radio resources to slices. The transport domain man-

ager is designed based on an OpenDayLight [30] controller,

that allocates bandwidth of the links between radio access

network and edge servers through OpenFlow (Southbound

API) and RESTful (Northbound API) [33]. The computing

domain manager is designed based on CUDA GPU computing

platform, which dynamically allocates computing resources,

e.g., the number of CUDA threads, to slices.

VII. PERFORMANCE EVALUATION

In this section, we aim to study 1) how SafeSlicing optimizes

the network slicing via learning; 2) what’s the performance

comparison between SafeSlicing and existing algorithms; 3)

how the design of constraint-awareness impacts the perfor-

mance of the network slicing; and 4) whether SafeSlicing can

adapt to the traffic dynamics and learn the actual resource

demands of different applications.

Experiment Setups. We create three slices on the system

testbed, where each slice hosts an application. The applica-

tion traffic is generated in smartphones that are wirelessly

connected to the testbed. For any individual networking and

computing resources, the amount allocated to slices should be

less than 80%, i.e., Zk = 0.8, ∀k ∈ K. We consider the average

end-to-end application latency as the main SLA of a slice in

the experiments and sets 0.6s as the latency requirement, i.e.,

Yi = 0.6s, ∀i ∈ I. Here, the value is selected based on the

capability of the testbed and the traffic loads generated from

the traffic data trace. A slice is allocated at least 6% of each

resource to keep the slice live.

Performance Metrics. To evaluate the performance of

SafeSlicing, we define the following performance metrics. The

application latency is defined as the average end-to-end latency

of the application in an episode. The system latency is defined

as the average application latency of all slices. The resource

usage is defined as the average usage of a resource in the

system in an episode. The system resource usage is defined as

the average usages of all resources in the system in an episode.

Network Dynamics. The network dynamics are composed

of varying slice application traffic and different workload of

slice applications. We use Tsinghua App Usage Dataset to

generate the slice application traffic [34]. This dataset consists

of traffic traces of nearly 2000 mobile applications. We select

the social networking category in the dataset and scale down

the volume of the requests according to the capability of our

end-to-end network slicing testbed. We split the whole selected

traffic traces into a train set with 80% traces and a test set with

20% traces for training and evaluation, respectively.

To generate different workload of slice applications, we

develop three mobile apps that have diverse requirements

of networking and computing resources. The first, second

and third app have the demands of high-networking & low-

computing, medium-networking & medium-computing, low-

networking & high-computing, respectively. To simplify the

application development, we use a video analytics framework

in which video frames are sent to an edge server and analyzed

by the YOLO object detection framework [35]. The amount

of transmission data, i.e., images with different resolutions,

determines the demand of the networking resources, and

the complexity of computing model, i.e., YOLO, determines

the demand of the computing resources. Hence, the image

resolution and computing model of app 1 are 500x500 and

tiny YOLOv3, respectively. The image resolution and com-

puting model of app 2 are 300x300 and YOLOv3 416x416,

respectively. The image resolution and computing model of

app 3 are 100x100 and YOLOv3 608x608, respectively. The

app server of slices are deployed in the core network, which

record the performance of slice users (latency) and report the

average slice performance to the CaDRL agent as rewards.

Comparison Algorithms. We compare SafeSlicing

with the following algorithms: Reward Shaping (RS):

solves the constrained reinforcement learning problem

by incorporating the static weighted constraints into

the reward function as penalties [7]. After extensive

trials with different weights, we select 1.0 as the

weight for both statistical and instantaneous constraints.

Reward Constrained Policy Optimization (RCPO) [36]: is a

two-layer training algorithm for constrained reinforcement

learning designed based on the Lagrangian primal-dual

method. In the upper layer, the Lagrangian multipliers are

updated according to the sub-gradient decent method. In

the lower layer, the policy network is updated based on the

actor-critic method.

