
DOVE: Diagnosis-driven SLO Violation Detection
Yiran Lei∗‡, Yu Zhou§, Yunsenxiao Lin∗‡, Mingwei Xu∗†‡, Yangyang Wang†‡

∗Department of Computer Science and Technology, Tsinghua University
†Institute for Network Sciences and Cyberspace, Tsinghua University

‡Beijing National Research Center for Information Science and Technology (BNRist)
§Alibaba Inc.

Abstract—Service-level objectives (SLOs), as network perfor-
mance requirements for delay and packet loss typically, should
be guaranteed for increasing high-performance applications, e.g.,
telesurgery and cloud gaming. However, SLO violations are
common and destructive in today’s network operation. Detection
and diagnosis, meaning monitoring performance to discover
anomalies and analyzing causality of SLO violations respectively,
are crucial for fast recovery. Unfortunately, existing diagnosis
approaches require exhaustive causal information to function.
Meanwhile, existing detection tools incur large overhead or are
only able to provide limited information for diagnosis. This paper
presents DOVE, a diagnosis-driven SLO detection system with
high accuracy and low overhead. The key idea is to identify
and report the information needed by diagnosis along with SLO
violation alerts from the data plane selectively and efficiently.
Network segmentation is introduced to balance scalability and
accuracy. Novel algorithms to measure packet loss and percentile
delay are implemented completely on the data plane without the
involvement of the control plane for fine-grained SLO detection.
We implement and deploy DOVE on Tofino and P4 software
switch (BMv2) and show the effectiveness of DOVE with a
use case. The reported SLO violation alerts and diagnosis-
needing information are compared with ground truth and show
high accuracy (>97%). Our evaluation also shows that DOVE
introduces up to two orders of magnitude less traffic overhead
than NetSight. In addition, memory utilization and required
processing ability are low to be deployable in real network
topologies.

I. INTRODUCTION

Internet applications, e.g., telesurgery, cloud gaming, virtual
reality streaming, and algorithmic trading, are having more and
more strict service level objectives (SLOs) over reachability,
delay, packet loss, and bandwidth. SLOs describe the perfor-
mance expectations, e.g., the end-to-end packet loss rate of
cloud gaming traffic should not exceed 5%.

Various reasons lead to SLO violations, e.g., link failure
causes packet loss and microburst introduces extra queuing
delay. Meanwhile, SLO violations are common in production
networks. Jeff Dean’s keynote [1] reveals that around 40 to
80 machines suffer from severe packet loss in a DCN per
year. Katz-Bassett et al. [2] discover reachability problems
involving about 10,000 distinct prefixes during 3 weeks. Even
in the past 24 hours, tens of Internet outages are reported
by ThousandEye [3]. Without timely disposal, SLO violations
may have severe consequences, which include degrading user
experiences, posing security and function problems, and caus-
ing monetary damages to service providers [4]. Google and
Bing‘s report [5] indicates that a 500 ms delay leads to 1.2%
revenue reduction. Clay [6] reports that Amazon lost 66,240$

per minute in a sudden 40% drop in web traffic. Therefore,
fast recovery from SLO violations is of great significance.

To mitigate and resolve SLO violations as soon as possible,
it is essential to 1) detect and 2) diagnose SLO violations
quickly. Detection denotes discovering SLO violations and
reporting alerts. Upon receiving alerts, diagnosis analyzes the
causality of the SLO violations. Diagnosis tools Dapper [7],
DTaP [8], Provenance [9] and Zeno [10] find the responsible
flows and the locations of performance bottlenecks. Detection
and diagnosis should work jointly for fast recovery. However,
existing detection tools incur large overheads or fail to provide
enough information needed by diagnosis.

The detection tools can be classified into two types. The
first type is to capture information of all packets. These
tools, e.g., NetSight [11] and Planck [12], are able to detect
various types of SLO violations (e.g., packet loss, delay and
bandwidth) and provide enough information for diagnosis.
However, these tools introduce large detection overheads and
face scalability issues. The second type is to capture informa-
tion of a partial set of packets via aggregating and filtering.
They can significantly reduce detection overheads. But they
fail to provide enough information needed by diagnosis. The
types of SLOs they monitored are also limited. For example,
LossRadar [13] provides no extra information for diagnosis.
INTSight [14] cannot detect SLO violations related to packet
loss and percentile delay.

Recognizing the importance and problems of detection
and diagnosis, we present DOVE, a diagnosis-driven SLO
violation detection system. The key idea is to identify and
report the information needed by diagnosis along with SLO
violation alerts from the data plane selectively and efficiently.
DOVE is able to monitor SLOs of interested flows at the
microsecond level. The SLOs include packet loss, max delay,
and percentile delay. They are consecutively measured over
operator-defined intervals. For example, the SLO of packet
loss is that the number of lost packets from switch A to switch
B should not exceed 10 every 100ms. Besides, DOVE defines
causally related information of SLO violations, collects the
information for analysis, and analyzes causality with efficient
and automatic techniques. DOVE is distinguished from the
related works in two perspectives. First, compared to the
state-of-the-art network detection techniques, DOVE yields
better scalability and provides good network visibility for
SLO troubleshooting. Second, compared to the state-of-the-
art network diagnosis techniques, DOVE does not assume
exhaustive casual information, which is impractical to acquire
in production networks, because the overhead is too large.978-1-6654-4131-5/21/$31.00 ©2021 IEEE

In a nutshell, DOVE splits time into epochs and flow
paths into segments respectively. For interested flows, DOVE
measures packet loss and delay performance per epoch and
per segment completely on the data plane by storing and
calculating metadata in switches and telemetry headers. If SLO
violations are found, alerts are generated and reported to the
control plane. Another set of flows are monitored at the same
time for any suspicious flow behaviors which might be the
causes of SLO violations. Data plane uploads events contain-
ing suspicious flow behaviors. Control plane servers passively
collect alerts and events and use Provenance-based [8–10]
techniques to analyze the causality of alerts. DOVE is designed
for data center networks, enterprise networks, and Internet
service provider (ISP) networks with the support of partial
and incremental deployments.

The contributions of DOVE are the followings:
• We propose a diagnosis-driven SLO violation detection

system, which detects SLO violations at fine-grained
timescales with low overhead and diagnoses causality of
SLO violations automatically and efficiently.

• We propose the Coloring Algorithm for packet loss
measurement and an approximate algorithm for percentile
delay verification without the involvement of the control
plane. DOVE supports partial and incremental deploy-
ment with the mechanism of network segmentation.

