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Abstract—Internet content providers typically exploit cloud-
based content delivery/distribution networks (CDNs) to provide
wide-area data access with high availability and low latency.
However, from a global perspective, a large portion of users still
suffer from high content access latency due to the insufficient
deployment of terrestrial cloud infrastructures.

This paper presents STARFRONT, a cost-effective content
distribution framework to optimize global CDNs and enable
low content access latency anywhere. STARFRONT builds CDNs
upon emerging low Earth orbit (LEO) constellations and existing
cloud platforms to satisfy the low-latency requirements while
minimizing the operational cost. Specifically, STARFRONT exploits
a key insight that emerging mega-constellations will consist of
thousands of LEO satellites equipped with high-speed data links
and storage, and thus can potentially work as “cache in space”
to enable pervasive and low-latency data access. STARFRONT

judiciously places replicas on either LEO satellites or clouds,
and dynamically assigns user requests to proper cache servers
based on constellation parameters, cloud/user distributions and
pricing policies. Extensive trace-driven evaluations covering geo-
distributed vantage points have demonstrated that: STARFRONT

can effectively reduce the global content access latency with
acceptable operational cost under representative CDN traffic.

Index Terms—Geo-distributed Content Distribution, LEO
Constellations, Integrated Satellite and Terrestrial Networks.

I. INTRODUCTION

Content distribution networks (CDNs) consist of a consider-

able number of geo-distributed cloud-based cache servers, with

the goal of providing high availability and low content access

latency globally. CDNs are carrying a significant amount of

network traffic. The global CDN is expected to deliver about

72% of total Internet traffic by 2022 [5]. Therefore, optimizing

the network performance of CDNs can significantly improve

the quality of experience (QoE) of a variety of applications

built upon it (e.g., Web services and Video-on-Demand, etc.).
One of the key benefits enabled by CDNs is the low content

access latency, which is typically quantified by the time

consumption of delivering requested objects to end users. For

example, the content access latency can refer to the page

load time or the video initialization time for Web or VoD

applications respectively. Critical to the low-latency story is

that users can access content replicas cached on geo-distributed

cache servers close to end users. However, our in-depth analysis

on a large-scale CDN trace collected from seven major CDN

operators across 183 countries reveals that a large portion of
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users are still suffering from high round-trip time (RTT) to

their closest cache server, which can probably result in long

content access latency. Our further analysis identifies that such

high access latency is more prevalent in remote or rural areas,

due to the insufficient deployment of cloud infrastructures as

well as meandering terrestrial routes to cloud servers (e.g.,
prolonged Internet paths caused by remote peering [28]).

However, none of the above root causes are easy to address

in terrestrial networks. First, the deployment of today’s Internet

is essentially an uneven network, where network resources are

aggregated in many developed regions (e.g., “hot areas”). In

remote and/or other under-developed areas, Internet access is

limited, and provisioning and maintaining cloud servers to

improve network performance is likely to be more expensive

even though the population in such areas could be very

large [19]. Second, terrestrial Internet is divided into many

autonomous systems (ASes), and due to the specific routing

policies of different ASes, inter-AS routes might be tortuous,

resulting in meandering routes between users and assigned

cloud servers which further increase the latency. How can we
handle the above challenges?

Emerging mega-constellations with thousands of satellites

flying in low Earth orbit (LEO) raise a new opportunity

to optimize the network performance of CDNs globally.

Modern satellites will be equipped with “high-throughput

communication components” [34], [56], [60] and high-capacity

storage [40], [42], and such satellites have the potential to

be “cache in space”. Intuitively, caching content replicas on

emerging constellations is a promising approach to enable low

latency pervasively [25]. However, fully leveraging the potential

of mega-constellations needs to address several fundamental

challenges: (i) satellites are fundamentally mobile, and moving

at high-speed. How to properly select LEO satellites to

cache content replicas and avoid the impact of intermittent

connectivity? (ii) it is more expensive to carry traffic over

satellites than over terrestrial networks. How to judiciously
assign user requests to a satellite or a cloud cache server in
a cost-effective manner?

We propose STARFRONT, a content distribution framework

that cooperatively leverages cache nodes in both LEO satellites

and terrestrial clouds to optimize the content access latency

in a cost-effective manner. In particular, STARFRONT adopts

two key techniques to achieve cost-effective wide-area content

distribution. First, STARFRONT constructs a dynamic satellite-
cloud topology which captures the time-varying accessibility978-1-6654-4131-5/21/$31.00 ©2021 IEEE



and performance of the satellite-cloud integrated architecture.

The construction process is based on the information of

cloud distribution, predictable satellite trajectory together with

their estimated performance and pricing models. Second,

STARFRONT enables three forms of assignments for users

in different regions. Specifically, a user request can be: (i)

directly assigned to a cloud server (i.e., a terrestrial cache)

via terrestrial networks like in existing cloud-based CDNs; (ii)

assigned to a cloud server through low-latency space routes

constructed by a sequence of satellites; or (iii) assigned to a

satellite cache server if the nearest cloud is still too far away.

The above approaches of request assignment involve different

latency performance and corresponding storage and traffic costs

in practice. STARFRONT judiciously pushes contents and places

replicas on available cloud or satellite servers, and assigns user

requests to proper cache servers to meet the latency requirement

of different applications, while minimizing the total cost of

content distribution via satellite-cloud cooperation.

We have implemented the STARFRONT prototype based on

Apache Traffic Server (ATS) [3]. We also build a testbed to

simulate cloud sites and the dynamic LEO satellite network

to evaluate the proposed framework. Trace-driven evaluations

based on the state-of-the-art constellations (e.g., Starlink and

OneWeb) covering a collection of geo-distributed vantage points

demonstrate the effectiveness of STARFRONT. By integrating

satellites and clouds, STARFRONT outperforms existing cloud-

only approaches and can satisfy various latency requirements

from applications, at an acceptable operational cost. In addition,

we find that the architectural design of constellation can signifi-

cantly affect the performance of STARFRONT, as constellations

with lower orbital altitude and equipped with inter-satellite

links (ISLs) can further reduce more content access latency

for terrestrial users.

Taken together, this paper makes three key contributions:

• We identify and analyze the high access latency problem

in existing CDNs through a measurement study on seven

commercial CDN operators (§II), and envision the feasibility

and challenges of exploiting LEO mega-constellations to

assist pervasive, low-latency content distribution (§III).

• We design STARFRONT, and build a prototype of it. STAR-

FRONT is a content distribution framework that cooperatively

leverages the storage and network capabilities in both clouds

and LEO satellites to judiciously optimize the content access
latency globally in a cost-effective manner (§IV).