A. Experimental Results

1) Optimizing Network Slicing via learning: Fig. 7 (a)

shows the entire learning-based optimization process of SafeS-

licing. The offline phase starts from episode 0 to episode

250, in which the first 200 episodes are offline learning,

and the episodes 201 to 250 are offline evaluation. After

the evaluation, the offline policy is derived. When the offline
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policy is evaluated in the system (from episodes 251 to 300),

the application latency is larger than that in the simulated

environment. In other words, the online policy has a poor

performance in the real network because of the simulated

environment cannot fully reflect the dynamic of the real

network. The online learning starts with episode 301 and ends

at episode 400. During the online learning, the CaDRL agent

interacts with the real network and learns the orchestration

policy. In the online evaluation phase, we can see that the

application latency of the slices are reduced to around 0.6s
which is the minimal latency requirement.

2) Performance Comparison: We compare the performance

of SafeSlicing with that of RCPO and RS. Fig. 8 (a) shows

the system latency of these algorithms. SafeSlicing converges

to 0.6s which the latency requirement defined in the SLA.

Meanwhile, both RCPO and RS cannot converge, and the

system latency under these algorithms are considerably higher

than the latency requirement. This indicates that SafeSlicing

has better performance in handling the statistical constraints.

Fig. 8 (b) shows the cumulative probability of the resource

usage of these algorithms. We can see that SafeSlicing can

follow the resource usage constraints, i.e., less than 80% total

resources. Both the RCPO and RS violate the resource usage

constraints. This proves that SafeSlicing can effectively satisfy

the instantaneous constraints.

Table II lists the performance of these algorithms in the

post-online evaluation phase. SafeSlicing uses the least re-

sources, i.e., 34.3% ± 1%, and satisfies the system latency

constraint, i.e., 0.6s, with 0% violation of the constraints

Metrics SafeSlicing RCPO RS

Sys. Resource Usage(%) 34.3±0.1 42.8±0.2 47.1±0.9
System Latency (s) 0.60±0.03 0.70±0.25 0.71±0.16

Resource Usage Violation 0.0% 12.7% 12.4%

TABLE II: The performance of different algorithms.
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on the instantaneous resource allocations. Here, SafeSlicing

maintains the system latency at 0.6s with a ±5% error which

is tolerant in the SLA. In contrast, although both RCPO and

RS consume more resources, they still cannot meet the latency

requirement and violate constraints on the resource usages.

3) Design of Constraint Awareness: Although the function

of the constraint network is simple (i.e., mapping latent actions

to orchestration actions), its design determines the perfor-

mance of the network slicing. Fig. 9 (a) shows the cumulative

probability of resource usages in the system with different

mapping methods. Without any mapping, i.e., no constraint-

awareness, the resource usages range from ∼20% to ∼260%.

With constraint network, the range of the resource usage is

condensed to ∼18% to ∼80%, which satisfies the constraints

on the resource usage, i.e., Zk = 80%, ∀k ∈ K. Besides,

the distribution of the resource usage after the mapping is

uniform, which benefits the searching of the orchestration

policy. The safety layer method introduces an output layer at

the end of policy network to correct the actions by minimizing

the distance between the input and output actions [22]. The

mapping results show that the safety layer method leads to a

non-uniform distribution of the resource usage. The clamping

method limits the resource usage to the nearest allowable

value. Hence, whenever the resource usage exceeds 80%, the

clamping method maps the usage to 80%.

Fig. 9 (b) shows the system latency and resource usage

with different mapping methods used in SafeSlicing. It shows

that the constraint network method significantly outperforms

the other methods and achieves the shortest system latency

with the least resource usage. The reason for the performance

gain is that the constraint network method allows efficient

exploration during policy network learning while satisfying

the constraints of the system capacity.

In addition, we show the range of the resource usage

during the training of constraint network under different static

weights in Fig. 10. It can be observed that these static weighted

constraint networks either cannot enable the resource usage

to approach the upper bound (80%) and the lower bound

(18%) or violate the resource usage constraints. In other words,
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constraint network with static weights may generate resource

orchestrations that violate the instantaneous constraints and

cannot explore some resource orchestrations whose resource

usages are close to the boundary. In contrast, when the

constraint network is trained using Lagrangian primal-dual

method, the resource usage can approach the upper and lower

bounds, which allows the CaDRL agent to explore the entire

action space without violating the resource usage constraints.

