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Abstract—In recent years, more and more wireless networks
support both 2.4GHz and 5GHz bands. However, in large-
scale dual-band wireless networks, lack of understanding on the
behavior and performance makes the network diagnosis and
optimization extremely challenging. In this paper, we conduct
a comprehensive measurement to characterize the behavior
and performance in a large-scale dual-band wireless network
(TD WLAN). We make several meaningful observations. (1)
Although the 5GHz band outperforms the 2.4GHz band, 60% of
devices tend to be associated with the 2.4GHz band. The device
association behavior has a large impact on the performance.
(2) Rogue and non-WiFi devices are prevalent, wherein hidden
terminal interference increases the average loss rate by 8%,
carrier sense interference increases the average WiFi latency by
45%, and RF interference further aggravates both packet loss
and channel contention. (3) The dynamic channel assignment
strategy is not always effective. On this basis, we propose a
novel and easy-to-implement strategy to improve the wireless
performance by intelligent band navigation and heuristic channel
optimization. The actual deployment in TD WLAN shows the
packet loss reduces by 40% on average and the WiFi latency for
more than 60% of devices is below 5ms.

Index Terms—WiFi, measurement, management, performance

I. INTRODUCTION

WiFi has become one of the most popular ways to access

the Internet [1]. In recent years, mobile devices experience

explosive growth [2]. The statistical report indicates that more

than 22 billion devices are going to be connected via wireless

networks in 2021 [3]. To meet the ever growing demand, many

organizations (e.g., university) deploy large-scale wireless

networks to provide high-quality access service. Moreover,

with the development of WiFi technologies, more and more

wireless networks support both 2.4GHz and 5GHz bands

[4], [5]. In such large-scale dual-band wireless environments,

network administrators face two typical challenges.

On the one hand, around a large-scale wireless network,

there may exist a lot of neighbor 802.11 networks. For ex-

ample, many users prefer to use self-built access points (APs)

to get stronger received signal strength indication (RSSI). The

configurations of self-built APs (noted as rogue APs hereafter)

generally take no account of the surrounding environment,

which greatly increases the probability of channel contention

and packet collision. In addition to the interference across

WiFi enabled devices, there may exist the RF interference

caused by many non-WiFi devices, e.g., Bluetooth devices.

Different types of interference increase the difficulty of the

spectrum resource management. On the other hand, the band

characteristics and the association behavior of user devices

are highly different in the 2.4GHz and 5GHz bands, which

could affect the access performance. Without understanding

the behavior and performance in large-scale dual-band wireless

networks, it is difficult for network administrators to make

accurate decisions for performance optimization.

There are extensive studies that characterize the behavior

and performance of different wireless networks [4], [6]–

[19]. However, many of them are limited by the scale of

measurements [6]–[10], [17]–[19]. Although a few studies

conduct measurements on large-scale wireless networks [4],

[11]–[16], most of them only focus on the 2.4GHz band [11],

[13]–[15]. Recent studies have begun to explore the charac-

teristics of 802.11ac networks [4], [12], but they still lack a

comprehensive comparison between 2.4GHz and 5GHz bands.

Besides, little research explores to improve the performance

in large-scale dual-band wireless networks.

In this paper, we conduct a comprehensive measurement to

understand the wireless behavior of a large-scale dual-band

wireless network TD WLAN. It has more than 7000 APs

deployed in 54 dormitory buildings of T university. We further

evaluate the effect of different wireless behavior on perfor-

mance in two bands. Based on the measurement study, we

propose a novel strategy to improve the wireless performance

by optimizing the spectrum resources in TD WLAN.

The main contributions can be summarized as follows:

(1) Data Collection. We design an efficient data collec-

tion method to get wireless metrics without any dedicated

measurement hardware. Compared to the Simple Network

Management Protocol (SNMP) based polling method, our

method reduces the average CPU usage of wireless access

controllers by about 25% and improves the data collection

efficiency by 16 times.

(2) Measurement. We conduct a large-scale measurement

on the wireless behavior and present a systematic analysis

on the wireless performance in TD WLAN. We find that

although the 5GHz band significantly outperforms the 2.4GHz

band in both loss rate and WiFi latency, 60% of devices

tend to be associated with the 2.4GHz band in dual-band

settings. We reveal the prevalence of rogue and non-WiFi

devices, most of which work in the 2.4GHz band, and quantify978-1-6654-4131-5/21/$31.00 ©2021 IEEE



the effect of three types of interference. Hidden terminal

interference increases the average loss rate by 8%, carrier

sense interference increases the average WiFi latency by 45%,

and RF interference further aggravates both channel contention

and packet loss. In large-scale dual-band wireless networks,

the dynamic channel assignment (DCA) strategy is not always

effective to mitigate the effect of interference.

(3) Performance Optimization. We propose a novel strat-

egy from the perspectives of band selection and channel

configuration to improve the overall wireless performance,

which could be implemented by easy-to-operate parameter

settings. First, the strategy could achieve the intelligent band

navigation by learning the directed acyclic graph (DAG)

for causal inference. Second, the strategy could achieve the

channel optimization by heuristic configurations based on the

measurement results. The actual deployment in TD WLAN

shows that the packet loss reduces by 40% on average and the

WiFi latency is below 5ms for more than 60% of devices.

II. DATASET AND METHODOLOGY

TD WLAN is one of the largest dual-band wireless net-

works. There are more than 7000 homogeneous APs deployed

indoors in 54 dormitory buildings of T university, which

provide network access for more than 45,000 individual users.

The APs are generic commercial devices (Huawei 4030DN)

and support dual-band with management provided by 13

separate access controllers (ACs). In TD WLAN, there are

3 available orthogonal channels in the 2.4GHz band and 9

available orthogonal channels in the 5GHz band. TD WLAN

is deployed in dense mode with one AP serving two or three

rooms. The placement of APs is based on the signal coverage

of the service area in both bands. In this paper, we mainly

collect three weeks of data for measurement analysis and

evaluation. The data from April 13th, 2019 to April 19th,

2019 is used to characterize the behavior and performance

of TD WLAN in Section III and Section IV. Because the

collected data in TD WLAN presents a weekly pattern, one

week of data is representative for the measurement study. The

data from April 20th, 2019 to April 26th, 2019 is used to

evaluate the effectiveness of the DCA strategy in Section IV-B.