• We validate the design by implementing DOVE over
the commodity programmable switch and P4 software
switch. Our evaluation verifies the effectiveness of causal-
ity analysis, showing that the accuracy of performance
measurement is >97% and the traffic overhead is 70%
lower than INTSight, NetSight, and LossRadar.

II. DESIGN OVERVIEW

In this section, we present an overview of DOVE’s design.
A. Architecture of DOVE

As shown in Figure 1, DOVE has three architectural com-
ponents. On the data plane, the SLO violation detector first
measures flow performance (in terms of percentile delay, max
delay, and packet loss) in real-time and then reports alerts
to the control plane if the measured performance fails to
meet the SLO requirements (i.e., expected flow performance).
Alerts are signals showing the existence of SLO incompliance.
However, finding the causality of a violation requires more
information than the alert itself. Hence we specify suspicious
flow behaviors (e.g., heavy hitters), which might be the causes
of violations. Suspicious Flow Behavior Monitor monitors
flows’ behaviors and generates corresponding events if any
suspicious behaviors are found. On the control plane, an
analyzer collects alerts and events from all DOVE-enabled
switches and seeks the cause of a certain alert by retrieving
and correlating events.
B. Processing Procedure of DOVE

DOVE’s processing procedure is composed of two stages.
The first stage is configuring network switches. First, we
introduce the concept of the epoch, which is the time unit

SLO
Violation
Detector

Suspicious
Flow Behavior

Monitor

SLO
Violation
Analyzer

Data
Plane

Control
Plane

alerts events

Figure 1. DOVE architecture.

s2

Analyzer

① Detection
• Insert and drop DOVE headers for selected flows
• Update flow metadata at switches to detect SLO

violations and monitor suspicious flow behaviors
• Generate and report alerts and events

② Diagnosis
• Passively collect alerts and events
• Upon query, explain causality of

SLO violation using Provenance

Alert
Event

s3

Control Plane

Data Plane

s1

Causality

Packet

Figure 2. DOVE processing procedure.

for measuring and reporting. DOVE splits continuous time
into a series of adjacent epochs and sets the epoch length on
every switch to be the same. Clocks are synchronized across
different switches with IEEE 1588 [15]. Every epoch can be
associated with a unique epoch id which represents the same
period across switches. Second, DOVE translates SLOs and
suspicious flow behaviors into epoch-wise rules. These rules
have values functioning as thresholds. (e.g., the threshold for
max delay is 20ms = when the measured max delay exceeds
the threshold 20ms, an alert should be generated and reported.)
Third, DOVE allocates unique IDs for selected and watched
flows and populates the specified flows (expressed by the 5-
Tuple, source and destination IP addresses, etc.), their IDs,
and rules (thresholds) to switches (discussed in §II-C).

The second stage is operation. As shown in Figure 2, sup-
pose all switches are DOVE-enabled. Packets of the monitored
flow sequentially traverse via switch s1, s2, s3. DOVE uses
packet headers to deliver control signals and values for later
calculations. On ingress switch s1, DOVE headers are inserted
into packets whose SLOs need to be monitored. Packets
go through the SLO violation detector and suspicious flow
monitor inside each switch along the flow path. On s1, s2,
and s3, after the detector and monitor, flows’ metadata, which
records current performance and behaviors, is updated. On s1
and s2, DOVE headers are updated as well while on egress
switch s3, DOVE headers are removed and the packets are
restored. Flows’ metadata is checked and refreshed per epoch.
At the end of each epoch, the measured flow performance and
monitored behaviors are compared with installed thresholds.

Once performance fails to meet requirements or suspicious
behaviors are found, alerts or events will be generated and
reported to the analyzer respectively. Otherwise, no alerts
or events will be generated. Then flows’ metadata is reset.
The analyzer keeps collecting alerts and events passively and
analyzes the causality of alerts.
C. Key Ideas of DOVE
1) Specific flows

SLOs of flows with higher priorities need to be monitored
and verified. Performance measurements and comparisons are
resource-expensive on the data plane. It is impractical and
unnecessary to monitor SLOs of the complete set of flows.
Therefore, we select a partial set of flows (i.e., V.I.P. flows),
called the selected flows, for the SLO violation detector. Three
types of SLO, i.e., packet loss, percentile delay, and max delay,
are monitored.

It is the network operators’ responsibilities to set the se-
lected flows, as the performance of important flows should
be guaranteed. Flows are specified by flow IDs, which can be
composed of any fields of packets, e.g., source and destination
IP addresses, and 5-Tuple. Flow IDs of P4 [16] support exact
matching, longest prefix matching, and range matching. All the
matched packets of a single flow ID are treated as a single flow
for SLO monitoring. In some cases, network operators can
precisely assign flows of certain applications as the selected
flows. In other cases, with the longest prefix matching and
range matching, operators can aggregate distinct flows like
166.111.x.x/16, and set SLOs for the whole. The flexibility
in flow IDs enables network operators to monitor SLOs with
multiple granularity according to their needs.

In order to diagnose SLO violations with higher accuracy,
suspicious flow behaviors of more flows should be monitored.
We should cover potential bad flows as much as possible (even
the complete set of flows). The set of flows, whose behaviors
are monitored by DOVE, is called the watched flows. For
watched flows, two types of suspicious flow behaviors, i.e.,
heavy hitters and heavy changers, are checked by the sus-
picious flow behavior monitor. Selected flows and watched
flows are not necessarily the same. The watched flows cover
a wider range of flows in most cases. Note that only SLOs of
the selected flows will be verified and only behaviors of the
watched flows will be monitored.

A bigger set of watched flows tends to collect more causally
related information, leading to higher diagnosis accuracy.
There are two ways to assign the set of watched flows.
First, network operators know in advance that certain flows
are key flows, e.g., applications on certain servers generate
large traffic. Such flows can be easily expressed by flow IDs.
Second, network operators have no ideas what to monitor.
DOVE has the ability to monitor the complete set of flows
(only to detect heavy hitters and changers) by using iteratively
updating techniques like Sonata [17].

In the DOVE configuration stage, IDs starting from 0 are
allocated to all the selected flows as well as the watched flows
sequentially. Then the flow IDs of selected and watched flows

along with the IDs and flow-specific rules (thresholds) are
populated to the data plane by lookup tables (implemented
on P4 as match-action tables on each device). On the data
plane, resources are allocated and reserved in advance. Any
intermediate values used by the detector and monitor are stored
in register tables. Each entry is assigned to the flow whose ID
is the same as the entry index.
2) Network segmentation

It is expensive and impractical to replace all the forwarding
devices in a network all at once. We propose a measuring
abstraction to 1) balance scalability and accuracy and 2) sup-
port partial and incremental deployment. Most of the previous
approaches measure flow performance on an end-to-end or
per-hop basis. The former lacks the information of internal
nodes while the latter may have severe scalability issues.