4) Traffic and Resource Demand Awareness: We show the

system resource usage of SafeSlicing (post-online) and the

corresponded avg. traffic of slices within a episode in Fig. 11

(a). The system resource usage track the avg. traffic of slices,

which means SafeSlicing can react to varying slice traffic

and dynamically adjust its resource orchestrations, i.e., traffic

awareness, to meet the latency requirement of slices. Fig. 11

(b) depicts the resource usage of SafeSlicing for slices. It

shows that the resource usage in slices align with the resource

demands of their application, i.e., resource demand awareness.

For example, slice 1 and slice 3 adopt the highest frame reso-

lution (500x500) and computation model (YOLOv3 608x608),

respectively. As a result, slice 1 and slice 3 are allocated the

largest radio and computing resources, respectively. For these

applications, the transportation network is not the bottleneck,

and thus the resource allocations in the transportation network

are similar.

VIII. RELATED WORK

This work relates to resource management problem in net-

work slicing and machine learning techniques for networking.

Resource Management in Network Slicing: Salvat et.

al. [5] proposed a Benders decomposition based algorithm that

manages the resource provisioning of slices to maximize the

revenue of mobile operators in an end-to-end network slicing

system. Han et. al. [37] proposed a utility-based admission

control mechanism based on multi-queuing systems to improve

the resource efficiency for accommodating heterogeneous

slices in network slicing. D’Oro et. al. [38] proposed a slice

admission and resource provisioning algorithm to instantiate

slices for heterogeneous services by considering the interde-

pendencies among multiple domain resources in multi-access

edge computing (MEC). However, these works consider that

the performance of slices are mathematically modeled with

closed-form expressions. In contrast, SafeSlicing is a model-

free approach that is capable of handling the dynamic network

slicing system with complicated interdependence among cross-

domain resources.

Machine Learning for Networking: Ayala-Romero et.

al. [10] developed a reinforcement learning based approach

that dynamically allocates the coupled computing and radio

resources to meet heterogeneous QoS targets in virtualized

radio access network (vRAN). Bega et. al. [39] proposed

DeepCog with deep learning techniques to predict network

capacity within individual slices and balance the tradeoff

between resource over-provisioning and service request viola-

tions. Liu et. al. [7] developed an end-to-end network slicing

system and proposed a decentralized reinforcement learning

approach to orchestrate cross domain resources to meet service

level agreement (SLA) of slices. Liu et. al. [40] proposed a

constrained DRL algorithm by using the Interior-point Policy

Optimization (IPO) and clamping for dealing statistical and

instantaneous constraints, which is trained offline. Zhang et.

al. [8] designed OnRL, an online DRL solution within real

networks, to improve the performance of real-time mobile

video telephony, which fails to maintain various constraints

in slicing system. However, these works follow the offline

training and online deployment strategy which suffers from

the discrepancy between the simulated and real network.

In contrast, with the novel two-stage design of SafeSlicing,

we achieve constraint-aware deep reinforcement learning that

learns the orchestration policy directly with the real network

while maintaining various constraints.

IX. CONCLUSION

In this paper, we have designed SafeSlicing that allows

dynamically optimization of network slicing without vio-

lating the SLAs of slices. To accomplish SafeSlicing, we

have designed a constraint-aware deep reinforcement learning

(CaDRL) algorithm that learns the resource orchestration

policy while meeting the practical constraints in two steps, i.e.,

offline training in a simulated environment and online learn-

ing with the real network. The statistical slice performance

constraints are incorporated into the reward function with the

Lagrangian primal-dual method and the instantaneous resource

orchestration constraints are handled by a novel constraint

network. We have developed a system testbed of SafeSlicing

with OpenAirInterface LTE network, OpenDayLight SDN

network, and CUDA GPU computing platform. We have con-

ducted extensive experiments to evaluate the performance of

SafeSlicing, and the results have demonstrated that SafeSlicing

significantly improves on system performance and adheres to

the SLAs in the dynamic network slicing optimization.
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