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Abstract—Time Sensitive Networking (TSN) is an emerging
Ethernet technology for real-time systems. To address different
Quality-of-Service (QoS) requirements of applications, IEEE
802.1 TSN Task Group has standardized several packet schedul-
ing and shaping algorithms. The software implementation of
these algorithms is hard to meet the performance requirements,
while the hardware implementation in Application-Specific Inte-
grated Circuit (ASIC) is inflexible. A hardware-programmable
scheduler is necessary to deal with this dilemma. Among the
existing primitives, the most expressive one is Push-In-Extract-
Out (PIEO), but its complexity makes the implementation very
expensive. A relatively lower-cost implementation of PIEO cannot
guarantee the scheduling correctness for the most critical Time-
Triggered (TT) traffic in TSN. As a remedy, in this paper we
propose a new Push-In-Pick-Out (PIPO) primitive under a TSN
programmable scheduling framework. Composed of simple pri-
ority queues, PIPO can express all existing TSN scheduling and
shaping algorithms, and is flexible enough to support future ones.
Our PIPO implementation guarantees the TT traffic scheduling
correctness. The simulation results corroborate the theoretical
analysis that the low-cost PIPO can closely approximate PIEO
and sustain a high bandwidth utilization. The prototype on Xilinx
FPGA shows that, with 2,048 inputs, the PIPO-based scheduler
achieves a throughput of 70 Mpps, which is 1.64x higher than the
PIEO-based one, but using only 14.7% Look-Up Tables (LUTs)
and 40.5% Block RAMs of the latter.

I. INTRODUCTION

Today, an increasing number of time-critical applications,
such as Industry Internet of Things (IIoT), Vehicle Adhoc Net-
works (VANET), and Cyber Physical System (CPS), require
bounded and ultra-low latency for end-to-end communication
in distributed systems. In response, Time Sensitive Network-
ing (TSN) is proposed by IEEE 802.1 TSN Task Group to
ensure Quality of Service (QoS) for time-critical traffic while
maintaining the best-effort service for non-time-critical traffic
in the same time-synchronized Ethernet infrastructure.

A packet scheduler, which manages the sending time and
order of the queued packets, plays a vital role in TSN.
Due to different QoS requirements for diverse applications,
IEEE 802.1 TSN Task Group has standardized several packet
scheduling and shaping algorithms. For example, to guaran-
tee the latency for Time-Triggered (TT) traffic, Time-Aware
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Shaping (TAS) in IEEE 802.1Qbv [1] and Cyclic Queue
Forwarding (CQF) in IEEE 802.1Qch [2] are standardized.
With the development of TSN, new algorithms are expected
to be proposed to meet the emerging requirements, such as
the Asynchronous Time Scheduling (ATS) algorithm in the
on-going IEEE 802.1Qcr standard [3]. Such diversity requires
the TSN packet scheduler to be programmable and adaptive
to customized algorithms. The scheduler also needs to achieve
high throughput for line-rate forwarding and low resource
consumption for cost efficiency.

A software-based solution (i.e., using CPU+DRAM) is
indeed flexible to express various packet scheduling algorithms
but hard to achieve high throughput and deterministic schedul-
ing delay. The state-of-the-art software scheduler Eiffel [4],
with a nominal O(1) complexity for a scheduling decision, is
still much slower than a hardware one which takes only a fixed
and small number of clock cycles. Given the stringent require-
ments of TSN, a hardware scheduler is necessary. However, an
ASIC-based hardware implementation can only support one or
a few algorithms and is inflexible to adapt to future changes,
whereas in TSN, the scheduling programmability is equally,
if not more important than its performance.

In recent years, to support an expanding range of scheduling
algorithms using the same hardware structure, researchers
have proposed several general packet scheduling primitives,
such as First-In-First-Out (FIFO), Push-In-First-Out (PIFO),
and Push-In-Extract-Out (PIEO). FIFO requires packets in
the same queue to be dequeued in their enqueuing order,
so it has limited expression ability; PIFO [5], essentially a
priority queue sorted in ascending order of the customized
rank field, can express many packet scheduling algorithms
such as WFQ [6]. Further, PIEO [7] supports to first filter
eligible packets using some predicate and then dequeue the
smallest-ranked eligible packet, so it can express even more
scheduling and shaping algorithms than PIFO.

In this paper, our first original contribution is a pro-
grammable packet scheduling framework for TSN with ex-
tensive expressibility for TSN standard scheduling algorithms.
Although the PIEO primitive can be used in this framework,
its implementation cost is beyond affordability. Moreover, the
alternative lower-cost implementation proposed in [7] cannot
guarantee the scheduling correctness, which is unacceptable
for the critical TT traffic in TSN. As a remedy, our sec-
ond major contribution is a simpler Push-In-Pick-Out (PIPO)
primitive as the approximation of PIEO. Different from PIEO978-1-6654-4131-5/21/$31.00 ©2021 IEEE



which strictly selects the smallest-ranked eligible packet, PIPO
just picks a small-ranked eligible packet for non-TT traffic,
without guaranteeing the extremum. This relaxed requirement
significantly reduces the implementation complexity of PIPO,
which can be implemented with pHeap [8], the efficient
hardware priority queues. We show that the TT traffic can
be correctly scheduled by our PIPO implementation, and the
small inaccuracy on scheduling non-TT traffic is controllable
and acceptable. The theoretical analysis is confirmed by the
simulation results. The prototype on Xilinx FPGA shows that
the PIPO implementation can achieve more than 70 Mpps
throughput with 2,048 inputs. It consumes only 14.7% Look-
Up Tables (LUTs) and 40.5% Block RAMs (BRAM) of a
PIEO-based scheduler, but boosts the throughput by 1.64x.

The rest of the paper is organized as follows. Section II in-
troduces the background of packet scheduling algorithms and
related TSN standards. Section III explains the programmable
packet scheduling framework and uses it to express the stan-
dard algorithms. Section IV describes the PIPO primitive.
Section V evaluates the performance of PIPO by simulation
and implementation. Finally, Section VI concludes the paper.

II. BACKGROUND

In this section, we first introduce two classes of packet
scheduling algorithms, and then describe the three existing
primitives: FIFO, PIFO, and PIEO. Last, we introduce the
related TSN standards on packet scheduling algorithms.