Network segmentation splits the flow path into several
segments. For each segment, the switch which the flow firstly
traverses is called the upstream switch while the other switch
is called the downstream switch. Upstream and downstream
switches are not necessarily neighbor switches. Except for
the ingress and egress switch, the downstream switch of the
current segment is also the upstream switch of the following
segment. Specifically, the segment starts from the ingress
pipeline of the upstream switch and ends at the ingress pipeline
of the downstream switch. In DOVE, flow performance (i.e.,
percentile delay, max delay, packet loss) and corresponding
SLOs are measured and set for each segment respectively.
3) Novel algorithms for packet loss and delay measuring on

the data plane
The programmable data plane is limited in computation

capability. Existing approaches for packet loss measuring have
to rely on the computation capability of control plane to syn-
chronize counters (e.g., NetFlow [18], AM-PM [19]) or decode
digests (sketch-based techniques, e.g., LossRadar [13]). The
latest method QPipe [20] for percentile delay measurement is
fully implemented on the data plane, but still unable to pro-
vide flow-level information. However, the involvement of the
control plane inevitably introduces additional delay and SLOs
should be verified for key flows. We overcome the computation
limitations of the data plane and design a novel algorithm,
called Coloring Algorithm, for packet loss measuring and an
approximate algorithm for percentile delay verification without
any involvement of the control plane. Hence, packet loss and
delay of selected flows can be measured for every segment on
a per-epoch basis timely and efficiently.

III. DESIGN

In this section, we describe the design of the detector,
monitor, and analyzer. Table I displays the fields in the DOVE
telemetry header. Note that DOVE header is only inserted into
packets of the selected flows. The detailed usage of the fields
will be discussed in the following subsections.
A. SLO Violation Detector

The detector works at the ingress pipeline. For each selected
flow, during each epoch, at each downstream switch, SLO

Table I
Fields in DOVE telemetry header.

Field Description Bit

up switch id upstream switch id 8
egress port port to which the packet is forwarded at 9

upstream switch
packet num number of packets sent from upstream switch 32
control bit indicating the operation of downstream switch 1
color bit indicating color of the packet 1
pad keep DOVE header byte-aligned 5
timestamp timestamp at ingress pipeline 48

Violation Detector keeps answering the question: for the
segment, does the real performance satisfy the expectation?
If the answer is no, an alert is generated and reported. This
procedure hides the measuring details inside the detector itself
and only exposes the result to the control plane, which greatly
reduces traffic overhead. The detector measures and compares
two types of SLOs: 1) packet loss, 2) delay.
1) Packet Loss

SLO for packet loss follows the pattern that the number of
lost packets or packet loss rate in the current epoch should not
exceed n. We first calculate packet loss using the Coloring
Algorithm and then compare it with the threshold. The key
idea of the Coloring Algorithm is that: 1) set counters at the
upstream and downstream switch and 2) synchronize counter
values via telemetry headers and calculate packet loss at the
downstream switch periodically.

Specifically, upstream switch dyes all packets red or green
by setting the color bit field to 0 or 1 respectively in the DOVE
header. We say red and green are opposite of each other for
clear description in later parts. Packets’ color shifts when a
new epoch starts and keeps unchanged for the rest of the
epoch. Red and green counters are set to count the number
of red and green packets sent from the upstream switch. In
the first half of the current epoch, the upstream switch sets
control bit field to 0 and packet num field to the value of the
opposite color counter (e.g., if the upstream switch is sending
red packets in the current epoch, copy the green counter value
to the packet num field). When the second half of the current
epoch starts, the opposite color counter is reset to 0 to be
prepared for the next epoch (as packets’ color in the next
epoch will be the opposite color). During the second half of
the current epoch, set control bit field to 1 and packet num
field to 0. Algorithm 1 is the pseudo-code at the upstream
switch.

At the downstream switch, red and green counters are set to
count the number of received red and green packets. When the
control bit field in the header is 0, copy and store packet num
field in the register, which is the number of sent packets of
the previous epoch. The number of received packets of the
previous epoch is stored in the opposite color counter at the
downstream switch. When seeing the control bit is 1 for the
first time, calculate packet loss with opposite color counter
and packet num and store the result in the register. Due to the
inability to operate division on the data plane, we calculate
the number of lost packets instead of packet loss rate (see

Algorithm 1: Coloring Algorithm - upstream switch
1 if new epoch is True then
2 shift packet color()
3 if first half of epoch is True then
4 control bit = 0
5 if packet color is red then
6 packet num = green counter
7 else
8 packet num = red counter
9 else

10 control bit = 1
11 packet num = 0
12 if packet color is red then
13 green counter = 0
14 else
15 red counter = 0
16 if packet color is red then
17 red counter ++
18 color bit = 0
19 else
20 green counter ++
21 color bit = 1

Algorithm 2: Coloring Algorithm - downstream switch
1 if color bit is 0 then
2 red counter ++
3 else
4 green counter ++
5 if control bit is 0 then
6 register pn = packet num
7 trigger = 1
8 else
9 if trigger is 1 then

10 if color bit is 0 then
11 packet loss = register pn - green counter
12 green counter = 0
13 else
14 packet loss = register pn - red counter
15 red counter = 0
16 trigger = 0

Algorithm 2).
The reason to calculate packet loss on the second half of the

epoch is that we need to wait for a certain time until the num-
ber of the previous epoch’s packets is stabilized, as packets
near epoch borders may arrive out of order. Control bits of all
packets are set so that downstream switches can still receive
control signals even when some packets are lost. Downstream
switches only calculate packet loss once per epoch to save
computation resources and increase processing speed. Note
that for the Coloring Algorithm, the clocks of the upstream and
downstream switches are not necessarily synchronized. Storing
packet numbers sent from senders and calculating packet loss
are both controlled by clocks at upstream switches. Clocks
at downstream switches are only used to retrieve packet loss
results. In addition, a network device may function as the
upstream and downstream switch for adjacent segments at
the same time, meaning both Algorithm 1 and 2 should be
implemented at the ingress pipeline and there should be 4
counters in total.

2) Delay
Percentile delay and max delay are measured. SLO for

percentile delay asks the question of whether ηth-percentile
delay in the current epoch exceeds d. It is difficult to accurately
measure ηth-percentile delay directly on the data plane due
to limited computation resources and capability. We use an
approximate algorithm to answer this question.