The data from May 11th, 2019 to May 17th, 2019 is used to

evaluate the proposed optimization strategy in Section V-E.

Besides, to achieve the intelligent band navigation in Section

V-B, we collect data of one month before April 13th, 2019 for

model training. Inquiries about data sharing may be directed

to the authors of the paper.

Ethical issues: The data collection is authorized by Network
Operation Center in T university and we have signed a

confidentiality agreement to ensure no private data leakage.

We anonymize all privacy information such as IP and MAC

addresses. User identifiable information cannot be traced back.

A. Efficient Data Collection

SNMP is widely used to monitor the network device status.

For a given object identifier (OID), we can initiate SNMP

requests and get object values in the form of key-value pairs
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Fig. 1. (a). The packet interaction process of SNMP based polling method for
obtaining all key-values pairs of each object. (b). The sketch of our proposed
data collection method.

[20]. Commercial ACs generally support SNMP and would

organize the monitored wireless objects in the form of SNMP

with the device MAC address or the AP MAC address as

the key value. The wireless monitor information measured

by commercial ACs is relatively accurate and valuable for

characterizing the wireless behavior and performance.

To collect these objects, one possible method is to imple-

ment an SNMP based polling tool [11], [21], [22]. However,

it does not work well in large scale wireless networks such

as TD WLAN. First, the SNMP service has a low priority

in ACs. We can only serially get all required objects in each

round of polling, which leads to low data collection efficiency.

Besides, the data of each object needs to be transmitted by a

large amount of SNMP packet interactions. Fig. 1(a) shows the

packet interaction process for obtaining all key-values pairs of

each object. At the beginning, the collector initiates an SNMP

GET request. The SNMP agent in AC will query the first

key-value pair and transmit it back by the SNMP response.

After that, the collector will continue to initiate a series of

GET-NEXT requests until all key-value pairs of the object

are obtained. Frequent data requests and responses may lead

to excessive CPU usage for ACs, which could affect other

important services (e.g., data forwarding). Second, at the rush

hour, each object includes a large amount of data. The data

acquisition for each object may consume huge time, which

will cause different objects in the same round of polling to be

out of sync. Even worse, sometimes the next round of polling

begins while the current round of polling has not been finished.

It will not only cause some requests to be unresponsive, but

also greatly limit the polling frequency.

To solve the problems, we design an efficient and

lightweight data collection method, which can be implemented

as extensions of the SNMP service on commercial ACs. The

sketch of the method is shown in Fig. 1(b). We organize

the OIDs of all required objects into the form of XML file

and transfer it to each AC in advance. Once the XML file is
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Fig. 2. (a). Comparison of CPU usage between the SNMP based polling
method and our method. (b). The average time of data collection in each
round for the SNMP based polling method and our method.

received, AC will parse it and build the index structure (e.g.,
pointers) to help quickly find the storage location of different

objects in memory, which could avoid the query overhead

in Fig. 1(a). Note that although we organize the requested

objects into XML format for the convenience of parsing, other

types of data organization formats can also be adopted here.

In each round of polling, instead of initiating a large amount

of SNMP GET requests to obtain all key-value pairs for each

object, we initiate an SNMP SET request to set a predefined

state parameter to 1, which would trigger the SNMP agent

to directly fetch all required objects from the memory at the

same time with the help of the index structure without SNMP

packet interactions in Fig. 1(a). After that, the state parameter

will be set to 0 until the SNMP SET request of the next round

of polling is received. After the data for all objects has been

prepared, ACs will compress it and send it to the collector by

File Transfer Protocol (FTP).

To demonstrate the superiority, we respectively deploy the

SNMP based polling method and our proposed method to

collect the same wireless objects in two different days. The

collection period is set to 5 minutes and we record the CPU

usage every 1 minute. Fig. 2(a) shows the CPU usage of the

two methods in the same hour. We can see that the CPU usage

of our method is almost below 20% and it is only high within

the one or two minutes of requests being initiated, while the

CPU usage of the SNMP based polling method is always

high during the hour. We further compare the average time

of data collection in each round for the two methods in Fig.

2(b). We observe that the average time is about 19.3 minutes

for the SNMP based polling method, which far exceeds the

collection period. It is difficult to synchronize across different

objects. For our method, the average time is about 1.2 minutes,

which increases the data collection efficiency by 16 times.

Considering that SNMP objects in ACs are updated at regular

intervals, our method is very efficient and can ensure the data

synchronization to a large extent. In our measurement study,

we set the the data collection period as 5 minutes.

B. Objects for APs and User Devices

Based on the data collection method introduced in Section

II-A, we collect two types of wireless objects. Objects in the

first type are related to APs and user devices in TD WLAN,

which can be directly measured by commodity WiFi hardware

working in the normal data forwarding mode. Objects in the

second type are related to rogue and non-WiFi devices, which

will be introduced in Section II-C. In this section, we mainly

describe 7 important objects in the first type.

(1) Channel Utilization: It represents the time proportion

occupied by all WiFi and non-WiFi devices for the current

working channel of a given AP. (2) Interference Utilization:
It represents the time proportion of the interference from

other 802.11 networks working on the same channel with the

current AP. (3) Transmitted Frames: It represents the number

of successfully transmitted 802.11 frames from APs during

the period of data collection. It means APs receive layer-2

(MAC) acknowledgements (ACK) for these frames. The object

is abbreviated as Transnum. (4) Retransmitted Frames:
It represents the number of retransmitted frames due to the

packet loss or packet error in the MAC layer during the period

of data collection. The object is abbreviated as Retrynum.

(5) Failed Frames: It represents the number of frames that

finally fail to transmit after several retransmission attempts

(The maximum retransmission threshold in TD WLAN is set

to 7). The object is abbreviated as Failnum. (6) RSSI: It

represents the average packet RSSI (received signal strength

indication) observed in APs. (7) SNR: It represents the signal

and noise strength ratio of frame reception.