A. Packet Scheduling Algorithms

A packet scheduling algorithm specifies when and in what
order the queued packets should be transmitted. Most schedul-
ing algorithms can be abstracted to a process which selects the
smallest-ranked eligible packet when the link is idle [7]. These
algorithms can be divided into two classes in terms of whether
an eligibility predicate takes effect.

Work-conserving algorithms do not let a link idle if there
exists a packet waiting to be scheduled on it. The repre-
sentative work-conserving algorithms include Strict Priority
(SP), Deficit Round Robin (DRR) [9], WFQ, Worst-case Fair
Weighted Fair Queuing (WF2Q) [10], and Stochastic Fairness
Queuing (SFQ) [11].

Non-work-conserving algorithms allow a link to be idle
rather than sending an ineligible packet. The typical predicate
can be checking the eligible sending time against the current
time. As a result, non-work-conserving algorithms can limit
the flow rates and thus express traffic shaping such as [12],
[13]. The representative non-work-conserving scheduling al-
gorithms include Token Bucket (TB) [14], TAS, and CQF.

B. Packet Scheduling Primitives

Although it is proved that no universal algorithm can
express all scheduling algorithms [15], researchers strive to
find some general scheduling primitives to cover as many
scheduling algorithms as possible. We compare the definitions,
expression ability, and hardware structure of the three basic
primitives: FIFO, PIFO, and PIEO.

FIFO, essentially a first-in and first-out queue, is the basic
and simplest scheduling primitive. Although the simplicity
makes it fast, scalable, and easy to be implemented in
hardware, it is incapable of expressing some popular packet
scheduling algorithms. Using multiple FIFOs can help to
some extent, e.g., realizing SP and some Round Robin based
scheduling algorithms, or approximating PIFO as in [16], [17],
but this also increases the hardware resource overhead.

PIFO is essentially a priority queue, in which each packet is
assigned a rank to denote its priority, and the packet with the
smallest rank (i.e., the highest priority) is always dequeued
first. Many hardware implementations of the priority queue
have been proposed. Binary tree [18] needs O(log n) steps
for the dequeue operation, rendering the throughput too low
to support large-scale inputs. Pipelined binary heaps [8], [19]
offer scalability by using SRAM and achieve high throughput
by using dedicated pipelines. Shift registers [18] and systolic
arrays [18] both adopt the compare-and-shift process to main-
tain an ordered list by the rank. The main difference is that the
former is parallel and the latter is pipelined. Sivaraman et al.
propose the PIFO structure based on shift registers, achieving
O(1) operations for each enqueue and dequeue operation [5].
With the priority queue, PIFO is much more expressive than
FIFO and capable of expressing most of the work-conserving
packet scheduling algorithms.

PIEO is a priority queue with constraints, in which each
packet is assigned not only a rank but also an eligibility
predicate. The enqueue operation is similar to that of PIFO, but
the smallest-ranked packet is dequeued only when it becomes
eligible. Shrivastav first proposes PIEO and implements it with
the compare-and-shift architecture for enqueue and compare-
and-encoder for dequeue [7]. The latter needs to verify all
the eligibility predicates through parallel comparison first;
then the comparison result, i.e., a bitmap, goes through a
priority encoder to get the index of the smallest-ranked eligible
element. The PIEO implementation with only registers and
logic gates is fast but not scalable, so a two-level structure
which needs at most a 2

√
n-bit shift register and 2

√
n BRAMs

is proposed, where n is the ordered list length. However,
the two-level structure needs four steps for each enqueue
or dequeue operation, which cannot be pipelined well. Even
worse, this implementation cannot realize the PIEO semantics
for multi-dimensional predicates, and some scheduling failures
may happen, making it inapplicable to TSN in which multi-
dimensional predicate functions are required and the TT traffic
cannot tolerate any scheduling inaccuracy. PCQ [20] uses the
calendar queue [21] to approximate PIEO with low overhead,
but it uses FIFO to store packets in the same bucket, resulting
in non-negligible jitters for TT packets. Albeit the concerns on
performance and cost, PIEO is more expressive than PIFO, and
it can express many non-work-conserving algorithms, such as
TB and Rate-controlled Static-Priority Queuing (RCSP) [22].

C. TSN Standards on Packet Scheduling

There are tree typical types of traffic in TSN: TT, Au-
dio/Video Bridging (AVB), and Best-Effort (BE). TT traffic
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refers to the periodic and urgent traffic, which usually requires
the latency and jitter to be within microseconds. AVB traffic
refers to the traffic that demands guaranteed bandwidth and
millisecond latency, such as the voice call. BE traffic refers
to the ordinary traffic (e.g., the Web browsing) that should
utilize the residual band and has the lowest requirement on
latency. The TSN Task Group has proposed several standards
for packet scheduling, such as Credit-Based Shaper (CBS) in
IEEE 802.1Qav [23] for AVB traffic, TAS in 802.1Qav and
CQF in 802.1Qch for TT traffic, and frame preemption in
802.1Qbu [24] and 802.3br [25] for BE traffic.

CBS is a non-work-conserving algorithm, which behaves
like TB, i.e., a packet must wait in a queue until enough credit
(tokens) is accumulated. However, CBS allows negative credit
and a packet can be sent once the credit becomes positive,
while TB requires the tokens to be greater than the packet
size. An example of CBS process is shown in Fig. 1. During
the time interval [t1, t2] and [t4, t6], the credit grows due to
the other higher priority packets or negative credit, and during
the time interval [t2, t4] and [t6, t7], the credit drops due to
the packet transmission.

Fig. 2 shows an example of the TSN scheduler structure
with 802.1Qbv, which possesses eight per-class packet queues:
Q7 for TT traffic, Q6 for AVB traffic with CBS gates, and the
others for BE traffic. Each queue is equipped with a TAS gate.
The scheduled packet is selected among all available queues
whose CBS and TAS gates are both opened according to SP.
Qbv regulates the open or close state of the TAS gates by a
Gate Control List (GCL) under a globally synchronized clock.
As shown in Fig. 2, during the time interval [T0, T1], only the
TAS gate for queue Q7 is ‘1’ according to the GCL, so the
TT traffic engrosses the port. In this way, the time line is split
into many non-interfering time windows, resembling a special
Time Division Multiple Access (TDMA) in a broad sense. The
bounded end-to-end latency and jitters can be achieved if such
windows are set properly. Existing work [26]–[28] has striven
to get a feasible GCL for predefined TT traffic patterns, so in
this paper we take the availability of a GCL for granted.