Suppose the bandwidth of the selected flow is B bps,
epoch length is E seconds and packet size is S bits. Then
the estimated number of packets per epoch is E · B/S. We
use N to denote E · B/S. Next, we discuss two situations.
Firstly, if (N − 1) · η% is an integer, the η-th percentile
value of N values, which are sorted in ascending order, is the
(1+(N−1) ·η%)-th one. In this case, whether η-th percentile
delay exceeds d can be converted to whether the number of
delay exceeding d is larger than N−(N−1)·η%−1. Secondly,
if (N−1) ·η% is not an integer, the η-th percentile value of N
sorted values is some number between the (1+b(N−1)·η%c)-
th value and the (1 + d(N − 1) · η%e)-th value. In this
case, if the number of delay exceeding d is larger than
N − bN · (1− η%)c − 1, the SLO requirement is violated. If
the number is smaller than N −bN · (1− η%)c− 1, the SLO
requirement is satisfied. However, it is unclear if the number
equals to N−bN ·(1−η%)c−1. With inaccuracy (i.e., ignoring
possible violations when two numbers are equal in the second
situation), we can combine two situations and simply judging
whether the number of the delay exceeding d is larger than
N−bN ·(1−η%)c−1. If the answer is yes, an alert is generated
and reported. When processing packets, subtract the timestamp
carried in the header from the timestamp at the ingress pipeline
to get the packet segment delay. If the segment delay is larger
than delay threshold d, increase the counter, which records
exceeding times, by 1. Before forwarding the packet, copy the
timestamp at the ingress pipeline to the header’s timestamp
field. Note that this algorithm is only an approximate way to
verify SLO. It is not suitable for flows whose bandwidth is
changing dramatically.

The SLO for max delay is that the max delay of the current
epoch should not exceed m. Similar to percentile delay, packet
segment delay is calculated. The register, which holds the
max delay so far, is compared with the segment delay and
properly updated. At the end of the epoch, the register value
is compared with threshold m and reset to 0.

Table II shows the fields of the alert header. An alert is for
a segment. The upstream switch and egress port is expressed
in up switch id and egress port fields, which are copied from
DOVE header (Table I). The downstream switch is the current
switch and ingress port field is filled by querying the standard
metadata. When an alert should be generated, the original
packet is cloned. Then the alert header is inserted into the
cloned packet. The clone packet is truncated to remove the
original payload and finally uploaded to the analyzer. If the
current switch is the upstream switch of the adjacent segment,
update the up switch id and egress port fields in the DOVE
header.

Table II
Fields in alert header.

Field Description Bit

index ID of the selected flow 32
up switch id upstream switch id 8
egress port port to which the packet is forwarded 9

at upstream switch
switch id downstream switch id 8
ingress port port from which the packet is received 9

at downstream switch
max delay indicating SLO violation of max delay 1
percentile delay indicating SLO violation of percentile delay 1
packet loss indicating SLO violation of packet loss 1
pad keep alert header byte-aligned 3
epoch epoch id 32

B. Suspicious Flow Behavior Monitor
The monitor works at the egress pipeline. For each watched

flow, during each epoch, the suspicious flow behavior monitor
keeps looking for any flow behaviors which may be the causes
of SLO violations and reports events like the detector. The
causes of delay violations include high queue occupancy, inter-
and intra-switch loop, etc. The causes of packet loss violations
include queue overflow, link corruption and failure, software
bugs, etc. Among these causes, the queue-related cause is
the most common one, because the hardware, software, and
configurations are relatively fixed compared with dynamic
network conditions. Therefore, the monitor focuses on two
types of suspicious flow behaviors: 1) heavy hitter, 2) heavy
changer. Note that other causes, e.g., hardware and software
failure, and misconfigurations, are not directly detected by
DOVE. DOVE is unable to diagnose upon these factors.
However, in cases where SLO violations are detected without
any monitored suspicious flow behaviors, network operators
can infer the existence of errors in hardware, software, or
configurations.
1) Heavy Hitter

An event is uploaded if the traffic of the watched flows on
the current epoch exceeds the threshold l. Heavy hitters con-
tribute much to the queuing time in the switch. Since packet
queuing is processed after ingress pipeline, long queues sig-
nificantly increase segment delay and queue overflow causes
packet loss, which makes heavy hitters responsible for SLO
violations. Threshold l can be adjusted according to network
traffic and queue capacity. When processing packets, the length
of the current packet is added to a register. At the end of the
epoch, the register value is read and compared with l.
2) Heavy Changer

If the traffic increase from the previous epoch to the current
epoch exceeds threshold i, an event is uploaded. Besides, treat
newly established flows as heavy changers. We do not consider
a fast decrease in traffic here since it does not deteriorate
queue occupancy. Although the absolute flow rate may not be
large, several heavy changers may break the balance and cause
congestion at switches. At the egress pipeline, two registers
take turns recording the traffic size of the current epoch. At
the end of the epoch, the traffic size of the current one is
compared with the traffic size of the previous one. The register

Table III
Fields in event header.

Field Description Bit

index ID of the watched flow 32
switch id switch id 8
ingress port port from which the packet is received 9
egress port port to which the packet is forwarded 9
heavy hitter indicating the flow is a heavy hitter 1
heavy changer indicating the flow is a heavy changer 1
pad keep event header byte-aligned 4
epoch epoch id 32

of the previous epoch is then reset to record at the next epoch.
Table III shows the fields of the event header. Similar to
alerts, event packets are cloned and truncated. However, events
are observed behaviors at each DOVE-enabled switch. The
concept of segments does not apply to events.

Both the detector and monitor need to set up thresholds.
The thresholds are empirical and should be set by network
operators. They are the performance objectives of various
flows. Under different network conditions, for multi-prioritized
flows, with different network segments, the objectives are
different. Still, some methods can be applied when operators
initialize thresholds. With the objectives of end-to-end delay
or packet loss, the segment SLOs should be a fraction of the
end-to-end SLOs, which can be estimated by the hop numbers
in the segment.
C. SLO Violation Analyzer

We first introduce a diagnostic tool, provenance [9], which
can get causal explanations of an event (the event discussed
here is different from §III-B) in a distributed system. Prove-
nance maintains each event in the system and records the direct
causes of events. When network operators query the explana-
tion of a certain event, provenance can recursively trace back
the causal events, which removes unrelated ones and saves
time. Provenance can be represented as a DAG. The vertices
of the DAG are events and the edges show the causal relations
(e.g., the edge e1 → e2 in the DAG means that event e1 is
the cause of event e2). Like Network datalog (NDlog) [21],
we use A(@X, pa) :- B(@Y, pb), condition(pa, pb) as rules
to represent the derivation from one event (i.e., tuple in the
NDlog context) to another. In the above rule, pa and pb are
parameters of event A,B. Event A at node X is derived from
event B at node Y if condition(pa, pb) is satisfied. In turn,
if event A(@X, pa) is observed, event B(@Y, pb), whose pb
satisfies condition(pa, pb), should be the cause.