• We evaluate the effectiveness of STARFRONT on improving

global delivery efficiency via extensive trace-driven simula-

tions on STARFRONT’s prototype (§V).

II. BACKGROUND AND MOTIVATION

Quick primer for wide-area content distribution. A

content delivery/distribution network (CDN) is a highly-

distributed platform with many cache servers separated globally.

Content providers typically leverage public cloud platforms

(e.g., Amazon AWS, MS Azure, etc.) to deploy cache servers

close to end users. Popular contents from the source server

owned by the content provider are distributed to geographical

cloud servers and in general the distribution process includes

three key steps: (i) pushing the original contents from the

source server to a collection of geo-distributed cache servers

(e.g., through building a distribution tree [29]); (ii) configuring

the region↔server map which at runtime determines how user

requests from different regions should be assigned to a specific

cache server; and (iii) maintaining and updating data in each

cache server, if there are new contents available from the source

server. The above operations performed for content providers

are charged primarily based on the storage and bandwidth they

consumed, following the concrete pricing policies specified by

different cloud providers (e.g., [1], [2]).

Ideally, by moving contents close to users, wide-area CDNs

are expected to geographically enable low content access
latency, which is defined as the time consumption of delivering

one or a batch of object(s) to end users. In practice, the content

assess latency is mainly affected by the round-trip time (RTT)

between users and the cache server they are assigned to, as

well as the available bandwidth. The later typically depends on

ISP or cloud provider pricing, while the former is constrained

by the network topology.

High content access latency observed from a global
perspective. To quantitatively understand the achievable per-

formance of state-of-the-art wide-area commercial CDNs, we

collect RTT measurements from 17402 probes across 183

countries to their nearest cloud sites provisioned by seven

of the most popular CDN platforms (i.e., Akamai, Azure,

Cachefly, Cloudflare, Cloudfront, Fastly, and GoogleCloud).

The measurements were conducted during the period between

March-7 and April-1 2019, using the RIPE Atlas measurement

platform [10]. For each probe we perform more than twenty

ping tests to each of the seven CDNs considered, and

gather the best probing results(access latency) to refrain the

impact of network congestion or temporary link failure on the

measurement results. We also use traceroutes tool to track

how packets are routed between the users and cloud servers.

Figure 1 plots the CDF of the RTT results from different geo-

distributed users to the nearest cloud server of a certain CDN

operator. As shown in Figure 1, despite the advantages of CDNs
(e.g., RTT less than 23ms for 40% of Akamai measurements),
there is still a large fraction of CDN users suffering from RTT
higher than 50ms, with a long tail of up to about 300ms, even
if the closest cloud server is selected.

High network RTTs can significantly impair the user-

perceived experience, especially for time-sensitive applications

with a batch of sequential requests (e.g., Web browsing, video

on-demand etc.). For example, as shown in [27], even tens of

milliseconds of additional RTT might substantially deteriorate

Web browsing page load times and degrade user experience.

To further understand the high RTT observations, we group

the measurement result of each user by their original continents,

as shown in Figure 2. We find that while the latency in many

populated and developed areas is low, there are still a large

number of users suffering from high access RTT, even if the

nearest cloud server is selected. This is especially true for those

users in remote or under-developed areas. Specifically, there
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Fig. 1: Latency distribution in existing CDN operators.
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Fig. 2: Latency distribution grouped by different continents.

are about 53.58%/23.93% users suffering from RTT higher

than 50ms/100ms in total. Even in developed regions like EU

and NA, we still observe 3.4% and 4.5% users associated with

RTT higher than 50ms respectively. The latency problem is

more stringent in AF, where more than 86.6%/49.8% users

suffer from RTT higher than 50ms/100ms.

Massively deploying cache servers in remote/rural regions
is difficult. A straightforward approach to optimize the uneven

CDN deployment and reduce access latency globally is to

extend the coverage of terrestrial cloud sites to serve users in

remote and rural areas, through massively increasing cloud/edge

deployments in those regions. However, the terrestrial deploy-

ment is largely constrained by geographic factors (e.g., terrain)

or massive operation and maintenance cost, especially in under-

developing areas. For example, in some regions, there may have

no sufficient power infrastructure support for cloud/edge sites,

or deployments in these areas are made difficult due to political

or jurisdictional reasons. The status quo of today’s terrestrial

cloud-based CDNs motivates us to explore a challenging yet

important question: how can we address the above challenges
and enable pervasive and low-latency CDN access globally?

III. THE LOW-LATENCY OPPORTUNITY IN FUTURISTIC LEO

MEGA-CONSTELLATIONS

The research and deployment of low Earth orbit (LEO)

satellites are re-gaining popularity in recent years [25], [26],

[32], [35]–[38], [40], [44], [48], [54]. The rapid evolution of

on-board technologies have improved the hardware capability

on state-of-the-art LEO satellites. As compared to the first

generation of satellite network that uses geostationary satellite

for communication, emerging mega-constellations (e.g., Star-

link [15], OneWeb [8]) which plan to consist of thousands of

mass-produced, low-flying satellites will be empowered with

evolved network and storage capability, and thus (likely) enable

new opportunities for constructing low-latency CDNs globally.

(i) Evolved on-board communication capability. Modern

satellites are equipped with “high-throughput communication

components” [34], [56], [60] which are able to provide

tens or even hundreds of Gbps datarate [50]. Many planned

constellations suggest the use of RF or laser inter-satellite links

through which LEO satellite can connect to visible neighbor

satellites and construct a network in space. In addition, due

to its low-flying property (i.e., 500-1200km altitude), LEO

constellations also promise low-latency Internet connectivity, as

compared to traditional geostationary satellites orbiting at about

a 36,000km altitude suffering from high propagation delay.

Another critical thing for realizing reduced latency is that the

speed of light in terrestrial fiber is about 33% slower than that

in air or vacuum [35]. Recent studies have outlined the vision

of low-latency routing in space [36]–[38], [48], revealing the

potential of reducing end-to-end latency via space routes over

LEO spacecrafts, especially for long-distance communications.

(ii) Big data stores in space. Another evolution of on-

board capacity is the storage in space. Recent works [40], [42]

have envisioned the satellite-based big data storage. Cloud

Constellation Corporation (CCC) built by SpaceBelt [13]

is a data storage service using LEO satellites. The CCC

system contains a ring of 10 LEO satellites in a 650-kilometer

equatorial orbit, and three of them are data stores, offering

about 5PB storage capacity since December 2018 [12].

