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Abstract—To achieve efficient model multicast for cross-device
Federated Learning (FL) over shared wireless channels, we
propose SRMP, a transport protocol that performs semi-reliable
model multicast over the air by leveraging existing PHY-aided
wireless multicast techniques. The preliminary study shows that,
with novel designs, SRMP could reduce the communication time
involved in each round of training significantly.

I. INTRODUCTION

Because of its ability of privacy-preserving, cross-device
Federated Learning (FL) has been widely employed by many
of today’s smartphone applications for various purposes in pro-
duction [1], and is predicted to have critical usages in emerging
scenarios like unmanned aerial vehicles and self-driving cars
in the near future [2]. As Figure 1 shows, to conduct a round
of the iterative FL training in these scenarios, each device
(e.g., vehicles, cars) first reads the current model along with
the training configurations from the central parameter server
(PS) (i.e., Step 1), then performs local training and reports the
model updates back to the PS (i.e., Step 2); by aggregating
these model updates, the PS finally obtains the new global
model and starts the next round of training [1], [2]. Obviously,
in this process, the download of the model would take a non-
trivial portion of, or even dominate, the time cost of the entire
training [1]. Thus, optimizing the model delivery over shared
wireless channels is critical for optimizing the efficiency of
these cross-device FL training tasks.
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Fig. 1: Cross-device federated learning at the wireless edge,
in which devices like unmanned aerial vehicles, self-driving
cars train a shared model collectively over a shared wireless
channel, with the assistance of a central parameter server (PS).
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The delivery of the model is a typical one-to-many transmis-
sion task. In view of the broadcast nature of wireless channels,
a straightforward optimization is to perform the delivery
with abundant existing PHY-aided techniques (e.g., DirCast)
that could conduct efficient Layer 2 multicast/broadcast over
various wireless networks at the last hop [3]. Unfortunately,
implementing such a design in practice faces two challenges.
On one side, existing PHY-aided Layer 2 multicast techniques
provide either totally unreliable or reliable delivery service,
mismatching with the fact that FL tasks in practice generally
tolerate loss-bounded model transmissions [4].1 Indeed, as this
poster will show, by exploring this type of tolerance, there is
a large room for the optimization of multicast performance.
On the other, all these techniques are PHY-specified and work
at Layer 2, thus hard to use for widespread FL applications.

For these problems, a fundamental solution is to provide
efficient yet reliability-controlled one-to-many data delivery
services upon existing PHY-aided wireless multicast tech-
niques [1], for wireless-channel-shared FL training. In this
poster, we propose our case design of SRMP (Semi-Reliable
Multicast Protocol), and focus on its key algorithm designs:

1) A novel congestion control algorithm that could tolerate
non-congestion based packet loss; and

2) A selective retransmission algorithm that could signif-
icantly reduce the number of total retransmissions by
leveraging the FL task’s tolerances of bounded loss.

II. PROPOSED PROTOCOL

At the high level, SRMP enables each FL task to specify
its acceptable loss rate (alr) along with the model to deliver.
Then, at the low level, these model values are encapsulated
in specific UDP packets to send; and PHY-aided Layer 2
multicast techniques will be employed when they reach the
last hop. On getting these packets, SRMP receivers gener-
ate acknowledgment (ACK) selectively, based on which, the
SRMP sender estimates lost packets and available bandwidth.
To reduce the number of ACKs, SRMP receivers are selected
to generate ACKs in a round-robin.

To support various PHY-aided multicast techniques, SRMP
assumes that the underlying wireless channels only provide
unreliable multicast, and guarantees the semi-reliability of
model values efficiently with novel congestion control and
retransmission algorithm designs. In practice, the multicast