In DOVE, the analyzer collects alerts whose causality
should be explained. However, finding the direct causes of
alerts is difficult and impractical. The accurate and direct
causes of an alert (if we only consider switch queue as the
major reason) is a series of events (not the concept in §III-B)
which are certain flows occupy switching queues to certain
extents at certain times. With these series of events, we can
explain: 1) which flows contribute to SLO violations, 2) when
these flows contribute to SLO violations and 3) to what extent
these flows contribute to SLO violations. How to acquire
the series of events? A brute-force approach is to directly

Table IV
Provenance rules.

ID Rules

1 A(@Y, pi, Z, pe, f, t1) :- L(@Z, ∗, pe, ∗, t2), t1 − t2 ≤ ε1
2 A(@Y, pi, Z, pe, f, t1) :- LI(@Z, ∗, pe, ∗, t2), t1 − t2 ≤ ε2
3 A(@Y, pi, Z, pe, f, t1) :- L(@Y, pi, ∗, ∗, t2), t1 − t2 ≤ ε3
4 A(@Y, pi, Z, pe, f, t1) :- LI(@Y, pi, ∗, ∗, t2), t1 − t2 ≤ ε4

snapshot switch queues, which includes flows’ occupancy of
the queues, whenever a packet of the selected flow is received
at the switch. However, even with compression techniques for
the snapshots, considering the huge number of flow packets,
there are not enough resources to implement the brute-force
snapshot technique on the data plane. Other queue snapshot
techniques, e.g., ConQuest [22], and BurstRadar [23], can only
snapshot partial queues at the partial time, which fail to capture
the exhaustive queue information as well.

Therefore, instead of collecting and linking direct and
accurate causes, we treat the events discussed in §III-B as the
causes of alerts. This is a trade-off between the resources and
the accuracy of diagnosis. We believe this is reasonable be-
cause as discussed in §III-B, heavy hitters and heavy changers
can be the causes of SLO violations. Next, we introduce our
approach to construct the provenance for causality analysis.

Events (in §III-B) are denoted as L(@X, pi, pe, f, t) and
LI(@X, pi, pe, f, t), meaning the watched flow f is observed
as a heavy hitter or heavy changer, whose ingress port is pi
and egress port is pe, in switch X at epoch t. Alerts are
denoted as A(@Y, pi, Z, pe, f, t), meaning 1) SLO violations
of the selected flow f are observed at epoch t, 2) the SLO
violations happen on the segment Z → Y , and 3) flow f leaves
upstream switch Z from port pe while entering downstream
switch Y from port pi. Table IV shows the correlation rules for
alerts and events. Rule 1 and 2 correlate SLO violations with
heavy hitters and heavy changers which share the same egress
ports with the selected flow f in upstream switch Z. Rule 3
and 4 link alerts to heavy hitters and heavy changers whose
ingress ports are the same with f in downstream switch Y . The
rules pick out the flows which share the same queues with the
selected flows and hence the picked flows should be the cause
of SLO violations. ∗ in the rules means wildcard while ε is an
adjustable parameter controlling the time adjacency of linked
alerts and events. With the above rules and collected alerts and
events, we can construct a provenance graph (a DAG) in the
central analyzer and find the causes of SLO violations.

IV. EVALUATION

We implement DOVE on P4 software switch (BMv2) [24]
(822 lines of code) and Barefoot Tofino [25] (1940 lines
of code) (The analyzer includes 438 lines of code). We run
Mininet-emulated networks on a Linux server with 2× 2.40
GHz Xeon E5-2620 v3 CPU and 64 GB RAM. We show
the effectiveness of the Provenance-based technique by a case
study. By comparing the received alerts and events with the
ground truth, we show the coverage rates of ground truth
alerts and events reach above 97%. Then, we compare DOVE’s
bandwidth overhead with LossRadar [13], INTSight [14] and

Flow A: h2 → h1 w s
Flow B: h3 → h1 w
Flow C: h4 → h1 w
Flow D: h4 → h1 w

h2

s2 s1

h3

h4

h5

h1

s3

s4

h0

Link Capacity:
s2-s3: 50 Mbps
s2-s4: 50 Mbps
s1-s2: 80 Mbps
Link Delay: 1 ms

(a) network topology and routing

0 5 1 0 1 5 2 0
1 0
1 5
2 0
2 5
3 0
3 5

Flo
w T

raf
fic

(M
bps

)

T i m e (s)

 F l o w A
 F l o w B
 F l o w C
 F l o w D

(b) flow A,B,C,D rate

0 5 1 0 1 5 2 06 06 57 07 58 08 59 09 51 0 01 0 51 1 01 1 51 2 0

Tra
ffic

 at
s1

(M
bps

)

T i m e (s)

 A c c u m u l a t e d
 L i n k C a p a c i t y
 D i a g n o s i s P o i n t

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0

0
1

Ale
rt f

rom
 s1

E p o c h

 F l o w A

(c) accumulated traffic on s2→ s1 link and flow
A alerts received from s1

Figure 3. Provenance case study. Selected flow A suffers performance degradation from flow B,C,D competition on s2 → s1 link.

NetSight [11], showing DOVE generates the least traffic
overhead. Finally, we compare DOVE’s resource utilization
(i.e., TCAM, SRAM) with INTSight and adapted Switch-
Pointer [26] in 6 real WAN topologies.