The above evolutions from the space industry thus plot

a promising picture of a satellite-cloud cooperative content

distribution architecture that can (potentially) improve the

accessibility and network performance of existing CDNs.

Intuitively, LEO satellites can assist current cloud-based CDNs

via: (i) constructing low-latency, close-to-optimal space paths

connecting terrestrial clouds and end users to avoid meandering

fiber/cable routes which might prolong the access latency; and

(ii) enabling a new paradigm “cache servers on LEO satellites”

that provides lower access latency for users in regions where

even the nearest cloud site is still too far away. However, while

promising, we argue that constructing such a cooperative CDN

upon cloud data centers and mega-constellations still faces

several unsolved challenges, due to two specific characteristics

in LEO satellite networks.

(i) Scarce and costly space resources. While evolved,

network and storage resources are still relatively limited and

costly in space, as compared to the well-optimized terrestrial

cloud platforms. For instance, transferring 1GB data traffic

takes about $0.1 for the user of existing CDN operators (e.g.,
Amazon CloudFront) [1]. As most emerging LEO constellations

are still under heavy deployment and their pricing policies

are not yet available, thus we estimate the cost of satellite

data transfer based on current operating broadband satellite

systems. For instance, transferring 1GB data volume takes

about $1 by satellite networks, according to the pricing policy

of ViaSAT [17], a satellite provider offering high-speed satellite-

based broadband services. Moreover, for users of the satellite

network, there is an additional upfront cost for the user terminal,

e.g., a small satellite dish [14]. As content providers typically

have a cost budget for distributing their data over CDN, contents

should be judiciously distributed to satellites and clouds in a

cost-effective manner, i.e., the constructed cooperative CDN

is expected to satisfy the latency requirement of applications,

while involving acceptable operating cost.
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(ii) High mobility of LEO satellites. LEO satellites are

moving in high-speed with the respect to the Earth, resulting

in unstable ground communication. Endhosts or cloud sites on

the ground can only communicate to a LEO satellite if only it

moves into the line of sight (LoS). In one orbit period (e.g.,
which is about 90min for a Starlink Phase-I LEO satellite),

one LEO satellite is only visible for a certain ground vantage

point within several minutes. Application-level session might be

interrupted if the request is assign to a satellite leaving the LoS.

Therefore, user requests should be properly assigned to avoid

performance degradation caused by intermittent connectivities.

IV. STARFRONT FRAMEWORK

To tackle the above challenges, we present STARFRONT,

a cooperative content distribution framework that leverages a

number of cache servers hosted either upon LEO satellites or

globally distributed cloud data centers to construct pervasive

low-latency CDNs in a cost-effective manner. At high-level,

STARFRONT exploits the following key ideas: (i) leveraging

the information of cloud distribution and predictable satellite

trajectory, together with their estimated performance and pricing

model to construct a dynamic satellite-cloud topology which

captures the time-varying accessibility and performance of

the satellite-cloud integrated architecture; and accordingly (ii)

judiciously placing contents on the dynamic satellite-cloud

topology, and assigning user requests to proper cache servers

to meet the latency requirement of various applications, while

minimizing the total cost of content distribution.

A. STARFRONT System Overview

Figure 3 plots the overview of STARFRONT, which consists

of two core components: the STARFRONT geo-distributed cache

and the STARFRONT controller. Specifically, the STARFRONT

cache incorporates a cloud segment which is built upon geo-

distributed cloud data centers (i.e., terrestrial cache servers)

offered by public cloud providers (e.g., Amazon AWS), together

with a satellite segment that is built upon emerging mega-

constellations managed by satellite operators like SpaceX or

OneWeb. Cloud data centers communicate with each other via

terrestrial networks, while satellites equipped with inter-satellite

links (ISLs) can transfer data to other satellites through satellite

paths constructed by space routing algorithms (e.g., [36]).

Moreover, leading cloud providers are also actively deploying

ground-station-as-a-service (GSaaS) [4], [21] which can enable

pay-as-you-go ground communications to inter-connect cloud

data centers and satellites. Leveraging GSaaS infrastructures,

terrestrial clouds are able to communicate to a satellite on-

demand if the satellite moves into the LoS.

Content providers can pick a collection of cache servers

in STARFRONT framework and use them to distribute their

contents to end users, as both cloud data centers and satellites

with storage can be selected to cache contents. At runtime the

STARFRONT framework allows content providers to execute

two basic operations: (i) content push and placement operation,

which refers to push contents from the source server to the

set of selected cache servers via inter-cloud/satellite paths; and

(ii) request assignment operation, which redirects user requests

from geo-distributed regions to a proper cache server to obtain

low access latency. Both operations involve fees according to

the dedicated pricing policy of cloud and satellite operators, as

the distribution process may consume storage and bandwidth

resources in corresponding cloud or satellite platforms.

Collectively, STARFRONT enables three forms of request

assignment with different network performance and correspond-

ing costs. First, like traditional cloud-CDNs, STARFRONT

allows users to request contents directly from a nearby cloud

cache server (e.g., 1© in Figure 3), if the cloud performance

can satisfy the application requirement. Second, if the access

latency from a user to its closest cloud cache server is high (e.g.,
due to the insufficient deployment of cloud sites, very-long

communication distance or meandering terrestrial fiber route),

STARFRONT allows users to accelerate the content access via

free-space satellite routes (e.g., 2© in Figure 3). In this form,

related satellites just forward traffic between users and the

corresponding cloud cache servers, and do not need to cache

replicas on the satellite. Third, requests can also be directly

assigned to a satellite cache (e.g., 3© in Figure 3) when the

closest available cloud is still too far. Note that the above

three forms of request assignment lead to different storage

and bandwidth cost in practice, with resources in space being

likely to be more precious. In particular, the first form only

consumes terrestrial storage and bandwidth, the second form

uses terrestrial storage and satellite bandwidth, while the last

form consumes more expensive storage and bandwidth in space.

B. STARFRONT Workflow

To utilize the low-latency potential of emerging mega-

constellations while not incurring high operating overhead

for content providers, the STARFRONT controller judiciously

calculates the placement and assignment decision in a cost-

effective manner, i.e., deciding how to select a set of cache
servers from all available clouds and satellites to form the
content distribution network? and how to assign requests from
different geo-distributed regions to a proper cache server while
not exceeding the cost budget of content providers? To deal with

the high-dynamicity of constellation topology, the STARFRONT

controller exploits the periodicity and predictability of satellite

movement to periodically perform the following operations to

accomplish the cost-effective distribution goal. Each operation

will be described in details in following subsections.