If an AVB or a BE packet is occupying the link at the start of
a TT packet’s window, the TT packet will be delayed. Hence,
before each TT window, 802.1Qbv sets a large enough guard
band during which no new packet is scheduled at the cost
of bandwidth waste. Frame preemption solves this problem
by a dedicated and complex MAC sub-layer for splitting and
reassembling AVB and BE packets, with a guard band up to

143 bytes [29]. Furthermore, a packet scheduling algorithm,
PAS [30], is proposed to utilize the guard band efficiently by
modeling the problem as a Knapsack Problem [31].

Fig. 3 shows an example of the TSN scheduler structure
for 802.1Qch, another standard for TT traffic. The states of
enqueue and dequeue gates are opposite and exchanged every
cycle T , so TT packets enter and leave Q7 and Q6 alternately.
In the so-called ping-pong manner, any TT packet received in
the cycle i must be sent out and received by its next-hop switch
in the cycle i+ 1. As a result, if the ping-pong manner is not
violated, the delay at each hop is bounded, and the end-to-end
delay is in the range of (h−1) ·T to (h+1) ·T , where h is the
number of hops. Similarly, to meet the latency requirements
of TT traffic, network operators need to derive a suitable T
and a sending offset for each TT flow [32].

III. PROGRAMMABLE PACKET SCHEDULING FRAMEWORK

In this section, we first introduce a programmable packet
scheduling framework for TSN, and then verify its powerful
programmability by expressing typical TSN packet scheduling
and shaping algorithms.

A. Framework Overview

As shown in Fig. 2, the TSN scheduler for 802.1Qbv
relies on a complex and rigid structure to realize TAS, CBS,
and SP. This scheduler lacks programmability in that, 1) it
cannot realize the other non-work-conserving algorithms such
as PAS, 2) it is not flexible to run customized work-conserving
algorithms, and 3) its class-level scheduling granularity is too
coarse to meet the diverse QoS requirements. Ideally, we need
a flexible scheduling framework which is able to program more
algorithms at flow-level granularity.

Most scheduling algorithms can be abstracted as a shaping
and selection process. The former filters out non-eligible
packets according to some predefined predicate function, and
the latter selects the packet with the highest priority in
the remaining packets. Based on the output-triggered model
in [7], our packet scheduling framework supports scheduling
algorithms with two prerequisites: 1) the packet descriptors
which represent the necessary packet properties (e.g., rank) are
stable and 2) the predicate functions only involve the packet
properties and external environment variables (e.g., current
time). As shown in Fig. 4, the framework consists of the
packet buffer in per-flow FIFO queues, and the scheduler
which handles the descriptor of each queue’s head packet,
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so that packets from the same flow always leave in order.
There is a descriptor queue in the scheduler, which stores the
descriptor from the Pre-Enqueue function and sends the sched-
uled descriptor to the Post-Dequeue function. The enqueue and
dequeue operations of the scheduler work as follows:

Enqueue: whenever an empty queue receives a new packet
or a non-empty queue receives a call from the Post-Dequeue
function, the Pre-Enqueue function (Line 1∼4 in Algorithm 1)
generates a new descriptor e of the queue’s head packet with
four necessary properties: eligible sending time, rank, packet
size, and queue id. The scheduler inserts this descriptor to a
proper position in the packet descriptor queue.

Dequeue: when the link is idle, the descriptor queue first
verifies the eligibility of all descriptors with two predicate
functions: 1) eligible time predicate, which is true when the
current time tnow reaches the eligible time, i.e., teligibility ≤ tnow,
and 2) packet size predicate, which is true when the packet
size s does not exceed the residual band r, i.e., s ≤ r.
Then, the scheduler dequeues the smallest-ranked eligible
descriptor e. At last, the Post-Dequeue function (Line 5∼11
in Algorithm 1) extracts the useful information from the
dequeued descriptor, updates the flow-based states, demands
the corresponding packet queue to transmit its head packet,
and calls Pre-Enqueue to prepare for the next turn.

Some other frameworks based on PIFO and SP-PIFO exe-
cute the Pre-Enqueue function before buffering a packet and
do not have a Post-Dequeue function, so they are easier to
deploy but unable to express some algorithms such as WF2Q
and CBS. The state-of-the-art framework based on PIEO
supports only one predicate of send time, failing to express
PAS. The programmability of our framework is reflected in the
transaction of the Pre-Enqueue and Post-Dequeue functions.
We detail the expressiveness of our framework next.

B. Expressiveness

The scheduling algorithms in TSN can be divided into
four categories: 1) packet-size-constraint algorithms such as
PAS, 2) eligible-time-constraint algorithms such as TAS and
CQF, 3) bandwidth-constraint algorithms such as CBS, and
4) work-conserving algorithms such as WFQ. We detail their
expressions by the programmable framework.

Algorithm 1: Pre-Enqueue and Post-Dequeue function
1 Function Pre-Enqueue (q)
2 e.teligible ← GetEligibleTime (q)
3 e.rank ← GetRank (q) e.qid ← q, e.s← Size (Qq .head)
4 equeue.Enqueue (e)

5 Function Post-Dequeue (e)
6 UpdateStates (e)
7 Send (e.qid)
8 if the packet queue of e.qid is not empty then
9 Pre-Enqueue (e.qid)

10 else
11 Reset () // Clear the states if needed

Algorithm 2: Transaction for TAS
1 Function GetEligibleTime (q)
2 return GetWindowStartTime(q) // from GCL

3 Function GetRank (q)
4 return 0 // the highest priority

1) Expressing PAS: The ideal PAS algorithm models the
problem of utilizing residual band as a special Knapsack
Problem, but its complexity is overwhelming for a hardware
scheduler. Instead, the framework adopts the greedy PAS
which selects the smallest-ranked packet whose size is no
more than the residual band. The greedy PAS is supported
by the framework naturally, as long as the packet size s can
be obtained and the residual band r is maintained.