Despite all the processing logic to measure SLOs on the data
plane, the additional logic into the Tofino ASIC pipeline has
little impact on the processing throughputs, as long as the logic
can fit into the resource constraints. The packet processing
with DOVE is at the line rate.
A. Case Study: Provenance

We set up a simulation using Mininet with the topology
shown in Figure 3(a). There are 4 switches, all of which are
DOVE-enabled. Link capacities of s3 → s2 and s4 → s2
are 50 Mbps while link capacity of s2 → s1 is 80 Mbps.
Link delay is 1 ms. 2 hosts are attached to s3 and s4
respectively and one is attached to s1. 4 flows traversing from
h2, h3, h4, h5 to h1 are named flow A, B, C, D. Host h0
serves as the analyzer and collects alerts and events via out-
of-band links. The rates of flow A, B, C, D are shown in 3(b).
The flows are first created and written into pcap files using
the Python Scapy library. Then we use Tcpreplay to replay the
traffic. The epoch length of DOVE is set to be 216 = 65536
microseconds. The threshold for packet loss and max delay is
set to be 10 and 1.5 ms respectively. Percentile delay SLO is
that 90-percentile delay should not exceed 1.2 ms. These SLOs
are monitored on segments s3 → s2, s4 → s2 and s2 → s1.
Flows that are larger than 20 Mbps and flows that increase
more than 2 Mb every second are considered heavy hitters
and heavy changers. Such suspicious behaviors are reported
from s1, s2, s3, s4. Flow A is the only selected flow while
flow A, B, C, D are all watched flows.

We focus on the segment from s2 to s1. Figure 3(c) shows
the accumulated flow rate (the left axis) with the running time
(the bottom axis). It also shows whether an alert is received
(1 for received) in each epoch (the top axis). Note that the
epochs and running time are synchronized. The accumulated
traffic fills link capacity at 3 s. Only after a short period (0.437
s), the first SLO violation alert of flow A is received. This is
reasonable because although the queue in s1 starts piling at
3 s, the performance of flow A is not degraded much at the
beginning. As the accumulated traffic continues to grow, flow
A’s SLOs can no longer be satisfied and alerts are reported in

Flow A (from s2
egress 4 to s1 ingress

4) violates packet
loss SLO at epoch 53

Flow B (to
egress 4 at
s2) is a
heavy hitter
at epoch 52

Flow B (to
egress 4 at
s2) is a
heavy hitter
at epoch 53

Flow B (from
ingress 4 at
s1) is a heavy
changer at
epoch 53

(a) provenance on diagnosis point 1

Flow A (from s2 egress 4 to
s1 ingress 4) violates packet
loss SLO at epoch 200

Flow B (from
ingress 4 at s1)
is a heavy hitter
at epoch 199

Flow B (from
ingress 4 at s1)
is a heavy hitter
at epoch 200

Flow C (to
egress 4 at s2) is
a heavy hitter
at epoch 200

Flow B (to
egress 4 at s2) is
a heavy hitter
at epoch 199

Flow B (to
egress 4 at s2) is
a heavy hitter at
epoch 200

Flow D (from
ingress 4 at s1) is a
heavy changer at
epoch 200

Flow C (to egress
4 at s2) is a heavy
changer at epoch
200

Flow D (to egress
4 at s2) is a heavy
changer at epoch
200

Flow C (from
ingress 4 at s1) is a
heavy changer at
epoch 199

Flow C (to
egress 4 at s2) is
a heavy hitter at
epoch 199

(b) provenance on diagnosis point 2

Figure 4. Provenance result.

all of the following epochs.
Next, we choose two alerts shown as diagnosis points on

Figure 3(c) to verify the effectiveness of provenance. The
analysis results are shown in DAG as Figure 5. The first alert
is mainly caused by flow B in Figure 4(a). This corresponds
to the real traffic because flow B is a heavy changer (5Mbps)
and heavy hitter (22.5 Mbps) near 3.43s. For the second alert,
at 13.1s, the rate of flow B starts to drop but the absolute rate
is still large (33 Mbps) at the moment. Flow C is a heavy
hitter and changer. Flow D is a heavy changer but its rate is
still less than 20 Mbps. The diagnosis result shown in Figure
4(b) corresponds to the real traffic change.

The number of watched flows is strongly connected with
diagnosis accuracy. If the set of watched flows can cover
all the heavy hitters and heavy changers like Figure 3, the

0 1 0 2 0 3 0 4 0 5 0 6 05 0
5 5
6 0
6 5
7 0
7 5
8 0
8 5
9 0
9 5

1 0 0

 N e t S i g h t
 D O V E
 L o s s R a d a r

A v e r a g e P a c k e t L o s s (%)

Ale
rt C

ove
rag

e R
ate

(%
)

(a) packet loss alert coverage rate
with 20 incast flows

1 5 2 5 3 5 4 5 5 5 6 5 7 5
1 0 1

1 0 2

1 0 3

1 0 4

Ov
erh

ead
(K

Bp
s)

S e l e c t e d F l o w T r a f f i c (M b p s)

 D O V E N e t S i g h t L o s s R a d a r

(b) overhead of generating packet
loss alerts on 8Gbps link with 1%
packet loss

Figure 5. Coverage rate and overhead of packet loss alert.

diagnosis will have promising results. As for the selected
flows, their SLOs are measured and compared individually.
Important flows are set to be selected flows by the network
operators on a need-to basis. The number of selected flows
has no relation to the diagnosis accuracy.
B. Coverage Rate and Bandwidth Overhead

We evaluate the coverage rate of ground truth alerts and
events, showing that most (>97%) of the ground truth alerts
and events are correctly reported. We use Mininet to build a
2-switch topology in this section.
1) Packet Loss

We run a fix-sized flow at the 50 Mbps rate on the link.
Fix packet loss threshold. By gradually decreasing the link
capacity from 50 Mbps, the average packet loss rate on the link
increases. The number of received alerts showing violations of
packet loss SLO increases as well. We evaluate the coverage
by seeing whether there are any epochs during which packet
loss SLO is not satisfied but the corresponding alert is never
generated and reported.

First, we need to find the ground truth of packet loss
alerts. When the flow traverses the P4 software switch, each
switch writes the traffic trace into pcap files and each packet
of the flow is tagged with the timestamp when the packet
enters or leaves the switch interfaces. We split the time
when packets enter the upstream switch into epochs. Each
packet can be classified into its epochs using the entering
timestamp. Then each packet entering the upstream switch can
be checked whether it is received at the downstream switch
using downstream pcap files. Therefore, we can calculate the
packet loss for each epoch, which is the packet loss ground
truth. Finally, compare the ground truth packet loss with the
threshold to get ground truth alerts. By comparing epoch id
between received alerts and ground truth alerts, we calculate
the coverage rate of ground truth alerts shown in Figure 5.
As the average packet loss rate increases, the coverage of
alerts is slowly dropping. This is because all of the packets
which belong to the second half of the epoch are lost. The
control bit of these packets is 1, which should have triggered
a downstream switch to calculate packet loss. Due to the
loss of upstream packets, packet loss is not calculated at the
downstream switch, and alerts are not reported. However, this
phenomenon is acceptable because when the average packet
loss rate is big, the number of alerts is large enough to alert
network operators.