C. Objects for Rogue and Non-WiFi Devices

Because APs in TD WLAN lack extra radios to measure

the information related to rogue and non-WiFi devices, we

configure them to alternately work in the data forwarding

mode and the monitor mode in different periods. When APs

work in the monitor mode, they can scan the channels by the

2 radios (2.4GHz and 5GHz) but cannot provide the network

access service. Therefore, to mitigate the effect as much as

possible, the period in the monitor mode should be far less

than that in the data forwarding mode. In practice, the period

of the monitor mode is set to 60ms and the period of the data

forwarding mode is set to 10s. Because TD WLAN is deployed

in dense mode and all APs in the monitor mode would scan

all channels of 2.4GHz and 5GHz bands in turn, rogue and

non-WiFi devices can be well detected.

For rogue devices, we mainly collect the following objects:

(1) MAC address, (2) Rogue RSSI and (3) Working Chan-
nel. For non-WiFi devices, we mainly collect the following

objects: (1) Device Type, (2) Non-WiFi RSSI, (3) Occupied
Channels and (4) Detected Time. The method for type iden-

tification of non-WiFi devices is consistent with the previous

work [23]. In brief, according to the spectral samples generated

by APs in the monitor mode, a set of fingerprinting features

(e.g., frequency, bandwidth, duty cycle, pulse distribution,

etc.) will be extracted to capture the properties of non-WiFi

devices. Based on specific rules and classification methods

(more details can refer to the work [23]), different types of

non-WiFi devices can be accurately distinguished.

D. Performance Metrics

In this section, we formally define two performance metrics,

which will be used to evaluate the wireless performance.

(1) Loss Rate in MAC Layer (lossmac)



TABLE I
THE DISTRIBUTION OF USER DEVICES ASSOCIATED WITH DIFFERENT

BANDS OF THE TWO SSIDS AT THE RUSH HOUR

SSID T-University T-University-5G
Band 2.4GHz 5GHz 5GHz

Devices (2.4GHz only) (#1829) 1829 0 0
Devices (5GHz only) (#1420) 0 201 1219
Devices (dual-band) (#17986) 6972 5494 5520

Total Devices (#21235) 8801 5695 6739

It is defined as follows:

lossmac =
Retrynum + Failnum

Transnum +Retrynum + Failnum
(1)

where Transnum, Retrynum, and Failnum are defined in

Section II-B. When the packet loss occurs in the wireless

MAC layer, the corresponding packets will be retransmitted

until they are successfully transmitted or the number of

retransmissions reaches the threshold. In the rest of the paper,

loss rate in MAC layer is also called “loss rate” for short.

(2) WiFi Latency (Twifi)
It represents the last-hop WiFi latency for a 802.11 frame,

which can be estimated by the time difference between the

transmission of packets from APs and the reception of cor-

responding MAC ACKs. However, because of the energy

management policies of user devices [22], [24], [25], the

WiFi latency could be overestimated. When user devices are

in power saving mode, APs will buffer the sending data

temporarily. After that, APs will notify these user devices

that there is buffered data to be retrieved by beacon [26].

Only when user devices are waked up and send specific

control frames to APs for retrieving data, these data can be

transmitted. The process additionally adds a lot of delay. To

solve the problem, if user devices are in power saving mode,

we further record two timestamps (i.e., Tack and Twake) in

APs. Tack represents the time when APs receive the MAC

ACKs and Twake represents the wake-up time of user devices

(i.e., time when APs receive the specific control frames from

user devices). On this basis, Twifi can be calculated by

Tack − Twake. In our measurement study, during each data

collection period, we record the average WiFi latency across

many frames for each user device.

III. WIRELESS BEHAVIOR MEASUREMENT

In this section, based on TD WLAN, we conduct one of

the largest known measurements to understand the wireless

behavior in dual-band wireless networks.

A. Characteristics for User Devices and APs

In TD WLAN, network administrators configure two SSIDs

(Service Set Identifiers), namely T-University-5G and T-
University. T-University-5G only supports the 5GHz band

and T-University supports both 2.4GHz and 5GHz bands. In

general, when users try to connect to T-University, dual-band

devices will proactively choose a working band and initiate

association requests.

Table I shows the statistics of user devices associated with

different bands of T-University and T-University-5G at the rush
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Fig. 3. (a). CDF of the packet RSSI for 2.4GHz and 5GHz bands. (b). CDF
of the channel utilization for 2.4GHz and 5GHz bands.

hour (Here the rush hour refers to the time when there are peak

number of user devices associated with APs.). We observe

that about 84.7% (17986/21235) of user devices support dual-

band, which is a lot more than the values reported by previous

studies [4], [12]. For the dual-band SSID (i.e., T-University),

about 60% of devices tend to be associated with the 2.4GHz

band, which generally depends on the implementation of

different device hardware. For example, some devices may

prefer to choose the band with higher RSSI. Besides, we

find that although users in T university have been informed

that T-University-5G supports the 5GHz band, only 31.7%

(6739/21235) of devices are associated with it, which means

that users are still used to connect to T-University.

We further study the wireless characteristics related to

APs in TD WLAN. Fig. 3(a) shows the CDF of the packet

RSSI observed by APs. We can see that the overall RSSI is

satisfactory. The average RSSI in the 5GHz band is slightly

higher than that in the 2.4GHz band, which is counter-intuitive

since the signal in the 5GHz band attenuates faster. This

phenomenon can be explained by two reasons. First, when

working in the 5GHz band, devices generally use a larger

transmission power to prevent signal attenuation. Second, the

dual-band settings may make devices work in the band with

better signal strength, which means that if RSSI in the 5GHz

band is very low, devices could tend to be associated with the

2.4GHz band. We also compare the channel utilization in Fig.

3(b). The average channel utilization for the 5GHz band is

about 2% while the value for the 2.4GHz band is up to 27%.

One reason for the large difference is that the transmission rate

of the 5GHz band (about 280Mbps on average) is much higher

than that of the 2.4GHz band (about 100Mbps on average).

Another important reason is because of the interference of

different bands, which will be described in Section III-B.