• (i) At the beginning of each period, constructing a dynamic
satellite-cloud topology to model the time-varying availability,



network performance, and cost of available clouds and

satellites, based on cloud and user distributions, constellation

pattern and pricing policies from cloud and satellite providers.

• (ii) Once the satellite-cloud topology is obtained, performing

the judicious placement and assignment algorithm, and

following the calculated decision to push and place contents

on all selected cache servers, and then configuring the

region ↔ server assignment. In practice, the request assign-

ment typically can be applied by local DNS redirection [59].

• (iii) During the period, redirecting user requests to a proper

cache server, based on the region ↔ server assignment.

Intuitively, STARFRONT might assign requests to a nearby

cloud cache server via terrestrial networks for users in

developed areas (e.g., metropolis) where low-latency cloud

platforms are well-provisioned, and issue requests to a cloud

server via a satellite path or directly to an available satellite

cache server, for those users in remote or rural areas where

terrestrial networks and clouds are quite limited.

C. Modeling the Time-varying Satellite-Cloud Topology

1) Formulating the dynamic satellite-cloud topology: While

a number of previous works have studied the cost-effective con-

tent distribution problem in cloud platforms (i.e., how to deploy

replicas on statically-deployed cloud storage servers [29], [47],

[58]), the high-dynamicity of LEO satellites makes the content

placement and request assignment problem fundamentally

different from prior efforts. We thus build a graph to model

the time-varying dynamic satellite-cloud topology.

Vertex set. In terrestrial cloud-CDNs, content providers place

the replica of contents on geo-distributed cloud data centers

owned by cloud operators. Let Src denote the source/origin

server of the content provider. We assume that there are M
available cloud data centers offered by the terrestrial cloud

operator for caching contents, i.e., C = {C1, C2, ..., CM}.

In addition, contents can also be cached by LEO satellites,

and we assume the constellation consists of N LEO satellites

orbiting at the orbital altitude H . The satellite set is denoted as

S = {S1, S2, ..., SN}. Further, to describe the high-dynamicity

of LEO satellites, we assume T is the synodic period of the

given constellation, which refers to the repeated cycles for the

satellites as observed from the Earth surface. Assume a period

T is split into multiple time slots. We extend the satellite set

S to S = {S 1 ∪ S 2, ...,∪S T }, S t = {S1t, S2t, ..., SNt},

where Sit denotes the snapshot of ith satellite in time slot t.
As we have introduced previously, emerging cloud providers

may deploy ground stations close to their data centers (e.g.,
Amazon Ground Station Services [21] and Azure Orbital [4])

to provide on-demand ground communication that can connect

cloud data centers to mega-constellations. Therefore, each cloud

is also accessible via time-varying space routes constructed

by LEO satellites. We thus make a logic snapshot of the

cloud data center set C in different slots, and we set CSt =
{CS1t, CS2t, ..., CSMt}, CS = {CS1 ∪ CS2, ...,∪CST } as

the set of clouds accessible via satellites. CSt refers to the

set of all snapshots of M cloud sites that are accessible via

satellite paths in slot t, and more specifically CSit indicates

the cloud data center i that is accessible via satellite paths in

slot t. Physically, Ci and CSit refer to the same cloud data

center, while logically the total cloud set is C = {C∪CS}. We

denote the snapshot of clouds in slot t as: C t = {C ∪ CSt}.
CDNs receive and dispatch geographical user requests,

which are typically wrapped by HTTP GET/POST requests.

In practice, the request dispatch is generally implemented via

DNS-based or anycast-based client-server mappings [16], [59].

To model the user distribution, we assume the Earth surface is

discretized into non-overlapped grid-like regions, and there are

J regions in total, and use R = {R1, R2, ..., RJ} to describe

the set of all serving regions. User requests are dispatched

based on their regions. Summarily, assume Src is the source

server, the vertex set of the satellite-cloud topology graph

in slot t can be denoted as: Vt = {Src ∪ S t ∪ C t ∪ R}.

Further, the vertex set in a period T is accordingly denoted as:

VT = {V1 ∪ V2 ∪ ... ∪ VT }.
Edge set. For every two different nodes i and j in the

vertex set VT , there might be an undirected edge between

them (i.e., (i, j)). We denote the edge set in a period T as

ET . Specifically, an edge connecting two cloud/satellite nodes

indicates that there is a data transmission path between them,

over either the terrestrial or space network. An edge between

a cloud/satellite node and a region indicates that user requests

from this region can be assigned to the cloud/satellite node.

No edges exist between two different regions as they represent

end users. The source server is similar to a cloud node.
Each edge is associated with a costtraffic(i, j) property,

which indicates the cost of transferring one data unit between

i and j. In addition, if i or j is a region, the edge (i, j) will be

associated with a latency(i, j) property, which refers to the

access delay (e.g., RTT) between users in this region and the

corresponding cache server (e.g., a cloud or a satellite). The

concrete value of costtraffic(i, j) and latency(i, j) depends

on the related vertex type, described as follows.

• (i) For cloud nodes i, j ∈ C in arbitrary timeslot, the data

traffic between them is transferred over the terrestrial Internet.

We have costtraffic(i, j) = 0, if i and j are physically equal,

e.g., i = Ck and j = CSkt. Otherwise, costtraffic(i, j) = c,

i.e., transferring one unit data between i and j costs $c.
• (ii) For cloud i ∈ C and satellite j ∈ S in arbitrary

timeslot, the edge connecting them can be established by the

shortest-path source-routing approach [36] via a sequence

of LEO satellites and a ground station in practice. Consider

that data transmission over space path may consume more

precious inter-satellite and ground communication resources,

we denote costtraffic(i, j) = α ·c, i ∈ C and j ∈ S , where

α is an amplification factor, and α > 1.

• (iii) For satellite nodes i, j ∈ S , (i �= j) in arbitrary timeslot,

we set costtraffic(i, j) = β · c. Similar to α, β is an

amplification factor as data transmission between satellites

might be more costly than that in terrestrial Internet. (β > 1)

• (iv) For region i ∈ R and cloud j ∈ C , costtraffic(i, j) =
c, if j ∈ C, and costtraffic(i, j) = α · c if j ∈ CS, as

leveraging space routes to provide content access to a cloud

site is more costly. In addition, assume users in the same



region perceive similar latencies to the same cache server, and

latency(i, j) is the region-to-server access latency between

region i and server j. This value indicates how fast the cache

server j can response to requests from region r.