1If a parameter’s value is lost, the worker/device will use the default value
of 0, analogous to performing a Dropout augmentation on the model [5].978-1-6654-4131-5/21/$31.00 ©2021 IEEE



rate at Layer 2 could be fixed or self-adaptive, depending on
the employed PHY techniques [3].
Congestion Control. Similar to the congestion control of TCP,
SRMP maintains its sending rate with a sliding congestion
control window (cwnd). In SRMP, the loss of a packet can
be caused either by the unstable wireless channel at the last
hop, or by any link congestion along its journey. Let γ be
the current loss rate of the wireless channel observed by the
device. SRMP receivers piggyback their γ values and indexes
of lost model values along with ACKs, based on which, the
sender calculates their real loss rates caused by link congestion
and adjusts the cwnd. Currently, SRMP employs a preliminary
additive increase multiplicative decrease design like that of
TCP Reno for cwnd. Notably, to accelerate the convergence
of congestion control, besides round-robin, a receiver will
immediately generate specific ACKs to infer the sender once
it suffers the events of timeout or serious packet loss.
Restransmission. As devices in FL can tolerate bounded
packet loss, the SRMP sender retransmits packets only when
the requirement of alr is not satisfied at some devices. In
case several devices call for retransmissions, to be bandwidth-
efficient, SRMP would perform the retransmissions with joint
optimizations. A simple yet efficient design is to let SRMP
retransmit packets that get lost by most of the devices at first.
We will extend SRMP to support advanced designs like using
coding techniques (e.g., network coding) to merging different
diverse retransmissions requests in future work.

III. PRELIMINARY EVALUATION AND FUTURE WORK

Simulation System. To verify the advantage of SRMP,
we build a simulation system upon Mininet and Pytorch to
simulate the behavior of cross-device FL tasks over shared
channels. Basically, in this system, multiple Pytorch-based
workers train a model collectively (see Figure 1) over a
shared wireless channel simulated by Mininet. At its core,
the half-duplex and broadcast natures of wireless channels
are simulated using the Linux semaphores and the broadcast
ability provided by open vswitch, respectively. As for the
bandwidth and loss ratio of a link, virtual links in Mininet
already support these features.
Case Study. We consider a cross-device FL task in which 5
workers/devices train the MobileNet model using the dataset
of CIFAR10. We stop the training when its accuracy reaches
30%. The training batch size is set to 32 and model values
are split into 1KB chunks to suit the payload size of UDP. To
highlight the advantage of SRMP, the bandwidth and latency
of the wireless channel in tests are set to 500kbps and 0ms,
respectively, while γ, the loss rate of the channel, ranges from
10% to 50%. By default, in each round of training, workers
download the model with SRMP, then upload their gradients
with its unicast variant. The timeout configuration of SRMP
is set to 2.5s. For SRMP, we consider two simple use cases,
in which their alrs are configured to 0 and γ, respectively.

Besides, we also consider a specific instance akin to the
case in which both the model download and gradient upload
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Fig. 2: The increase of the packet loss rate γ slows the
convergence speed of SRMP (alr=γ) down, as more rounds
are performed as Figure 2a shows. However, provided the
value of γ does not exceed the threshold (e.g., 0.2 in this test),
SRMP (alr=γ) would still obtain the smallest total communi-
cation time (see Figure 2b), indicating that the communication
time of each round of training is reduced significantly.

are carried out with TCP. Figure 2b and Figure 2a show the
time costs and performed rounds of TCP, SRMP (alr = γ)
and SRMP (alr = 0) when the wireless channel’s loss rate
ranges from 10% to 50%.

As Figure 2a shows, with the growth of γ, the performed
rounds of both TCP and SRMP (alr=0) based training keep
nearly consistent. This is reasonable since the lost pack-
ets would be re-transmitted by them. However, these re-
transmutation operations result in more computation time as
Figure 2b shows. In contrast, despite it takes more training
rounds for SRMP (alr=γ) to reach the same accuracy due to
the loss of packets, the total communication time might still be
reduced because the heavy re-transmission operations are sim-
plified or even eliminated (e.g., the case of SRMP (alr=γ). For
instance, in the test case shown in Figure 2b, SRMP (alr=γ) is
the best when the packet loss rate is no more than 20%. When
γ is 20%, SRMP (alr=γ)’s communication times in total and
each round of training, are about 8.2% and 14.2% less than
those of SRMP (alr=0), respectively.
Future Work. Indeed, there is a trade-off between the costs of
increased training rounds and the benefits of reduced per-round
communication times. Configuring the value of alr respecting
the characteristics of both the trained FL model and underlying
network environments to explore the best performance, is
one of the most important future works of SRMP. Besides,
exploring the design of SRMP in more detail and extending
it to support cross-layer optimization will be considered.
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