B. Behavior of Rogue APs

Before the deployment of TD WLAN, many students are

willing to access the Internet by self-built APs (i.e., rogue

APs). They are now legacy devices while many users still

prefer to connect to them instead of APs in TD WLAN.

The random channel configurations for rogue APs bring great

challenges to wireless management.

In Fig. 4(a), the solid line represents the CDF of the number

of rogue APs detected by each AP in TD WLAN and the

dotted line represents the CDF of the number of APs that could

detect the same rogue AP. Note that to accurately depict the

impact of rogue devices on APs in TD WLAN, we only focus
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Fig. 4. (a). The distributions for the number of rogue APs detected by each
monitor AP (solid line) and the number of monitor APs that could detect the
same rogue AP (dotted line). (b). The distribution for the RSSI of rogue APs.

on the rogue APs whose channels overlap with the channel of

the corresponding AP. First, we observe that an AP can detect

12 rogue APs on average, which indicates that the channel

contention could be very serious. Second, about 35% of rogue

APs can be detected by more than 5 APs. Previous studies have

pointed out that -85dBm is the threshold of RSSI for triggering

the CSMA/CA mechanism [11], [27]. The value is applicable

in TD WLAN by confirming with network administrators.

When the RSSI of rogue APs is lower than -85dBm, they

will appear as hidden terminals and there is a high probability

of packet collision. Fig. 4(b) shows the distribution for the

RSSI of rogue APs. We can see that it is lower than -85dbm

in about 80% of cases. The problem of hidden terminals in

TD WLAN is more typical.

As mentioned in Section II-C, when APs in TD WLAN

work in the monitor mode, they could obtain the working

channels of all detected rogue APs based on the management

frames such as beacon. We find that more than 70% of detected

rogue APs only work in the 2.4GHz band, about 17% of them

only work in the 5GHz band, and the rest work in both bands.

We also observe that in the 2.4GHz band, only 40% of rogue

APs switch the channels during the week, while in the 5GHz

band, more than 83% of rogue APs tend to switch to channels

with lower interference based on the DCA strategy. The above

results indicate that the interference in the 5GHz band is much

lower, which is consistent with Fig. 3(b).

C. Behavior of Non-WiFi Devices

Unlike WiFi devices, non-WiFi devices do not sense the

medium before transmitting the energy [23], which could

cause the RF interference and degrade the performance.

During the week, we detect 7 types of non-WiFi devices

in total. They are respectively Cordless Phone (3.14%), Zig-
Bee Device (1.14%), Microwave Oven (0.62%), Bluetooth
(61.68%), Game Controller (12.90%), Wireless Video (7.95%)

and Baby Monitor (12.57%). Bluetooth devices are dominant

in TD WLAN. We find that the frequency bands for many

non-WiFi devices (e.g., microwave oven, baby monitor, etc.)
may overlap with any channel in the 2.4GHz band, which

could easily lead to interference. In addition, we observe that

game controllers and wireless videos may also work in the

5GHz band. However, the proportion of non-WiFi devices in

the 5GHz band is very small (less than 4%). In TD WLAN,

a monitor AP could detect 2 non-WiFi devices on average,

which reflects the prevalence of non-WiFi devices.
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Fig. 5. (a). The distribution of the loss rate in MAC layer. (b). The distribution
of the WiFi latency.
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Fig. 6. (a). The relationship between the number of online user devices and
the loss rate. (b). The relationship between the number of online user devices
and the WiFi latency.

IV. WIRELESS PERFORMANCE ANALYSIS

In this section, we systematically study the effect of the

device association behavior and the DCA strategy on the wire-

less performance and quantify the performance degradation

caused by different types of interference in TD WLAN, which

provides guidance for wireless optimization in Section V.

A. Impact of Device Association Behavior

We plot Fig. 5(a) and Fig. 5(b) to show the distributions

of the loss rate in MAC layer and the WiFi latency defined

in Section II-D. We can see that compared to the 2.4GHz

band, the average loss rate and the average WiFi latency in

the 5GHz band are much lower, which benefits from the fewer

rogue and non-WiFi devices and the higher transmission rate

in the 5GHz band. However, as mentioned in Section III-A,

more devices tend to be associated with the 2.4GHz band for

the dual-band SSID (i.e., T-University), which motivates us to

improve performance by optimizing the band selection.

Fig. 6 shows the relationship between the number of online

devices and wireless performance. Here online devices refer

to user devices associated with APs in TD WLAN or rogue

APs. Because the trend of online devices in the 2.4GHz band

is consistent with that in the 5GHz band, we only show

the total number of online devices for brevity. In Fig. 6(a),

an interesting phenomenon is the trend of the loss rate is

negatively correlated with the trend of user devices associated

with APs in TD WLAN while is positively correlated with the

trend of user devices associated with rogue APs. The increase

in the number of user devices on rogue APs may cause a large

probability of packet collision, which inevitably increases the

loss rate. However, the deployed locations and parameter

settings (e.g., transmission power) of APs in TD WLAN

are carefully chosen based on the engineering measurement

during the deployment (Note that the dynamic Transmit Power

Control (TPC) in TD WLAN is not enabled. The transmission
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Fig. 7. (a). The CDF for the gap of the loss rate. (b). The CDF for the gap
of the WiFi latency.

power is fixed based on the engineering measurement), which

could ensure the interference (including the hidden terminal

interference) across them is as low as possible. Therefore, the

loss rate will reduce when user devices migrate from rogue

APs to APs in TD WLAN. In Fig. 6(b), we observe that in

the 2.4GHz band, the WiFi latency may become poor when

there are a large number of user devices on either rogue APs

or APs in TD WLAN, while in the 5GHz band, the WiFi

latency is very low and has no obvious fluctuations. We can

conclude that the association behavior of user devices has a
great impact on the performance.

B. Effectiveness of the DCA Strategy

In TD WLAN, the DCA strategy is enabled for all ACs by

default, which could dynamically configure channels for APs

based on the carrier sense interference in different channels.

When the interference utilization exceeds a preset threshold,

ACs will guide APs to switch to one of the orthogonal chan-

nels with the least interference. In this section, we evaluate its

effectiveness in large-scale dual-band wireless networks.