• (v) For region i ∈ R and satellite j ∈ S , (i, j) indicates

that requests from r can be assigned to the satellite cache

server j. We set costtraffic(i, j) = α · c. Specifically, if

j = Skt, latency(i, j) refers to the access latency between

region i and satellite k in slot t. Note that as LEO satellites

move during the orbit, the latency between a region and a

satellite cache may accordingly change over time.

With definitions related to vertexes and edges, we define the

connectivity graph in a period T as GT =< VT , ET >.
2) Formulating the cost-effective content distribution prob-

lem over the satellite-cloud topology: Given the time-varying

topology above, next we formulate the cost-effective content

distribution problem based on the satellite-cloud model. For-

mally, the problem can be converted to forming a distribution

graph (DG) upon the satellite-cloud topology GT . Assume

λ(i, j) is a binary value and λ(i, j) = 1 indicates that edge

(i, j) is selected in DG. Assume x(i) is a sever selection

indicator and x(i) = 1 if vertex i is selected in DG. Then

a DG can be presented as DG =< VDG, EDG >, where

x(i) = x(j) = 1, λ(i, j) = 1, ∀i, j ∈ VDG, (i, j) ∈ EDG, and

VDG ⊂ VT , EDG ⊂ ET .

DG reveals how to push and place contents on a collection

of selected cache servers, and how to assign requests from a

certain region to a cache server. First, all nodes in VDG are

selected as cache servers, and have to store the content replicas.

Second, assume r is a region node, then an edge (r, j) ∈
EDG, j ∈ {C ∪ CSt ∪ St} connecting a region and a server

indicates the time-varying request assignment in the period T .

Specifically, let a(r, t) denote the cache server assigned for

region r in slot t. a(r, t) is calculated as follows: (i) if in slot

t there is an edge in EDG connecting r and a server in CSt

or St, then in slot t requests from r will be assigned to the

cache server via space routes; (ii) else if in slot t there is only

an edge in EDG connecting r to a terrestrial cloud in C, then

requests from r will be assigned to the connected cloud via

terrestrial routes; (iii) otherwise, no connectable nodes exist

for r in slot t, and a(r, t) = ∅. Therefore, the problem is

converted to finding a sub-graph DG from GT in period T ,

while satisfying several constraints as described below.

C1: Each region has to be assigned to a cache server in
each time slot. The distribution graph DG should guarantee

that users in every region are assigned to a cache server during

the period T , i.e., a(r, t) �= ∅, ∀r ∈ R, ∀t ∈ T .

C2: For each selected cache server, there should be at
least one path from the source server to the cache server.
Originally, contents are generated on the source server, and

have to be pushed to each selected cache server (i.e., where

x(i) = 1). Therefore, in DG there should be a distribution

path from the source server to every cache node.

C3: Request assignments for each region should satisfy
a latency requirement specific to various applications. As

many applications have a latency requirement to sustain good

RTT=100ms
RTT=20ms

RTT=40msS-1

S-2
LEO

C1

R-1
R-2

R-3

LoS

RTT=100ms
RTT=20ms

RTT=80ms

C1

S-2
S-1
RTT=20ms

LEO

R-1

R-2

R-3

LoS

Time

Source
Time slot 1

Time slot 2

Latency requirement:
50ms

Replica Placement:
C1, S1

Assignment in slot 1:
R1 C1, via Satellites
R2 C1, R3 C1

Assignment in slot 2:
R1 S1
R2 C1, R3 C1

Fig. 4: An example of distributing contents from the source

server and corresponding assignment.

user experience, in each period T , the average user-perceived

latency between each region and its assigned cache server is

expected to be lower than a threshold Thdlatency . Specifically,

assume the user-perceived latency for region r in slot t is:

latency(r, a(r, t)), and thus the latency constraint can be

formulated as:
∑

t
latency(r,a(r,t))

T ≤ Thdlatency, ∀t ∈ T .

Figure 4 plots an example showing a process of content

placement and request assignment. Assume there are three

regions (R1-3), one cloud site (C1), and two LEO satellite

(S1-2), in two time slots. In each time slot, the RTT from R2

and R3 to cloud C1 is about 20ms, which is below the latency

requirement 50ms. In slot 1, the RTT between R1 and C1 is

100ms via the terrestrial network, and is 40ms via satellites.

In slot 2, as S2 moves out of the transmission range of R1,

the space route from R1 to C1 updates, and the RTT between

R1 and C1 over satellites increases from 40ms to about 80ms.

Based on predictable conditions, a viable solution to guarantee

the latency requirement is to push and place replica on S1 and

C1, and: (i) assign requests from R2 and R3 to C1 in each

slot; (ii) assign requests from R1 to C1 via satellites in slot 1,

and (iii) assign requests from R1 to S1 in slot 2.

Cost analysis. Note that both the content placement and

request assignment operations may involve cost for content

providers. In the placement process, distributing contents from

the source server to all cache servers consumes bandwidth

in terrestrial and space networks, with a cost of CT1 =∑
i,j costtraffic(i, j) ∗ λ(i, j) ∗ W, ∀i, j ∈ {Src ∪ C ∪ S },

where W is the content size. Caching contents on clouds or

satellites also involves additional storage cost, and we denote

coststorage(i) as the cost of storing one data unit on cache

server i. We set coststorage(i) = d if i is a cloud server,

and coststorage(i) = γ ∗ d if i is a satellite, where γ ≥ 1
indicates that on-broad resource is more expensive as compared

to terrestrial clouds. Hence the total storage cost is calculated

as: CT2 =
∑

k coststorage(k) ∗ x(k) ∗W,k ∈ {C ∪ S }.

Let req(r, t) denote the total number of user requests from

region r in slot t. Then the cost of the assignment process is

involved by consuming bandwidth between users and assigned

cache servers. Roughly, the assignment cost can be calculated

as: CT3 =
∑

r,t costtraffic(r, a(r, t)) ∗ req(r, t) ∗ W, ∀r ∈
R, t ∈ T . Collectively the total cost in a scheduling period T
can be formulated as CT = CT1 + CT2 + CT3, where CT1



is the bandwidth cost of distributing source contents to each

selected cache server, CT2 refers to the storage cost of all

cache servers, and CT3 indicates the bandwidth cost of serving

user requests at runtime.