2 9 2 1 2 2 1 5 2 1 8 2 2 10
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0 0 2 0 4 0 6 0

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0

Ale
rt a

nd
Ev

ent
 Ov

erh
ead

(K
Bp

s)

E p o c h L e n g t h (u s)

 A l e r t a n d E v e n t
 D O V E H e a d e r

DO
VE

 He
ade

r O
ver

hea
d(K

Bp
s)

S e l e c t e d F l o w S i z e (M b)

Figure 6. Overhead of alert, event, and DOVE header.

We compare the coverage rate with NetSight [11] and
LossRadar [13]. Since NetSight has the history of every packet
on the control plane, it can easily calculate packet loss in
each epoch on the control plane and generate alerts correctly.
The coverage can reach 100%. LossRadar uses sketch-based
techniques to store counter values on the data plane. Then
decode and calculate packet loss on the control plane. How-
ever, with 20 incast flows, LossRadar can only decode 90%
lost packets of the selected flow with 2KB digests (DOVE
only needs 0.72KB for a selected flow) and therefore can
only cover 90% alerts. The coverage comparison is shown in
Figure 5(a). As shown in Figure 5(b), we compare bandwidth
overheads of DOVE, NetSight and LossRadar. The total traffic
running on the link is 8Gbps with a 1% average packet
loss. DOVE generates around two orders of magnitude less
overhead than Netsight, one order of magnitude less overhead
than LossRadar.

The bandwidth overhead of DOVE consists of two parts,
which are 1) DOVE header, and 2) alerts and events. Because
alerts and events are reported periodically from a limited
number of switches, there exist upper limits for the alert and
event overhead, where every DOVE-enabled switches upload
alerts and events on each epoch. The upper limits for alert
and event overhead are proportional to the number of DOVE-
enabled switches and have a negative relation to the epoch
length. Considering one switch, as shown in the left and
bottom axis in Figure 6, a finer epoch length has deeper
visibility into network status at the cost of generating more
traffic overhead. Network operators should set proper epoch
lengths according to the network size and their needs. For the
DOVE header, since the header is inserted into every packet
of select flows, the overhead is proportional to the size of
selected flows, as shown in the right and top axis in Figure
6. Besides, when the size of the selected flow and the epoch
length are both small, the alert and event overhead can be
the main contributor to the total overhead. As the size of
the selected flow continually increases, the header overhead
becomes the dominant one.
2) Delay

We run a fix-sized flow at a 50 Mbps rate on the link.
Fix max and percentile thresholds. By gradually increasing
the link delay from 3000 µs to 6000 µs, we test the alert
coverage. By analyzing the pcap files written by P4 software
switch like §IV-B1, we can accurately get the max delay and
90-percentile delay of each epoch and therefore get ground
truth alerts. The coverage for max delay alert reaches near

3 0 0 0 3 5 0 0 4 0 0 0 4 5 0 0 5 0 0 0 5 5 0 0 6 0 0 07 0
7 5
8 0
8 5
9 0
9 5

1 0 0
Ale

rt C
ove

rag
e R

ate
(%

)

S e g m e n t A v e r a g e D e l a y (u s)

 M a x D e l a y
 P e r c e n t i l e D e l a y

(a) max and percentile delay alert
coverage

1 5 2 5 3 5 4 5 5 5 6 5 7 5
1 0 1

1 0 2

1 0 3

1 0 4

Ov
erh

ead
(K

Bp
s)

S e l e c t e d F l o w T r a f f i c (M b p s)

 D O V E I N T S i g h t N e t S i g h t

(b) overhead of generating delay
alerts on 8Gbps link

Figure 7. Coverage rate and overhead of delay alert.

0 5 1 0 1 5 2 00
1 0
2 0
3 0
4 0

 P a t t e r n 1
 P a t t e r n 2
 P a t t e r n 3
 P a t t e r n 4

T i m e (s)

Wa
tch

ed
Flo

w T
raf

fic
(M

bps
)

(a) traffic for testing events cover-
age rate

P a t t e r n 1 P a t t e r n 2 P a t t e r n 3 P a t t e r n 49 5
9 6
9 7
9 8
9 9

1 0 0
Ev

ent
 Co

ver
age

 Ra
te(

%)

F l o w P a t t e r n s

 H e a v y H i t t e r H e a v y C h a n g e r

(b) event coverage rate of heavy
hitters and heavy changers

Figure 8. Test traffic patterns and event coverage rate of heavy hitters
and heavy changers

100%. For percentile delay, though the average rate of the
flow is fixed, the traffic size on different epochs fluctuates,
making the estimated packet number per epoch not accurate.
The inaccuracy leads to false negatives of alerts.

We compare the bandwidth overhead of DOVE with some
other works able to measure delay. INTSight [14] is an SLO
detection tool, which measures end-to-end delay and sends
alerts for SLO violations. We believe our work outweighs
INTSight by providing more fine-grained measurements and
alerts based on network segmentation. As shown in Figure
7(b), DOVE’s overhead is 70% lower than INTSight due to
smaller telemetry headers.
3) Event

We run flows of 4 different patterns shown in Figure 8(a)
on the link. Linear growth, step-growth, concave growth, and
convex growth are the common types we see in daily traffic.
We set 15 Mbps as the threshold of heavy hitters and 3 Mbps
as the threshold of heavy changers. Similar to §IV-B1, we split
the time into epochs according to the timestamp recorded in
pcap files, count the traffic of every epoch and judge whether
events should be reported. After comparison, we find that
ground truth coverage of 4 patterns reaches above 99.9% as
Figure 8(b).
C. Resource Utilization

We use REPETITA [27], which contains 260 network
topologies and demand matrices, to estimate resource uti-
lization in real WAN. First, we adapt SwitchPointer [26] by
uploading packet telemetry headers to the control plane at the
egress switch to get rid of end hosts for a fair comparison.
Denote adapted SwitchPointer as A-SwP. We evaluate the
resource utilization of DOVE, INTSight, and A-SwP on 6
network topologies. The 6 networks and their metadata are
shown in Table V. Each network has a different number
of nodes, links, and average path length. All the nodes in

Table V
Metadata of network topologies.