To this end, we turn off the DCA strategy and further

collect one week of data from April 20th, 2019 to April 26th,

2019. For a given AP, we define the performance gap as

the difference between the average value of a performance

metric in the week with the DCA strategy and that in the

week without the DCA strategy. The performance gap less

than 0 means that the DCA strategy improves corresponding

performance metric. Fig. 7(a) and Fig. 7(b) respectively show

the distributions of the gap of the loss rate and the gap of

the WiFi latency in different bands. In the 2.4GHz band, after

the DCA strategy is enabled, although the loss rate for 10%

of APs reduces by at least 5%, the loss rate for another 20%

of APs increases by more than 5%, and the average loss rate

increases by about 2%. Besides, the average WiFi latency also

increases by about 1ms. In the 5GHz band, the DCA strategy

has no significant effect on the loss rate but reduces the average

WiFi latency by 1ms. Note that the average WiFi latency in

the 5GHz band without the DCA strategy is about 6ms, which

means that the DCA strategy reduces the WiFi latency by

16.7% on average. Therefore, we can conclude that the DCA
strategy has potential to optimize the performance in the 5GHz
band while may lead to the performance degradation in the
2.4GHz band in TD WLAN. The reasons are as follows: (1)

Most DCA strategies are based on greedy methods [28]–[30].

Each AP will be assigned a locally optimal channel. Due to

(a) (b)

Fig. 8. (a). The effect of the hidden terminal interference and the RF
interference on the average loss rate. (b). The effect of the carrier sense
interference and the RF interference on the average WiFi latency.

limited spectrum resources (especially in dense deployment

scenarios), some APs may benefit from the strategy while the

performance for other APs may degrade seriously. However,

there are more available channels in the 5GHz band, which

makes the DCA strategy have a positive impact to some

extent. (2) The DCA strategy only considers the carrier sense

interference instead of the hidden terminal interference. Even

though APs can switch to channels with less carrier sense

interference, the loss rate will increase if there are more hidden

terminals working on the newly switched channels, which is

typical in the 2.4GHz band because of the prevalence of rogue

and non-WiFi devices.

C. Impact of Different Types of Interference

In this section, we further quantify the impact of different

types of interference on the performance in TD WLAN. We

focus on three types of interference, namely hidden terminal

interference caused by rogue APs with RSSI below -85dBm,

carrier sense interference caused by neighbor 802.11 networks

and RF interference caused by non-WiFi devices.

The characteristics of the three types of interference are

as follows: (1) Hidden terminal interference mainly leads to

packet loss. Therefore, we use the loss rate as the evaluation

metric. We define that hidden terminal interference may occur

when at least one rogue AP with RSSI below -85dBm is

detected. To eliminate the impact of poor channel quality on

packet loss, we only consider the cases with SNR larger than

30dB, because previous studies have indicated that this value

could ensure good access quality [11], [31]. (2) Carrier sense

interference generally does not increase the loss rate due to the

CSMA/CA mechanism, while it will increase the transmission

time in WiFi hops. We use the WiFi latency to characterize

its effect and define that carrier sense interference may occur

when the interference utilization is larger than 0. (3) Non-

WiFi devices do not sense the medium when transmitting the

energy. RF interference could lead to packet loss if wireless

data is transmitted in corresponding channels. Furthermore,

it will occupy spectrum resources and increase the channel

contention. As a result, both the loss rate and the WiFi latency

are used to evaluate the effect. We determine whether RF

interference occurs based on the active time of non-WiFi

devices, which can be inferred by the detected time of them.

Fig. 8(a) shows the effect of the hidden terminal interference

and the RF interference on the average loss rate. When hidden

terminals and active non-WiFi devices are not detected, the



average loss rate is very low (about 4%). Hidden terminal

interference and RF interference could increase the average

loss rate by 8% and 3% respectively. Fig. 8(b) shows the effect

of the carrier sense interference and the RF interference on the

average WiFi latency. They could increase the average WiFi

latency by 45% and 30% respectively.

V. WIRELESS PERFORMANCE OPTIMIZATION

Based on the measurement, we propose a novel strategy and

evaluate its effectiveness by actual deployment in this section.

A. Objectives and Ideas

The design of the performance optimization strategy has

two objectives: (1) Improve the overall loss rate and WiFi
latency by optimizing the spectrum resources. (2) Achieved by
easy-to-operate parameter configurations in commodity ACs.

We have shown that although the 5GHz band outperforms

the 2.4GHz band, there are more devices associated with the

2.4GHz band for the dual-band SSID. Therefore, a natural

idea for the strategy is to migrate devices that tend to be

associated with the 2.4GHz band to the 5GHz band through

band navigation. However, blind navigation is unreasonable

because the performance could be even more unsatisfactory

in the 5GHz band (e.g., RSSI is very low). In many cases,

it is also necessary to navigate devices in the 5GHz band

to the 2.4GHz band. We need to infer the reasons that

affect performance and the scenarios of poor performance

in different bands (Section V-B) and design the strategy to

perform intelligent band navigation in the association phase

(Section V-C). In addition to the band selection, to further

improve the access quality, the strategy could optimize the
channel configurations in different bands (Section V-D).

B. Constructing DAG for Causal Inference

To achieve the intelligent navigation, we need to find the

main factors affecting performance in different bands. In this

paper, we consider the following 7 factors: Channel Utiliza-

tion (CU ), Interference Utilization (IU ), RSSI , SNR,

the number of associated devices (Stanum), the number

of hidden terminals (HTnum), and the number of carrier

sense devices (CSnum), because they characterize the current

network status when devices are associated and ACs could

obtain them in time to achieve the navigation. The 7 factors are

not independent, therefore, we need to consider their mutual

influence when locating the reasons that affect performance.

Bayesian Network (BN) [32], [33] is an effective tool for

causal inference, the form of which is a DAG composed of

all factors, where nodes represent different factors and edges

represent causality (parent nodes are potential reasons that
affect child nodes). It could achieve probability inference by

modeling the joint probability density distribution across all

factors. Based on the idea of BN, we expect to infer the reasons

that affect the loss rate and WiFi latency and the scenarios

of poor performance. However, constructing the DAG for

probability inference is generally very challenging, which is

an NP-hard problem. To solve the problem, we propose an

exact and efficient DAG construction algorithm.