Cost-effective content distribution problem. Typically,

content providers may have their own budget of exploiting

cloud/satellite infrastructures to distribute contents. The cost-

effective content distribution problem in our STARFRONT

framework is to find a distribution graph DG from GT that

minimizes the total cost CT , while satisfying all the above

constraints C1, C2 and C3. The cost-effective problem is

essentially an instance of the Integer Linear Programming

(ILP) problem. We implement the ILP formulation and solve

it with Python MIP [9]. The typical processing time of the

implementation takes minutes to hours as the number of

satellites and user requests increases, which is too long to

be practical. This motivates us to design and implement a more

efficient and applicable solution.

D. Judicious Replica Placement and Request Assignment

We propose a heuristic to solve the content distribution

problem efficiently, with the key idea of judiciously exploring

a proper cache server assignment that satisfying the application

level latency requirement, while incurring minimal bandwidth

and storage cost. In particular, exploiting cache servers to serve

end users typically involves three portions of cost. Assume s
is the cache server assigned for region r, and recall the cost

in each step of a content distribution process. First, the replica

has to be pushed from another server that has stored the replica

to s. This step consumes inter-cloud/satellite bandwidth cost.

Second, provisioning replica on clouds or satellites also incurs

storage cost. For each selected cache server, the above two

steps only need to be executed once at the beginning of a

period T . Finally, during the period T and in every time slot,

serving requests from region r also involves bandwidth cost

between s and r. Formally, let Costassign(r, s) denote the cost

estimation for assigning requests from r to s.

Algorithm 1 shows the details of STARFRONT’s replica

placement and request assignment algorithm. In each period

T , STARFRONT’s controller (Figure 3) first generates the

connectivity graph GT based on the cloud distribution and

predictable trajectory of satellites during the current period.

Then the controller runs the algorithm to decide how to push

contents to each selected cache servers and properly assign user

requests. For each region r, STARFRONT first searches the set

of all available cloud or satellite servers (i.e., Candidate) that

can meet the access latency requirement (line 7-12). Among all

entries in Candidate, STARFRONT greedily picks the server

s involving the minimal cost (line 13-14). During the runtime

of the algorithm, if x(s) = 1, replicas have already been

provisioned on s, and the cost only includes the bandwidth cost

incurred by using s to serve user requests from r. Otherwise,

if x(s) = 0, the operation includes additional cost of pushing

and storing replicas on the selected cache server.

Algorithm 1 Judicious Placement and Request Assignment.

1: Input: Connectivity graph GT =< VT , ET >, Latency

requirement Thd.

2: Output: Distribution graph DG, represented by x(k), k ∈
{C ∪ S } and λ(i, j), i, j ∈ VT .

3: /* Greedily assign requests satisfying Thd while minimiz-
ing total cost. */

4: x(Src) = 1 /* Original contents on source server. */

5: for all region r ∈ R do
6: /* Find all available servers satisfying Thd. */

7: Candidate = ∅

8: for all i ∈ VT do
9: if latency(r, i) ≤ Thd

10: Candidate.add(i)
11: end if
12: end for
13: Selected ← argminj∈VT

Costassign(r, j)
14: x(Selected) = 1, λ(r, Selected) = 1
15: end for
16: return all x(k) and λ(i, j).

V. PERFORMANCE EVALUATION

As most emerging mega-constellations are still in their

early stage, it is difficult to conduct experiments on live

satellite networks. While there exists many prior efforts for

network simulation or emulation, existing works either fail

to simulate/emulate the high dynamics of LEO satellite (e.g.,
NS3, Mininet) or they can not support evaluation of realistic

content distribution (e.g., [44], [48]). To address this limitations

of previous evaluation methodology, we build a testbed to

simulate geo-distributed cloud data centers and constellations

based on the public orbital data and implement a prototype

of STARFRONT. We further conduct trace-driven simulations

to verify the effectiveness of STARFRONT on cost-effective

latency reduction, and leave the systematical evaluation on

system-level effects (e.g., delay, loss, system parameters, etc.)
upon real deployments as our future work.

A. Simulated Satellite-Cloud Integrated Network

At high-level our testbed incorporates a topology generator
which loads the information of cloud distributions as well as

time-varying satellite trajectories to generate the satellite-cloud

network topology. Further, the testbed exploits a number of

containers running on top of physical machines to simulate

the software behaviors of content distribution (e.g., receiving

user requests, querying the cache for required data and sending

responses back to users).

Topology generator. The topology generator simulates

the satellite-cloud integrated architecture as follows. First,

it uses the distribution of Amazon AWS cloud sites as the

available cloud data centers [22]. We configure the cloud

distribution based on Amazon as it has deployed a large number

of world-wide cloud sites and recently is deploying ground

station services to interconnect clouds and satellites. Second,

the topology generator calculates the time-varying satellite

trajectory, which includes the LLA positions (i.e., latitude,



Parameter description Value
Duration 7 days
# of Total Requests 3.9 million
# of Total Bytes Requested 4137 TB
50th/90th Obj Size 256KB / 1.3 GB

TABLE I: Summary of the CDN trace used in the evaluation.

longitude and altitude) of each satellite in every time slot.

Specifically, the trajectory information is calculated by third-

party orbit computation tool based on the two-line element

(TLE) data generated by [11], and is used to estimate the

visibility and distance of each satellite from the view of other

nodes (e.g., neighbor satellites, ground stations, or terrestrial

users). In our experiment, we evaluate STARFRONT under the

first shell of SpaceX’s Starlink Phase-I [15] and OneWeb [8]

constellations as both of them plan to deploy hundreds or

thousands of LEO satellites to provide wide-area coverage and

Internet services. As of August 2021, the former constellation

consists of 1584 satellites in 72 orbital planes with an altitude

of about 550km, while the later one is a planned initial 648-

satellite constellation at approximately 1200km altitude. The

synodic period of Starlink and OneWeb is configured as 5731s

and 6557s respectively, based on their public constellation

information. Finally, we set the connectivity of each node in

the topology based on their related visibility, i.e., a satellite is

connectable for a ground station if the satellite moves into the

transmission range.

Clouds and satellites simulation. We use Docker contain-

ers [6] running on physical machines to support the simulation

of cloud/satellite-based cache servers. Specifically, we run a

number of Docker containers on each physical machine, and

use each container with network software stack to simulate

available cloud/satellite servers. Containers are connected to the

physical NIC using macvlan [7], which virtualizes a physical

NIC into multiple virtual NICs. We use tc to control the

time-varying RTT, inter-satellite/satellite-ground connectivity

and bandwidth of each link. Inter-cloud network conditions are

configured based on the measured values from realistic AWS

cloud sites. The connectivity and performance of satellites are

configured based on the results characterized by [48].