2) Expressing TAS and CQF: Essentially, both TAS and
CQF specify the sending time window of each packet. A TT
packet should be sent in its planned time window (which can
be obtained from the GCL) for TAS and in the next cycle for
CQF. To express TAS or CQF correctly, the following three
requirements at the beginning of the interval must be met:
1) no other packet is being transmitted; 2) the TT packet is
in the packet buffer; and 3) the TT packet has the highest
priority for scheduling. The first requirement is met as PAS
is supported; and if no forwarding misbehavior happens, the
second one holds naturally. Ideally, all the packets of a TT
flow should be sent back by back in their sending window, so
we only need to set their teligible to be the start time of their
expected time window and rank to be the smallest (i.e., 0).
The transactions of TAS and CQF are shown in Algorithm 2
and 3, respectively.

Using the framework to express TAS and CBS brings
the following three benefits: 1) flexibility, as the complex
modeling [26]–[28] for ensuring the TT packet order is not
necessary, 2) efficiency, as the physical exclusive time win-
dows disappear, and 3) stability, as the slightly delayed TT
packet will be transmitted as soon as possible rather than
waiting for the subsequent TT window and even violating the
end-to-end latency requirement.

3) Expressing CBS: CBS deems a packet eligible for trans-
mission only if the credit of its flow is non-negative. The
detailed workflow is as follows: 1) while a packet is waiting



Algorithm 3: Transaction for CQF
1 Function GetEligibleTime (q)
2 return GetNextCycleStartTime()

3 Function GetRank (q)
4 return 0 // the highest priority

Algorithm 4: Transaction for CBS
1 Function GetEligibleTime (q)
2 if empty[q] then
3 last[q] ← tnow
4 return tnow

5 credit[q]← credit[q] + vidle(tnow− last[q])− vsend
delay[q] // Update credit

6 last[q]← tnow+ delay[q]
7 if credit[q] ≥ 0 then
8 return last[q]

9 last[q]← last[q]− credit[q]
vidle

, credit[q]← 0

10 return last[q]

11 Function GetRank (q)
12 return 1 // The second highest priority

13 Function UpdateStates (e)
14 delay[e.qid]← e.s

vlink

15 Function Reset (q)
16 credit[q]← 0, empty[q]← 1

in a queue, its flow’s credit grows at a rate of vidle; 2) while a
flow is being transmitted, its credit drops at a rate of vsend; 3)
when a queue is empty, the credit is cleared to zero. For each
flow, we should set its vidle equal to its required bandwidth
and vsend = vidle−vlink. The challenge of expressing CBS with
the framework is that we cannot directly set the predicate to
Credit ≥ 0. This is because the credit may have changed
since the descriptor is inserted into the descriptor queue,
beyond the framework’s requirement for stable properties. To
solve this problem, we use the eligible time predicate instead.
The eligible time, which can be calculated according to the
current credit and vidle, constrains when the packet should be
scheduled if it is not blocked by any other packet with a higher
priority. Each flow maintains the states of its last sending time
and credit, allowing the GetEligibleTime function to update the
current credit if the last sent packet is delayed.

The transaction for CBS is shown in Algorithm 4. For
simplicity, we set the rank of AVB traffic to 1, i.e., the
second highest priority. Fig. 1 reflects the key operations of
Algorithm 4. We omit the description due to space limitation.

4) Expressing WFQ: For BE traffic, we can use various
work-conserving algorithms together with the greedy PAS.
We take the Start-Time Fair Queueing (STFQ) [33], an ap-
proximation of WFQ, as an example. We need to maintain
a global virtual time tvirtual for all flows adopting STFQ. The
sending time tstart (i.e., the rank in this case) is the maximum of
the virtual finishing time of the flow’s last packet and current
tvirtual. When a packet is scheduled, it needs to update tvirtual

Algorithm 5: Transaction for STFQ
1 Function GetEligibleTime (q)
2 return tnow

3 Function GetRank (q)
4 tstart ← max(last[q], tvirtual)

5 last[q]← tstart +
Size(Qq.head)

weight[q]
6 return tstart

7 Function UpdateStates (e)
8 tvirtual ← tvirtual +

e.s
weight[e.qid]

to be the packet’s rank. Algorithm 5 shows the transaction
for STFQ. Note that though the GetEligibleTime function
always returns tnow to satisfy the eligible time predicate, BE
packets are actually non-work-conserving due to the packet
size predicate. Besides, tvirtual is updated according to the
packet size and flow weight, rather than the rank of the
scheduled packet, because the packet size predicate may make
the BE packets out of the rank order.

C. Limitations

Although our programmable framework can express most
scheduling algorithms, including the current standards in TSN,
it has some limitations. First, since the enqueued descriptors
cannot be modified, some descriptors for non-TT packets
may suffer starvation and the scheduling algorithms with
dynamic priority like pFabric [34] cannot be expressed by
the framework. To solve the starvation problem, we propose
a possible approach by considering the delayed time of each
descriptor (§IV-B). Second, the per-flow packet queues may
raise the concern of scalability. Fortunately, as discovered
in [35], the number of active flows is typically small and a
dynamic queue allocation mechanism can be used to solve
the problem. Finally, the properties are stored in fixed and
limited bits, but some algorithms require their values to
increase monotonically (e.g., rank in STFQ), so assigning
property values when reaching the upper bound is a problem.
To alleviate this problem, we can reserve more bits for the
properties and restore the initial state when the flow queue is
empty.

IV. PUSH-IN-PICK-OUT QUEUE

For the programmable packet scheduling framework, the
Pre-Enqueue and Post-Dequeue functions can be realized
using the Domino [36] language on programmable switches
or the Verilog language on FPGA-based switches [7]. We
focus on the implementation of the packet descriptor queue in
this section. We first analyze the issues of the PIEO primitive
and its implementation1. Then, we detail the design of PIPO
as the approximation of PIEO. Finally, we analyze PIPO’s
performance and its degree of approximation to PIEO.

1The original PIEO only supports the predicate of eligible time. For fair
comparison, we modify the PIEO structure to also support the predicate of
packet size. The term of PIEO refers to the modified structure from now on.
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A. Issues of PIEO Primitive and Implementation

Using PIEO, the packet descriptor queue always dequeues
the smallest-ranked eligible packet, so PIEO can be used as
the descriptor queue for TSN. Fig. 5 shows a straightforward
implementation of the PIEO primitive with the one-level
structure, where each packet descriptor stores its eligible
time teligible and packet size s for the required predicate
(teligible ≤ tnow ∧ s ≤ r). It adopts the compare-and-encoder
structure for dequeue operation. The five descriptors in Fig. 5
are ordered by their ranks in the shift registers. The predicate is
realized by the parallel comparators, and the resulting bitmap
is ‘00101’. Since the first bit ‘1’ corresponds to the descriptor
of Q2, the priority encoder guides the descriptor of Q2 to be
dequeued, which satisfies the principle of the smallest-ranked-
eligible-packet-first.