(1) DAG Construction Algorithm
Assume that the weighted adjacency matrix of the DAG is

denoted as A ∈ R
d×d, where d is the number of nodes. In this

problem, the number of nodes is 9, including 7 selected factors

and 2 performance metrics (i.e., loss rate and WiFi latency).

We could use a mapping function MAP to convert A into

a binary adjacency matrix (i.e., MAP(A) ∈ {0, 1}d×d),

which is defined as follows: if Aij �= 0, there exists a

directed edge between node i and node j; otherwise, there

is no directed edge. Let X ∈ R
n×d denote n data samples

and assume that X is n observations of the random vector
X = (X1, ..., Xd). Given X , our goal is to learn an optimal

DAG MAP(A) ∈ S DAG to model the relationship across

d nodes, where S DAG represents the set of the binary

adjacency matrix for all DAGs.

In a DAG, each node depends on its parent nodes. We could

use the generalized linear model to capture the relationship

and learn the graph structure, i.e., E(Xi|{Xj}j∈Par(i)) =
f(aTi X), where Par(i) represents the set of parent nodes for

node i and ai represents the ith column of A. In this problem,

we treat A as the parameter to be learned. For simplicity,

we adopt linear regression (i.e., f ) to model the relationship

between child nodes and parent nodes. Therefore, the corre-

sponding objective function is l(A) = 1
2n ||X −XA||2. The

problem to be solved can be formulated as follows:

min
A∈Rd×d

F (A) = l(A) + λ||A||1
s.t. MAP(A) ∈ S DAG

(2)

where ||A||1 is the l1-regularization term and λ is the balance

hyperparameter. Although F (A) is continuous, the constraint

is discrete, which makes the problem difficult to solve. Our

idea is to convert the discrete constraint MAP(A) ∈ S DAG
into a continuous and smooth equality constraint g(A) = 0.

g(A) = 0 needs to ensure that A is acyclic and the derivative

of g(A) w.r.t. A is easy to compute. Here we could let

g(A) = tr(eA�A) − d = 0 (proof is omitted due to

the space constraint). The derivative of g(A) w.r.t. A is

∇g(A) = (eA�A)T � 2A, which is easy to compute. The

continuous optimization problem under the smooth equality

constraint can be solved by the augmented Lagrangian method

[34], which could construct the DAG for causal inference.

(2) Constructing DAGs in Different Bands
Based on the above algorithm, we respectively construct

DAGs in different bands for causal inference. For effective

model training, we additionally collect data in TD WLAN for

one month before April 13th, 2019. The construction results

are shown in Fig. 9. The value on the edge represents the

weight, which measures the strength of the corresponding re-

lationship. Note that the construction results are not sensitive

to the time length of training data (We respectively take one

week, two weeks, and three weeks of data to train the model

and only the weights of the constructed DAGs have negligible

differences). We can see that the potential causality across 7

factors is basically the same in different bands. Compared to
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Fig. 9. DAGs in different bands (black arrows represent the causality across
factors, orange arrows represent the causality between factors and performance
metrics and dotted arrows represent the relationship is weak).

the 2.4GHz band, the relationship from CSnum to CU and

IU in the 5GHz band is relatively weak (dotted arrows), i.e.,
the corresponding weight of the learned DAG is low (lower

than 0.1). It is because the number of rogue devices is small

and its impact on the channels is not obvious.

The main difference of DAGs in the 2.4GHz band and 5GHz

band is the impact of factors on performance metrics. We can

see that in the 2.4GHz band, the main factors affecting the loss

rate are HTnum and SNR, and the main factors affecting the

WiFi latency are Stanum and CU . While in the 5GHz band,

the main factors affecting the loss rate are SNR and RSSI ,

and the main factors affecting the WiFi latency are Stanum,

CU and RSSI . The learning results reflect the difference in

characteristics of different bands. Based on the DAGs, we

could infer the scenarios of poor performance in different

bands and design the strategy to achieve the intelligent band

navigation, which will be discussed in Section V-C.

C. Intelligent Band Navigation

For intelligent band navigation, the optimization strategy

should achieve the following two goals: (1) If devices only

support one band, the navigation should not be performed to

ensure smooth network connection. (2) When a device initiates

the association request, if the loss rate or WiFi latency in

the current band is not ideal with a high probability, while

the other band could potentially improve the performance, the

strategy should guide it to associate with the other band.

The first goal can be achieved by building the device in-
formation list, which records the band information of devices

that ever appear in the network based on historical association

data. For devices that only support one band, ACs do not

perform band navigation, and directly establish connections.

The device information list updates in real time during the

operation of TD WLAN. For new devices not in the device

information list, if they only support one band, the navigation

may fail. At this time, ACs will allow them to access in the

supported band and further update the list.

To achieve the second goal, we need to find the scenarios of

poor performance in different bands, i.e., the band navigation
conditions, which can be inferred by the DAGs constructed

in Section V-B. Previous works [10], [18] have indicated that

the user experience will be seriously affected when the WiFi

latency exceeds 30ms, therefore, we select 30ms as the thresh-

old for evaluating the quality of the WiFi latency. For the loss

TABLE II
BAND NAVIGATION CONDITIONS IN DIFFERENT BANDS

Band Class Conditions
(40 ≤ HTnum < 80 and

conditionloss 12dB < SNR < 25dB),
2.4GHz (SNR ≤ 12dB), (HTnum ≥ 80)

(CU ≥ 80%), (Stanum > 8)
conditionlatency (40% ≤ CU < 80% and Stanum > 2),

(30% ≤ CU < 40% and Stanum > 5)
conditionloss (SNR < 15dB), (RSSI < −80dBm)

(CU ≥ 80%),
5GHz conditionlatency (50% ≤ CU < 80% and Stanum > 5),

(Stanum > 15), (RSSI < −80dBm)

rate in MAC layer, we choose 30% as the evaluation threshold.