Dataset and request generator. Our evaluation leverages a

real-world CDN trace collected from a commercial cloud CDN

operator on February 24, 2015, containing 552 thousands flow

records in total. Table I describes the details of the selected

trace. Moreover, we write a request generator to simulate user

clients. It extracts information from the trace and generates

HTTP requests to fetch object data. Each HTTP request issued

by end users is processed as follows. First, the user issues

a DNS query to the location DNS server. Second, the DNS

server returns the IP address of the assigned cache server (one

of the Docker container) to the user. Finally the client sends a

request to the cache server to fetch the content data.

B. STARFRONT Prototype

STARFRONT controller. The controller of STARFRONT is

implemented in around 1100 lines of Python codes. Periodically,

the controller reads the satellite location information and the

historical network performance information, and calculates

the decisions for content placement and request assignment.

Content replicas are then pushed to the cache servers via HTTP

connections, following the calculated decision. We follow the

pricing policy of existing cloud and satellite operators (e.g.,
CloudFront [1] and ViaSAT [18]) to estimate the cost function

of content delivery via clouds or satellites.

STARFRONT cache servers. We have implemented the STAR-

FRONT cache based on Apache Traffic Server (ATS) [3]. ATS

is a multi-threaded, event-based, modular, high-performance

cache and forward proxy server, written in C++. ATS is

distributed as a commercial product and has been used in

many production-level systems. We modified ATS to connect

to STARFRONT controller and execute the placement decision.

Next, evaluations in this section aim at answering the

following two questions: (i) can STARFRONT satisfy various

latency requirements of geo-distributed users as compared with

other state-of-the-art content distribution approaches under

representative CDN traces and constellation patterns? and (ii)

what is the corresponding cost of using STARFRONT?

C. Verifying the Ability of Satisfying Latency Requirements

We compare the latency reduction on global content dis-

tribution of four different strategies: (i) the state-of-the-art

low-latency content placement and assignment scheme in

existing cloud CDNs (denoted as Cloud-based SoA) (e.g.,
TailCutter [47], GRP [29], CosTLO [58] etc.); (ii) STARFRONT,

our proposed framework that judiciously exploits cloud and

satellite servers to place contents and assign user requests to

proper cache servers to satisfy the latency requirements of

various applications, while minimizing the operational cost.

In addition, to comprehensively understand the incremental

effectiveness of integrating LEO satellites to cloud-based CDNs,

we evaluate STARFRONT under two specific configurations:

(iii) replicas are cached on cloud servers, and users can only

access clouds via satellite paths (i.e., C = ∅, S = ∅ but

CS �= ∅ in Section IV-C); and (iv) replicas are cached on

cloud servers, and can be fetched by user through terrestrial

or satellite paths (i.e., S = ∅, but C �= ∅ and CS �= ∅ in

Section IV-C). Strategy (iii) and (iv) refer to the methodology

that only exploiting satellite networks to extend the connectivity

of terrestrial clouds, without using the storage capability of

satellites to cache contents in space. We denote (iii) as cloud

cache accessed by satellite paths (CCS) and denote (iv) as

cloud cache accessed by terrestrial and satellite paths (CCTS).

Figure 5 plots the CDF of user-perceived RTTs of different

content distribution strategies under various latency require-

ments. The results of STARFRONT are obtained under the con-

figuration of Starlink constellation. Results with OneWeb are

similar and omitted due to the page limit. Since STARFRONT

integrates clouds and satellites to store and distribute content

globally, it outperforms the state-of-the-art cloud-based strategy

by 90.51%/66.63%/52.82%/35.62%/15.45% on average, under

the RTT requirements 10ms/30ms/50ms/70ms/100ms respec-

tively. More specifically, we make several observations. First,

for stringent RTT requirements (e.g., ≤10ms), exploiting the

satellite network to accelerate cloud access and even directly



0 100 200 300
RTT (ms)

0
0.25

0.5
0.75

1
C

D
F

Cloud SoA StarFront(CCS) StarFront (CCTS) StarFront

0 100 200 300
RTT (ms)

0
0.25

0.5
0.75

1

C
D

F

0 100 200 300
RTT (ms)

0
0.25

0.5
0.75

1

C
D

F

0 100 200 300
RTT (ms)

0
0.25

0.5
0.75

1

C
D

F

0 100 200 300
RTT (ms)

0
0.25

0.5
0.75

1

C
D

F

Fig. 5: CDF of RTTs achieved by different strategies under various latency requirements (10/30/50/70/100ms).
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Fig. 6: RTT statistic in seven geo-distributed vantage points.

provide cache in space can significantly improve the ability to

satisfy the latency requirement for wide-area user requests. This

is because incorporating LEO satellites complements terrestrial

CDNs and enables low-latency access to cloud and satellite

servers from a global perspective. Second, as the required RTT

increases (e.g., 10ms → 100ms), the latency performance of

STARFRONT is getting closer to the cloud-based-only approach.

This result indicates that under a loose latency constraint

STARFRONT preferably uses more cloud-based resources to

save operational costs involved by satellites. Third, caching

on satellites can further help reduce the latency, but should

inevitably involve much more operational costs. On our further

analysis, we find that LEO satellites are more suitable to cache

contents that will be requested by international users. This is

because LEO satellites inherently have high dynamics, and

satellite cache with regional contents may suffer from low

cache utilization as it orbits the Earth in high velocity.

Further, we turn our focus on the RTTs on a set of geo-

distributed regions. Figure 6 shows the latency comparison

under different content distribution strategies for a collection

of vantage points around the world. We observe that the latency

gain achieved by STARFRONT differs in different regions.

For users in remote or under-developed areas, STARFRONT

can achieve much more latency improvement since the cloud

deployment and terrestrial network infrastructure in these

regions might be underserved, and LEO satellites extend the

availability and performance of terrestrial cloud platforms.

Specifically, STARFRONT reduces more than 90% RTT for

users in remote regions such as Papeete and Majuro, as

compared to the cloud-only strategy. For users in populated

areas like Kansas City and Chengdu, all strategies achieve

comparable latency results due to the sufficient deployment of

nearby cloud infrastructures.

D. Latency Reduction under Various Replica Sizes

Replicas from the content providers may have different

object sizes in practice, according to the concrete application

type (e.g., static texts, files or video clips, etc.). We assess the

content access latency indicating how fast the requested object

can be delivered to users under various replica sizes. As shown
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Fig. 7: Latency results under different replica sizes.
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in Figure 7, we observe that smaller requests with lower object

size prone to achieve more latency reduction, as compared to

other larger requests. The major benefit of STARFRONT is to

exploit emerging LEO satellites to push contents more close to

users and realize lower client-to-content RTT. On the deeper

analysis, we find that for small requests the total content access

latency is dominated by the RTT, and the content access latency

is jointly affected by the achievable throughput and RTT, and

small requests are responded faster under low RTT situations.