Unfortunately, such an implementation does not scale well.
As the number of descriptors increases, the consumption of
the shift registers increases linearly and can eventually exhaust
the available resource. Moreover, obtaining the residual band
r is not easy as the structure must know the start time of
the next TT window with extra configuration cost. Trying to
improve the cost, the PIEO implementation with a two-level
structure [7] splits the priority queue of length n into 2

√
n

sub-lists each with length
√
n. Only the sub-list table, which

saves the digests of each sub-list, is stored in registers and the
sub-lists are stored in BRAMs.

However, the two-level structure cannot realize PIEO’s se-
mantics (i.e., guarantee scheduling the smallest-ranked eligible
packet) for multi-dimensional predicate functions and the
scheduling failures may happen if some compromise is taken.
As shown in the left of Fig. 6, if both the smallest size and
eligible time are stored as predicates in register-based sub-list
table as suggested in [7], for the scheduling example, sub-list
0 will be fetched but no eligible descriptor can be found in
it. This is because the eligible predicate for each dimension
may belong to different descriptors. In order to at least find
an eligible descriptor, as shown in the right of Fig. 6, we need
to maintain a table for the largest size and eligible time for
each sub-list in place of the smallest size and eligible time,
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Fig. 6: An example of PIEO implementation with the two-
level structure: the length of each sub-list is two; Q0 and Q1

is stored in sub-list 0; Q2 and Q3 is stored in sub-list 1; Q4

is stored in sub-list 2. It fails to find a feasible solution with
the smallest size and eligible time as both Q0 and Q1 in the
selected sub-list 0 is not eligible. However, it can obtain an
eligible packet Q4 from the table recording the largest size
and eligible time, although it may not be the smallest-ranked
one (e.g., Q2 in sub-list 1 is better).

so the selected packet based on this table is guaranteed to be
eligible, although it may not have the smallest rank.

Moreover, the two-level PIEO structure cannot achieve high
throughput. Take its dequeue operation as an example. In the
first cycle, it gets the sub-list index which stores the smallest-
ranked eligible descriptor, by comparing the current time and
residual band with the largest eligible time and largest packet
size in each sub-list, respectively. In the second cycle, it reads
sub-list S from SRAM. In the third cycle, it finds the position
of the smallest-ranked eligible descriptor in S and does other
necessary operations. In the last cycle, it dequeues the selected
descriptor and writes the sub-list back to SRAM. The above
four cycles cannot be pipelined for two reasons: 1) the second
and fourth cycles involve SRAM read/write, so the structural
hazard requires enough bubbles to be placed in the pipeline; 2)
the packet scheduled in the fourth cycle reduces the residual
bandwidth capacity for the first cycle, i.e., it may cause the
true predicates to be false in the previous stages, leading to a
data hazard. The data hazard is difficult to solve, as the length
of the dequeued packet cannot be obtained until the last cycle.
In brief, the above PIEO implementations cannot achieve high
throughput, low cost, or the required semantics, making them
unsuitable for TSN.

B. PIPO Primitive and Structure

We propose a new PIPO primitive which also assigns each
descriptor an eligibility predicate and a rank like PIEO. It,
however, relaxes the requirement of dequeuing the smallest-
ranked eligible descriptor only. Instead, it allows to pick one



of the small-ranked eligible descriptors. The relaxation makes
PIPO more friendly for hardware implementation.

TAS, CQF, and CBS need the eligible-time predicate, for
which once a descriptor becomes eligible, it can never turn
ineligible again. This inspires us to use two priority queues to
stores the ineligible descriptors ordered by the eligible time,
and the eligible descriptors ordered by the rank. When a new
descriptor is generated, it is pushed into the first queue if
it is ineligible, otherwise the second queue; when the head
descriptor of the first queue becomes eligible, it is moved into
the second queue; when the link is idle, the head packet of the
second queue is dequeued. For a TT packet, in the extreme
case that its descriptor is located in the first queue, but some
descriptors of the AVB flows are ahead of it, the two priority
queues may not be able to send it on time. For example,
assume there is a descriptor eTT for a TT flow and n − 1
eAVB for AVB flows ahead of it in the first queue, where n is
the length of the queue. Hence, eTT has to wait n − 1 move
operations, which may influence its deterministic forwarding
requirement. Although the probability of this reorder issue is
relatively low and the moving operation is fast, such delay is
intolerable for TT packets in TSN. To solve this problem, we
set a dedicated priority queue for TT packets ordered by the
eligible time and ensure dequeuing its head at the eligible time
for deterministic forwarding.

PAS needs the packet size predicate, for which the eligibility
of a descriptor will change as the environment changes with a
limited state space. For example, the packet size is between 84
and 1,538 bytes, composed of an Ethernet frame (64 to 1,518
bytes), a Preamble (1 byte), an SFD (7 bytes), and an IFG
(12 bytes). Since the space of packet size is limited, we can
set a small number of packet-size groups (e.g., four groups
covering packet size in 64∼127, 128∼511, 512∼1,023, and
1,024∼1,538 bytes, respectively). In this way, packets can be
selected among the eligible groups whose upper limits satisfy
the packet size predicate, instead of examining the predicate
of all descriptors. Further, if each group is ordered by the
rank (i.e., using a priority queue), the smallest-ranked head
descriptor among all the eligible groups is more likely to be
the smallest-ranked eligible one globally. The detailed analysis
is in the next subsection.

The multiple-priority-queue structure which implements the
PIPO primitive with the predicate (teligible ≤ tnow ∧ s ≤ r)
is shown in Fig. 7. TT flows use a separate priority queue
pqTT ordered by the eligible time. This queue has the highest
scheduling priority once the eligible time is reached. For non-
TT flow, PIPO adopts the two-level priority queues: the first
level is a priority queue pq0 ordered by the eligible time
for descriptors whose eligible time has not arrived yet, the
second level comprises m (e.g., m = 4 in Fig. 7) priority
queues ordered by the rank for dividing descriptors according
to packet size. The enqueue and dequeue operations for non-
TT packets can be pipelined with two stages as follows.