This value is set by network administrators in TD WLAN

based on experience. On this basis, the problem of obtaining

the band navigation conditions can be formalized as finding

conditions conditionloss and conditionlatency respectively in

the 2.4GHz band and 5GHz band to meet:

p(lossmac ≥ 30% | conditionloss) ≥ pthreshold

p(Twifi ≥ 30ms | conditionlatency) ≥ pthreshold
(3)

where pthreshold is the probability threshold. It means that

we need to infer the conditions (i.e., conditionloss and

conditionlatency) under which the probability of the WiFi la-

tency larger than 30ms or the loss rate larger than 30% exceeds

pthreshold. In this paper, pthreshold is set to 0.5, which can

be set flexibly by network administrators in different network

environments based on their experience. For example, if users

are not sensitive to performance requirements, the threshold

can be set higher. The problem can be solved effectively by

bayesian inference based on DAGs. The inference results in

both bands are summarized in the third column of Table II.

Correspondingly, the strategy is designed as follows:

Under the premise of satisfying the first goal, the strategy
will evaluate the potential performance of the current band
in which a device initiates the association request. If both
conditionloss and conditionlatency in the current band are
not satisfied, it means that the potential performance is ideal
and there is no need to navigate the device. However, if at
least one of conditionloss and conditionlatency is satisfied,
the strategy needs to evaluate the potential performance in
the other band. If both conditionloss and conditionlatency in
the other band are not satisfied, the strategy will attempt to
navigate the device to the new band; otherwise, the strategy
will not navigate the device.

We develop the strategy based on the band navigation im-

plementation widely supported by mainstream vendors (e.g.,
Cisco, Huawei, etc.) [35], [36]. Specifically, when a device

initiates the association request in one band, if the strategy

determines that it should be navigated to the other band, the

corresponding AC will reject the request in the current band.

After that, if the device initiates the association request in the

other band, the AC will directly establish connection with it.

However, if the device still insists on initiating the association

request in the current band after three consecutive rejections,

the navigation will fail and the AC will allow it to access in



the current band. The usual practice of vendors is to reject

three to five times [35], [36]. To prevent the degradation of

the user experience, we choose to reject at most three times.

D. Heuristic Channel Optimization

To further improve the access quality in different bands,

based on the measurement results, the proposed strategy also

achieves the heuristic channel optimization as follows:

In the 5GHz band, compared to the 2.4GHz band, there

are more orthogonal channels but lower interference caused

by rogue devices and non-WiFi devices, which makes the

channel resources not be fully utilized in the practical network

operation. Besides, because of the intelligent band navigation,

the number of associated devices in the 5GHz band would

increase (it will be shown in Section V-E), which potentially

increases the channel contention. To make full use of the

spectrum resources and reduce the transmission time of data

frames, in the 5GHz band, we enable channel bonding, which

is peculiar to 802.11n and 802.11ac. It could extend the

channel width by bonding the adjacent channels into a channel.

To ensure the sufficient number of channels in the dense

deployment of TD WLAN, we just bond two adjacent 20MHz

channels into a single 40MHz channel. In fact, bonding two

adjacent 20MHz channels is suitable because the bandwidth of

the campus network edge router of T university is limited and

the network administrators also limit the effective throughput

of each AP during the operation of TD WLAN. In addition,

based on the conclusions in Section IV-B, we enable the DCA

strategy in the 5GHz band, because it is helpful to mitigate

the carrier sense interference to some extent.

In the 2.4GHz band, compared to the channel contention,

the impact of the hidden terminal interference is more serious.

We attempt to mitigate its impact. Considering that the DCA

strategy may have negative effects in the 2.4GHz band, we

turn off it after configuring initial channels for all APs and

then fine-tune the channels. The fine-tuning targets are APs

whose average loss rate in MAC layer is greater than 30% (the

value is consistent with that in Section V-C) during the week

from April 20th, 2019 to April 26th, 2019. Because the DCA

strategy only considers the carrier sense interference, the main

basis for fine-tuning is the number of hidden terminals (i.e.,
rogue APs with whose RSSI is lower than -85dBm) detected

by APs under different channels during the week. We adopt

the heuristic way to switch these target APs to the channels

with the least number of hidden terminals.

E. Optimization Strategy Evaluation

To evaluate the effectiveness of the proposed strategy, in

the week from May 11th, 2019 to May 17th, 2019, we deploy

it in ACs and compare the wireless performance with that in

the week from April 13th, 2019 to April 19th, 2019. Note

that ACs in TD WLAN provide the parameter configuration

files for network administrators to specify the channel bonding

strategy, channels of all managed APs and band navigation

conditions, etc. The optimization strategy would be further

enabled on the basis of these configuration files.

The experimental results show that under the intelligent

band navigation, the number of devices migrating from the

2.4GHz band to the 5GHz band is more than that migrating

from the 5GHz band to the 2.4GHz band. Before the opti-

mization, for the dual-band SSID, the proportion of devices

associated with the 2.4GHz band is about 60%. However,

after the optimization, the proportion of devices associated

with the 2.4GHz band reduces to about 44%, of which about

35% do not trigger the band navigation (i.e., only support the

2.4GHz band or continue to initiate the association request

in the 2.4GHz band after three consecutive rejections), and

the rest (about 9%) are navigated from the 5GHz band to the

2.4GHz band. In the measurement study, the band navigation

in two bands is triggered in about 33.6% of cases.

Fig. 10(a) and Fig. 10(b) respectively show the change of

the average loss rate and the average WiFi latency in different

bands. We can see that although the proportion of devices

associated with the 5GHz band increases, the performance in

the 5GHz band remains at an ideal level, which implies that

the performance for devices migrating from the 2.4GHz band

to the 5GHz band improves a lot without affecting devices

that previously tend to be associated with the 5GHz band.

Meanwhile, in the 2.4GHz band, the average loss rate reduces

by 6% and the average WiFi latency reduces by 3ms. As

mentioned in Section V-A, our final objective is to improve

the overall wireless performance (do not distinguish bands) in

TD WLAN, which is more direct to reflect the change of the

access quality of devices. Therefore, we plot Fig. 10(c) and

Fig. 10(d) to compare the overall loss rate and WiFi latency for

the two weeks. We observe that the average loss rate is about

10% before the optimization. While after the optimization, the

average loss rate is about 6%, which means that the overall

packet loss reduces by 40% ((10% − 6%)/10%) on average.