E. Latency Reduction under Different Constellation Patterns

Different satellite operators have their specific constellation

designs, which differ in orbital parameters (e.g., orbital altitude,

inclination, etc.), and the complete constellation requires a

long time to fully deploy. Next we examine the latency

reduction under different constellation patterns. Specifically,

in our experiment we compare the latency under two state-

of-the-art constellations Starlink and OneWeb. As shown in

Figure 8, we find that STARFRONT associated with Starlink

can achieve lower latency as compared to OneWeb. The reason

is threefold. First, OneWeb satellites are working on a higher

altitude as compared to Starlink, and thus it suffers higher

propagation delay when working as a cache server or providing

network connectivity to a terrestrial cloud. Second, OneWeb

satellites do not have inter-satellite data links, hence it limits

the latency improvement when using satellite to construct space

routes to extend the accessibility of cloud servers. Third, as

the Starlink constellation consists of more LEO satellites than

OneWeb, and if those satellites have adequate storage capability

to cache contents, STARFRONT associated with Starlink can

obtain higher latency gain since a denser constellation enables

more cache servers and diverse low-latency space routes for

fetching contents from a cloud.



(α, β, Thd)

Cost($/GB) Method
Cloud
SoA

SF
(CCS)

SF
(CCTS)

SF

< 2, 2, 10ms > 0.108 0.208 0.203 0.250
< 2, 2, 50ms > 0.105 0.202 0.162 0.163
< 2, 5, 10ms > 0.107 0.211 0.183 0.240
< 5, 5, 10ms > 0.108 0.507 0.485 0.611
< 5, 5, 50ms > 0.104 0.503 0.299 0.398

TABLE II: Content distribution cost under different pricing

policies and latency requirements.

F. Operational Costs

Finally, we evaluate the operational cost, including both the

storage and bandwidth involved by the content distribution

process. Table II summarizes the cost (sum of storage and

bandwidth) of content distribution under different strategies

(i.e., the average cost of distributing one GB data to users),

with various configurations of the coefficient α, β and Thd.

As shown in Table II, the cost increases as we enlarge the

cost coefficient α and β. As compared to cloud-only strategies,

STARFRONT achieves lower latency at the cost of more content

distribution fees. While more expensive, the cost might not be

unacceptable, and should be worth for high-priority regions or

tasks with very stringent latency requirements.

VI. RELATED WORK

We briefly discuss the related works in this section.

Replica placement and request assignment in CDNs.
A considerable number of previous research has studied the

replica placement or request assignment problem in cloud-

based CDNs [20], [29], [41], [43], [47], [49], [53], [58],

[59]. CostTLO [58] combines the use of issuing redundant

requests to fetch contents from different cloud storage nodes.

NetSession [61] is a peer-assisted CDN system that leverages

both dedicated, centrally managed infrastructures and clients

to distribute contents. NetSession can deliver several of the

key benefits of both infrastructure-based and peer-to-peer

CDNs. The fundamental difference between STARFRONT and

existing cloud-based works is that: STARFRONT is a framework

exploiting network and storage resources on clouds (static) and

LEO satellites (dynamic) cooperatively to optimize the global

content delivery efficiency. Different from prior efforts (e.g.,
NetSession) STARFRONT characterizes the high mobility of

LEO satellites, and leverages their predicted trajectory to assist

the calculation of content placement and request assignment

decisions. As shown in the evaluation, through exploiting

LEO satellites equipped with storage and high-datarate ISLs,

STARFRONT can improve the delivery efficiency of CDNs in

a cost-effective manner, especially for the large population in

remote areas.

Exploring networks constructed upon “NewSpace” con-
stellations. Since the design of STARFRONT is partially based

on emerging LEO constellations, our work is inspired by a

number of recent studies on characterizing and understanding

the network performance of “NewSpace” constellations [24],

[25], [30], [31], [35]–[38], [44], [45], [48], [55]. Several

works have studied the routing algorithm in satellite networks.

For example, to understand the latency properties of LEO

satellite networks, the author in [36] builds a simulator to

evaluate how to use the laser links to enable low-latency

communication over satellites. Similarly, a ground-relay based

routing strategy is proposed in [37]. Authors in [26] propose

a path-aware networking architecture to optimize Internet

routing over an integrated satellite and terrestrial network.

Moreover, Motifs [26] is proposed to dynamically build network

connectivities in space, tackling the high dynamism in LEO

satellites. All these works complement our work.

In-Orbit computing. Recent works also explore the fea-

sibility of leveraging the improved computation capability in

emerging nanosatellite constellations to build a new class of

computer system [25], [32], [46]. Authors in [25] qualitatively

examine the opportunities and challenges of in-orbit computing.

An orbital edge computing (OEC) [32] architecture is proposed

to address the limitation of existing “bent-pipe” architecture

and optimize the edge processing latency. Instead of focusing

on nanosatellites only, our work proposes a cooperatively

architecture that jointly exploits the resource on both terrestrial

cloud data centers and LEO satellite to judiciously improve

the performance of content distribution on a global scale.

Caching algorithms. The algorithm that determines how

to update or replace objects cached in each edge node is also

an important issue for CDNs. The state-of-the-art algorithms

are typically heuristic-based (e.g., Least-Recently-Used and

its variants [23], [33], [39], [51]) or learning-based [52], [57].

Learning Relaxed Belady (LRB) is a recently proposed CDN

cache design which leverages a novel metric good decision
ratio to optimize the byte miss ratios in cache-like systems.

These studies focusing on the caching strategy in dedicated

edge nodes complement our work.

VII. CONCLUSION

This paper investigates the problem of constructing low-

latency, cost-effective CDNs upon emerging LEO satellites and

clouds. We analyze and quantify the potential benefits, feasi-

bility and challenges of a satellite-cloud integrated CDN for

improving the content access latency. We present STARFRONT,

a cost-effective framework that takes dynamic network topology,

workload distribution, and pricing policy from satellite/cloud

operators as the input, and optimizes the access latency of

content distribution. Trace-driven evaluations show that by

cooperatively and judiciously placing replicas on satellites and

clouds, STARFRONT can satisfy various latency requirements

from applications with acceptable cost, as compared to existing

cloud-based approaches.
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