Stage 1. The newly generated descriptor of a non-TT flow
is enqueued to pq0. If the head descriptor of pq0 or the new
descriptor satisfies teligible ≤ tnow, the one with a lower teligible

3

Q3

13

900B

Descending order of  teligible 

S
tr

ict P
r
io

r
ity

2 1

Q2 Q1

2 1

Q2 Q1

4

Q4

4

Q4

255r 

511r 

1023r 

1538r 

teligible      tnow

Descending order of rank

qid

rank

s

teligible

qid

rank

Q4  out

pq0

pq2

pq3

pq4

20

Q0qid

teligible

pqTT

Descending 
order of  
teligible 

teligible      tnowteligible      tnow

else

pq1

vlink = 1 Gbpstnow  = 10 us

r = (teligible-tnow)/vlink = 1250 B

For non-TT flows

For TT flows

s      255s      255

s      511s      511

s      1023s      1023

Fig. 7: PIPO structure example: the priority queue pqTT and
pq0 store Q0 and Q3, respectively, as their teligible properties
have not arrived yet; and pq1 to pq4 store descriptors according
to their size. Q4 is out, and the globally optimal descriptor Q2

is blocked by Q1 and pq4’s gate.

is dequeued from pq0.
Stage 2. The descriptor dequeued from pq0 is pushed into

one of the priority queues among pq1∼pq4 according to the
packet size property. Meanwhile, the scheduler selects the head
descriptor with the smallest rank from the priority queues
whose upper limits are not larger than the residual band.

As shown in Fig. 7, since the packet size and eligible time
properties of non-TT packets are no longer used in pq1 to pq4,
they can be omitted to save resources, and so do the packet
size and rank properties of TT packets in pqTT. Besides, the
residual band r is obtained from the eligible time teligible of
the head descriptor in pqTT, current time tnow, and the link rate
vlink, which is more flexible than the PIEO structure in Fig. 5.

For the PIPO structure, each priority queue can be imple-
mented as a pHeap [8], which supports retrieving the smallest-
ranked packet in one cycle and executing enqueue/dequeue
operation every two cycles using pipeline. As the pHeap scale
increases, we can use BRAMs to store the heap structure to
save the register and logic gate resources.

In pHeap, a descriptor is swapped up if it has a lower
rank than its counterpart. A possible approach to avoid
the starvation problem is to compute a temporary rank for
comparison in the heap operation. The temporary rank is
based on the original rank and decreases as the delayed time
(i.e., max {0, tnow − teligible}) grows. As a result, the longer a
descriptor is delayed, the more likely it is swapped up and
scheduled, so the starvation problem is avoided. Note that the
eligible time property cannot be omitted in this approach. We
leave the detailed design and evaluation for future work.

C. Analysis of PIPO’s Approximation Ability

Since PIPO adopts a relaxed scheduling semantics, it cannot
guarantee the smallest-ranked eligible scheduling. For the
PIPO structure in Fig. 7, the deterministic forwarding of TT
packets is guaranteed by an extra highest-priority ordered



queue and the real-time updated residual band r, so we analyze
its approximation to PIEO for non-TT packets.

The bandwidth utilization is the key performance indicator
for non-TT packets, e.g., AVB, so we focus on the PIPO’s
approximation degree and bandwidth utilization to the PIEO
primitive. We first define the approximation degree αm

r as the
probability that the PIPO structure picks up the same AVB or
BE packet as the PIEO primitive when the given residual band
is r and the number of priority queues in the second level is
m. Let a random variable S denote the packet size in the range
of [Smin, Smax]. We limit r in the range of [0, Smax], since
the packet size predicate does not take effect when r ≥ Smax.
The lower and upper bounds of pqi are Li and Ui, satisfying
L1 = Smin, Li = Ui−1 + 1, and Um = Smax. Assume the
rank is independent with the packet size.

For a given residual band r, the smallest-ranked eligible
descriptor must exist in pq1∼pqKr

, where UKr−1 ≤ r ≤ UKr
.

Obviously, if r < U1, PIPO will not select any descriptor (i.e.,
the approximation degree is zero), and if r = UKr , PIPO will
certainly select the smallest-ranked eligible descriptor (i.e.,
the approximation degree is 100%). Otherwise, only if the
smallest-ranked eligible descriptor appears in pq1∼pqKr−1,
can PIPO choose the same descriptor as PIEO. We assume
each descriptor in pq1∼pqKr−1 has the equal probability to be
the smallest-ranked eligible one. Let a random variable N ′ and
NKr

denote the total number of descriptors in pq1∼pqKr−1
and pqKr

, respectively, so we can calculate the theoretical αm
r

as follows,

αm
r = E

[
N ′

N ′ +NKr

]
=

n∑
i=1

n−i∑
j=0

i

i+ j

(
n

i

)(
n− i
j

)
pi1p

j
2p

(n−i−j)
3 ,

(1)

where n is the total number of descriptors, p1, p2, and p3
denote the probability of the packet size drops in the interval
[Smin, UKr−1], [LKr , r], and [r+1, Smax], respectively. Next,
we give an approximation of Eq. (1), which is confirmed by
the simulation results,

αm
r ≈

p1
p1 + p2

=
Pr(S < LKr )

Pr(S ≤ r) . (2)

From Eq. (2) we deduce some conclusions for the approx-
imation degree. First, as r increases in pqi’s coverage, where
i ≥ 1, αm

r will drop gradually as the denominator increases.
Since αm

r = 1 when r = UKr
, the curve of the αm

r will present
a jagged upwards trend with a zero start as shown in the
simulation results in Section V. Second, more groups means
less drops, i.e., a higher average approximation degree can be
reached. If we setup a priority queue for each possible packet
size, we can ensure the approximation degree to be 1, at the
cost of considerable resource consumption and more complex
operations to find the smallest-ranked eligible descriptor.