Besides, after the optimization, the WiFi latency for more than

60% of devices is below 5ms. At the 75th percentile, the WiFi

latency reduces from about 40ms to 20ms. The proportion of

high WiFi latency (e.g., larger than 30ms) reduces greatly.

We also plot Fig. 11(a) and Fig. 11(b) to compare the trends

of the overall loss rate and WiFi latency with the change of

time in the two weeks. We can see that after the optimization,

the loss rate and WiFi latency reduce obviously, which further

demonstrates the effectiveness of the optimization strategy.

VI. DISCUSSION

In this section, we would like to discuss the novelty of

the intelligent band navigation and the generalization of the

measurement study and optimization strategy.

Novelty: In this paper, our contribution is not to propose the

concept of band steering, but to provide a novel solution to

intelligently guide when to perform band navigation. To the

best of our knowledge, few academic works try to improve

the wireless network performance by optimizing the band

selection. Although band steering has been widely supported

by many mainstream vendors as a mature product feature,

most vendors adopt relatively simple heuristics to obtain

navigation conditions [36]–[38], which are generally not good
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Fig. 11. (a). Trends of the loss rate before and after the optimization. (b).
Trends of the WiFi latency before and after the optimization.

choices because they do not consider the impact of different

factors on the performance in two bands. For example, Cisco

proactively navigates devices from the 2.4GHz band to the

5GHz band under the premise of load balance [37]. Aruba

takes account of device load and RSSI at the same time

when navigating devices to the 5GHz band [38]. In contrast,

navigation conditions in our method are obtained intelligently

by a data-driven way, which could reflect the effect of different

factors on wireless performance more effectively.

Generalization: We mainly discuss the generalization of the

data collection method, measurement results and the proposed

optimization strategy. (1) Because commercial ACs generally

support SNMP and the proposed data collection method in

Section II-A can be implemented easily as extensions of

the SNMP service, it is not vendor specific and can be

applied in other wireless networks as a general data collection

method. (2) As one of the largest dual-band wireless networks,

TD WLAN is representative for characterizing the behavior

and performance of wireless networks. Differences in the

association behavior in two bands, the interference of rogue

and non-WiFi devices and the effect of DCA strategy revealed

by measurement results in TD WLAN also generally exist in

other types of dual-band wireless networks, especially in large-

scale deployment scenarios. (3) The proposed optimization

strategy essentially obtains band navigation conditions and

channel configurations through a data-driven approach, which

provides a new optimization idea and can be generalized

to other types of wireless networks. However, differences in

network environments could make the final strategy different

(e.g., DAGs in Fig. 9, band navigation conditions in Table II,

etc.), which needs case-by-case analysis.

VII. RELATED WORK

Many studies characterize the wireless behavior and per-

formance in different environments by deploying customized

gateways or dedicated measurement hardware [6]–[10], [17],

[18], [39]. For example, Grover et al. and Patro et al. present

the studies on the usage and experience of home wireless

networks by deploying customized APs [7], [8]. However,

these studies are limited by the scale of measurements.

There also exist a few studies that conduct large-scale

measurements on wireless networks [4], [11]–[16], [40]. For

example, Biswas et al. describe the wireless behavior over a

large cohort of wireless networks [12]. Pefkianakis et al. ex-

plore the performance in home wireless networks by collecting

data from a large ISP [13]. Although these studies provide

valuable insights on the wireless behavior and performance,

most of them mainly focus on the 2.4GHz band [11], [13]–

[15]. While in current wireless networks, most devices support

dual-band. Therefore, we need to fully understand the behavior

and performance in both bands for wireless optimization. Al-

though some research has begun to explore the characteristics

of 802.11ac networks [4], [12], they still lack a comprehensive

comparison between 2.4GHz and 5GHz bands. Besides, little

research explores to improve the performance in large-scale

dual-band wireless networks. Our work fills the gaps.

Many existing wireless performance optimization methods

need to install applications in user devices or update software

in APs [4], [41], [42], which suffer from poor scalability and

are difficult to manage. In this paper, we propose an effec-

tive optimization strategy that can be achieved by practical

parameter configurations in commodity ACs.

VIII. CONCLUSION

In this paper, we conduct a comprehensive measurement on

the wireless behavior and performance in a large-scale dual-

band wireless network, and further propose a novel strategy to

improve the network performance by intelligent band naviga-

tion and heuristic channel optimization. The actual deployment

shows that the proposed strategy effectively reduces the loss

rate and the WiFi latency. We believe that our work is a

meaningful step towards understanding and improving the

performance in large-scale dual-band wireless networks.
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S. Savage, “Jigsaw: Solving the puzzle of enterprise 802.11 analysis,”
ACM SIGCOMM Computer Communication Review, vol. 36, no. 4, pp.
39–50, 2006.

[40] B. Alipour, L. Tonetto, A. Y. Ding, R. Ketabi, J. Ott, and A. Helmy,
“Flutes vs. Cellos: Analyzing mobility-traffic correlations in large
WLAN traces,” in IEEE INFOCOM 2018-IEEE Conference on Com-
puter Communications. IEEE, 2018, pp. 1637–1645.

[41] K. Sui, M. Zhou, D. Liu, M. Ma, D. Pei, Y. Zhao, Z. Li, and
T. Moscibroda, “Characterizing and improving WiFi latency in large-
scale operational networks,” in Proceedings of the 14th Annual Inter-
national Conference on Mobile Systems, Applications, and Services.
ACM, 2016, pp. 347–360.

[42] C. Pei, Y. Zhao, Y. Liu, K. Tan, J. Zhang, Y. Meng, and D. Pei, “Latency-
based WiFi congestion control in the air for dense WiFi networks,” in
2017 IEEE/ACM 25th International Symposium on Quality of Service
(IWQoS). IEEE, 2017, pp. 1–10.