In terms of the residual band utilization of AVB and BE
flows, because both PIEO and PIPO select packet only based
on the current state, we can resort to Discrete Time Markov
Chain (DTMC) to analyse their performance. Let V and P

denote the state set and one-step state transition matrix. For
any state v ∈ V , rv is its residual band. If the current state is
allowed to be scheduled, we define it as a transition state, and
otherwise an absorption state. All transition states constitute
a transition state set T , and all absorption states constitute an
absorption state set A, so V = T ∪ A. The one-step state
transition matrix P records any one-step transition probability
from state v to v′, denoted by pv,v′ = Pr (Vt+1 = v′|Vt = v).
According to the properties of DTMC, we can use one-step
state transition matrix P to obtain the limit of the n-step
transition matrix P̂ = limn→∞Pn. We can use P̂ to calculate
the expectation of the wasted band W under an initial state v
as follows

E [W |rv] =
∑
v′∈A

rv′ p̂v,v′ . (3)

The utilization of an given residual band rv is thus 1− E[W |rv ]
rv

.
Next, we only need to clarify the < V,P > of PIEO and PIPO.

It is necessary to make it clear that only two cases of state
transition exist: case 1©, from a transition state v to a transition
state v′, whose corresponding situation is that the size of the
scheduled packet is rv − rv′ ; case 2©, from a transition state
v to an absorption state v′, whose corresponding situation is
that there is no eligible packet, i.e., rv′ = rv .

For PIEO, if all the n descriptors’ packet size predicates are
false in the current state, it corresponds to case 2©. Otherwise,
it corresponds to case 1©, and the probability of finding a
packet with size rv − rv′ is Pr(S=rv−rv′ )

Pr(S≤r) . Therefore, we have

pPIEO
v,v′ =


{1− [Pr (S > rv)]

n} Pr(S = rv − rv′)

Pr(S ≤ rv)
, if 1©;

[Pr (S > rv)]
n , if 2©;

0, else.

(4)

There are two differences between PIPO and PIEO: first,
if all packets satisfy S > yv (where yv = rv if rv = UKrv

and yv = UKrv−1 otherwise), no packet will be scheduled
and thus the next state will be an absorption state; Second,
the probability of the dequeued packet with size rv − rv′ is
Pr(S=rv−rv′ )

Pr(S≤yv)
, Therefore, we have

pPIPO
v,v′ =


{1− [Pr (S > yv)]

n} Pr(S = rv − rv′)

Pr(S ≤ yv)
, if 1©;

[Pr (S > yv)]
n , if 2©;

0, else.

(5)

From Eq. (4) and (5), we conclude that PIEO is more
likely to trap into the absorption states, and as m increases,
Pr (S > yv) is approaching Pr (S > rv), so does the approx-
imation of PIPO to PIEO.

V. EVALUATION

In this section, we first show that the PIPO structure can ap-
proximate PIEO more closely if it adopts more priority queues.
Second, we implement the PIPO structure and compare its
performance with other implementation of the PIEO primitive.
The results on Xilinx FPGA show that the PIPO prototype
has the highest stable scheduling throughput and the lowest
resource consumption as the number of descriptors grows.
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Fig. 8: Theoretical and simulation approximation degree of
PIPO-m on different packet-size distributions.

A. Simulation

1) Setup: We first evaluate the approximation degree and
bandwidth utilization of PIPO to PIEO, while the PIPO
structure adopts m priority groups in its second level, denoted
by PIPO-m, where m = 4, 8, 32. To reduce the impact of
randomness, each result value is the average of 10K tests.

The input set contains enough packets buffered in 256
per-flow queues with random rank and packet size2. The
rank obeys the uniform distribution in {0, 1, . . . , 1023}, and
the packet size obeys two typical distributions: 1) uniform
distribution in {84, 85, . . . , 1538}, and 2) Caida distribution
of [37] as shown in Table I.

TABLE I: Caida distribution of the packet size

Size interval [84, 138) [138, 1438) [1438, 1538) 1538

Probability 0.45 0.15 0.2 0.2

2) Approximation Degree: Fig. 8 shows the theoretical and
simulation approximation degree of PIPO-m on the two typical
packet-size distributions as the given residual band increases.
First, the theoretical results based on Eq. (2) match the sim-
ulation well. Second, PIPO achieves a higher approximation
degree as m increases, which is consistent with our expectation
that adopting more priority queues helps to approach PIEO.
The curves of PIEO-m display a jagged upward trend, which
complies with Eq. (2). Adopting more groups makes the curve
more smooth. The distribution of packet size also influences
the approximation degree of PIPO-m. Our grouping method
makes each priority queue have the equal expected number of
descriptors, so more priority queues are used at the two ends of
the Caida distribution. As shown in Fig. 8(b), the serrations are
flattened and the range of the zero start is reduced significantly
on the Caida distribution, achieving a higher approximation
degree on average.

Although we cannot guarantee the dequeued descriptor from
PIPO to be the smallest-ranked eligible one, we assert it is
not worse than that from PIEO for three reasons: first, PIEO
expresses the greedy PAS rather than the ideal PAS which
achieves the theoretical highest bandwidth utilization for AVB
and BE flows, making PIEO’s decision not globally optimal;

2The simulation results show that when the number of per-flow queues
exceeds 16, the fluctuation of approximation degree and residual band
utilization are controlled within a few tenth of a percent.
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Fig. 9: Theoretical and simulation residual band utilization of
PIPO-m, and PIEO on different packet-size distributions.

second, PIPO prefers to select smaller packets which are often
more critical; third, not selecting the smallest-ranked eligible
packet can mitigate the starvation problem to some extent.

3) Residual Band Utilization: Fig. 9 shows the theoretical
and simulation residual band utilization as the given residual
band increases. The theoretical models of Eq. (4) and (5) fit
the simulation well. PIPO-m still displays a jagged upward
trend, but the fluctuation is lighter. Similarly, a larger m helps
to realize higher utilization, and the gaps among different m
narrow on the Caida distribution due to the higher proportion
of small packets. Some curves represented by PIEO have
high utilization when the given residual band is small, e.g.,
100 Bytes. This comes from two reasons: first, the number
of descriptors is 256, so the probability of finding a packet
smaller than 100 bytes is high; second, packets must be larger
than 84 bytes in our setting, i.e., one selected packet can almost
fill the residual band. Third, PIPO-m still performs better on
the Caida distribution due to flexible grouping granularity.

Based on the above results, PIPO-4 achieves acceptable
performance on the Caida distribution with about 79% ap-
proximation degree to PIEO, and 76% bandwidth utilization
in contrast to 82% of PIEO, if the given residual band obeys
the uniform distribution. It is close to PIPO-32 (about 97%
and 81%, respectively) but needs much fewer pHeaps. As the
Caida distribution is close to the packet distribution in real
networks, we set m = 4 in our final implementation of the
PIPO structure for a tradeoff between performance and cost.

B. Implementation

We implement PIPO using the hardware priority queue,
pHeaps, and compare it with three PIEO implementations:
the one-level, the two-level, and the Binary Comparison Tree
(BCT) [18]. The PIPO prototype, as shown in Fig. 7, uses
two pHeaps pqTT and pq0 ordered by the eligible time, and
four pHeaps pq1 to pq4 ordered by the rank with the grouping
method of PIPO-4 on the Caida distribution. The one-level
PIEO prototype adopts the shift-register-based structure in
Fig. 5 without using BRAM. It needs a shift register of length
n, three parallel comparators of length n (one for enqueue and
two for dequeue), and a priority encoder of length n, where n
is the number of descriptors. The two-level PIEO prototype,
based on the open-source code from [38], reduces the register
scale to 2

√
n but it costs more stages for the enqueue/dequeue

operation. To make it comparable to PIPO and guarantee TT
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Fig. 10: Performance comparisons of the PIPO, one-level PIEO, two-level PIEO and BCT prototype.

flow scheduling correctness, we add a pHeap pqTT to it also
and maintain the largest size and eligible time for each sub-list.
BCT, another implementation of PIEO, first adopts two n-long
parallel comparators to filter the descriptors whose eligible
time and packet size predicates are true, and then uses a binary
tree with log n layers to get the final descriptor.

The PIPO prototype is written in Scala [39], comprising 600
LOCs, and then is compiled into Verilog codes by Chisel [40].
The one-level PIEO, two-level PIEO, and BCT are written
in System Verilog [41], comprising ∼400, ∼1,000 and ∼400
LOCs, respectively. As the baseline, the bit width of the rank,
packet size and eligible time is 16, 12 and 16, respectively.
The four prototypes are implemented on a Xilinx Virtex-7 [42]
FPGA comprising 712K LUT, 1,424K flip-flops, and 1,880
36Kb dual-port BRAMs.

1) Throughput: The most important performance indicator
for a TSN scheduler is throughput. As shown in Fig. 10(a),
the PIPO prototype achieves the highest throughput when the
number of descriptors is large. It achieves more than 70 Mpps
throughput for 2,048 descriptors, easily supporting 40Gbps
small-packet link-rate forwarding, which is 1.21, 1.64, and
1.68 times faster than the one-level PIEO, two-level PIEO,
and BCT prototypes, respectively. PIPO has a drop when the
number of descriptors reaches 128. This is because we imple-
ment the first five layers of pHeap (i.e., up to 64 descriptors) in
faster Distributed RAMs (i.e., LUTs). Thanks to the scalability
of pHeap, the curve of PIPO is flat for more descriptors than
128. Although PIPO can run at the highest clock frequency,
pHeap needs two clocks for a new enqueue/dequeue operation
in pipeline, which halves the throughput.

The one-level PIEO prototype performs well for a small
number of descriptors, but the throughput plunges as the
descriptors increase, and it lags behind PIPO after 256 descrip-
tors. This is because the on-chip net delay and priority encoder
delay increase as the descriptor size expands. The throughput
drop of the two-level PIEO prototype is slow because it shrinks
the descriptor size from n to 2

√
n. As mentioned above, its

four-cycle enqueue/dequeue operation is hard to be pipelined,
making the throughput low. The BCT prototype cannot be
pipelined either and has a similar throughput trend as the two-
level PIEO, though its throughput drop is mainly caused by
the increase in the depth of the binary tree.

2) Resource consumption: Fig. 10(b) and 10(c) show the
LUT and flip-flop consumption of the four prototypes. The

PIPO prototype consumes less than 1% flip-flops than the
best BCT and the two-level PIEO when the descriptor scale is
small. For more than 512 descriptors, it consumes the fewest
LUTs and the second fewest flip-flops, thanks to the fact that
some layers of pHeap are implemented in BRAMs. Although
the two-level PIEO consumes the fewest flip-flops, its LUT
consumption is large, e.g., 21.8% under 2048 descriptors in
contrast to 3.2% for the PIPO prototype (i.e., the latter is
only 14.7% of the former). This is because it still needs
a shift register to store 2

√
n descriptors, which consumes

LUTs. Recall that the one-level PIEO outperforms PIPO on
throughput when the number of descriptors is no more than
256, but its resource consumption is unscalable. As both LUT
and flip-flop are resources in slice, the smallest logic unit
of Xilinx FPGA, the slice consumption of a two-level PIEO
implementation is much higher than that of a PIPO one.

The one-level PIEO and BCT prototypes do not use
BRAMs, so their consumption on LUT and filp-flop does
not scale well. Fig. 10(d) shows the BRAM consumption of
the PIPO and the two-level PIEO prototypes. The BRAM
consumption of PIPO is less than half of the two-level PIEO,
e.g., 60 and 148 BRAMs under 2,048 descriptors (i.e., the
former is only 40.5% of the latter). The BRAM consumption
is related to the number of pHeaps, so using more pHeaps to
improve the approximation degree costs more BRAMs.

The pHeap settings have a big impact on resource con-
sumption for the PIPO prototype. For example, if the first
sixth layers of pHeap are implemented in LUTs and flip-
flops, PIPO’s LUT and flip-flop consumption will increase by
23% and 69% under 2,048 descriptors, respectively, but its
BRAM consumption will drop from 60 to 48; if fewer than
five layers are implemented in LUTs and flip-flops, its flip-flop
consumption will be smaller than that of the two-level PIEO.

VI. CONCLUSION

Scheduling is the core component of TSN. The diversified
algorithms keep pushing the boundaries of the implementa-
tion’s expressiveness, performance, and cost. We propose a
programmable scheduling framework for TSN and demon-
strate its expressiveness on the TSN scheduling algorithms.
The new PIPO primitive approximates PIEO and its imple-
mentation supports higher throughput and lower cost. Through
analysis, simulation, and prototype, we show that the PIPO-
based scheduler meets the TSN requirements, and outperforms
other approaches on throughput and cost.
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