Network Label Nodes Links Average Path Length

Bell Canada BC 48 130 5.3
US Signal US 61 158 6.0

VTLWavenet VW 92 192 13.1
TATA TA 145 388 9.9

Cogent CG 197 490 10.5
RF1239 RF1239 315 1944 4.0

B C C G T A U S V W R F 1 2 3 90

2

4

6

TC
AM

(M
b)

N e t w o r k L a b e l

 D O V E
 I N T S i g h t
 A - S w P

(a) TCAM utilization (Mb)
B C C G T A U S V W R F 1 2 3 90

5 0
1 0 0
1 5 0
2 0 0
2 5 0

SR
AM

(M
b)

N e t w o r k L a b e l

 D O V E
 I N T S i g h t
 A - S w P

(b) SRAM utilization (Mb)
Figure 9. Device resource utilization.

the network are DOVE-enabled. For each pair of source
and destination nodes, there are 512 selected flows and 512
watched flows. Hence, networks with more nodes have a larger
number of monitored flows. The SRAM and TCAM utilization
has linear relations with the number of flows. So larger
networks require more resources. Note that resource utilization
has no direct relations with the network topologies but only
the number of flows. Figure 9 shows DOVE’s, INTSight’s and
A-SwP’s usage of TCAM and SRAM. The TCAM usage of
DOVE is twice as much as that of INTSight. This is because
DOVE has two lookup tables for selected flows and watched
flows respectively. The total number of flows DOVE monitors
is twice that of INTSight. A-SwP’s usage of SRAM is the
largest because it stores lists of switch ids on the data plane.
DOVE does not record path information while INTsight stores
fix-sized pathID to save spaces. DOVE’s SRAM usage is
more than INTSight since packet loss measuring in DOVE
requires many registers used as triggers and counters. DOVE’s
TCAM and SRAM requirements are within the resources of
Tofino, which has 44 Mb TCAM and 370 Mb SRAM. Note
that the above resource utilization is based on the situation
where DOVE is fully deployed. The resource utilization can
be further reduced by partial and incremental deployment.

V. DISCUSSION

In this section, we discuss clock synchronization, epoch
implementation, and comparisons with sketch-based solutions.

Clock synchronization across different switches, which
is required by all one-way delay measuring mechanisms, is
essential in DOVE’s delay measurement. IEEE 1588 [15] can
achieve microsecond-level time synchronization, which is sup-
ported by increasing switch vendors. Packet loss measurement
is not affected by clock asynchronization. Storing the number
of sent packets and calculating the previous epoch’s packet
loss are both controlled by the control bits in the telemetry
header. Besides, when clocks are asynchronized, Provenance
rules should search in larger ranges. The same time period
may have different epoch ids reported by different switches.

Larger searching ranges should cover the responsible events
while linking more false-positive events.

Epoch implementations are different on Tofino [25] and
BMv2 [24]. Tofino has the packet generator function, which
can generate a certain number of packets at certain ports at
certain intervals (e.g., every 200 nanoseconds). This function
can be used as timers. The generated packets can be used as
pointers to traverse through the register tables. BMv2 does
not have the packet generator function. For each selected and
watched flow, a register is used to record epoch id, which is
calculated by right shifting the timestamp (e.g., by 16 bits).
For every newly arrived packet of the selected and watched
flows, its epoch is calculated and then compared with the one
stored in the register. Timer triggers timeout signals if two are
different and the register is updated with the latest epoch id.

Sketch-based solutions and DOVE are fundamentally dif-
ferent in design choices. Considering the resource constraints
on the data plane, sketch-based solutions can store wider
ranges of data, but at the risk of simple processing logic
and inaccuracy, e.g., hash collisions and bucket collisions. For
example, ElasticSketch [28] uses 9 stages of 12 on the Tofino
pipeline to cover the full set of flows but is only designed to
detect heavy hitters, changers, etc. On the contrary, the SLO
measuring of DOVE has complicated data plane logic to verify
SLOs, but only focuses on a limited number of selected flows.
SLO measuring of DOVE uses 11 stages of 12 on the Tofino
pipeline to implement the logic. Besides, SLO alerts should be
accurate and timely as they remind network operators of the
abnormal network status. Sketch-based solutions are naturally
with inaccuracy and errors, and their process of decoding
introduces extra delay. These features are not applicable to
SLO measuring.

VI. RELATED WORK

DOVE is a debugging system composed of measuring and
diagnosis. In this section, we discuss and compare related
works in these areas.
A. Performance Measuring

Traditional measuring tools, including Ping, traceroute,
OWAMP [29], can actively probe flow path and measure the
performance of delay and packet loss. But the probe packets
may not be treated the same as data packets by the network.
Traditional passive measuring tools, e.g., SNMP [30] and
NetFlow [18], can retrieve traffic counter values in switches
to get flow information. However, traditional tools work at
coarse timescales and fail to measure short-lived flows such
as micro-burst flows.

Recent works, e.g., LDA [31], RLI [32], MAPLE [33],
develop data structures and algorithms to measure average
delay at fine-grained timescale in different aggregation levels.
QPipe [20] measures percentile delay of aggregated traffic on
the data plane, failing to provide flow-specific information.
Pingmesh [4] deploys an always-on delay detection system in
a large-scale DCN. DOVE leverages the programmable data
plane as the clean-slate solution to detecting per-packet delay

more straightforwardly. For packet loss measuring, sketch-
based approach LossRadar [13] compresses the values of flow
packet counters in bloom filter structure, then decodes and
calculates packet loss on the control plane. AM-PM [19]
counts packets of the same color and synchronizes counter
values on the control plane. DOVE develops a novel Coloring
Algorithm running completely on a data plane.
B. Debugging System

SLO debugging techniques include INTSight [14].
INTSight can only attribute SLO violations to a small set of
flows whose performance is just measured. It cannot monitor
SLOs of percentile delay and packet loss.

Mirroring based techniques, e.g., NetSeer [34], Net-
Sight [11], Planck [12] and EverFlow [35], upload fine-grained
information of every packet to control plane for measuring,
debugging, logging, etc. However, the overhead of these
methods is large, and they face severe scalability problems.
Filters are used to selectively upload featured packets at the
risk of losing key information.

End-host based techniques include SwitchPointer [26],
TPP [36], etc. They rely on end hosts for retrieving and
storing telemetry headers, which is usually designed for DCN.
DOVE applies to a wider range of networks such as enterprise
networks and WAN, where network operators are less likely to
modify network stacks or do not have control over end hosts.
C. Diagnosis Techniques

Diagnosis techniques, including Dapper [7], DTaP [8],
Zeno [10],Scout [37], etc., are used to give detailed expla-
nations of event causes in the distributed system. But all these
methods require detailed queue information at an arbitrary
time to diagnose, which is hard to acquire from network
switches directly. DOVE makes Provenance applicable to SLO
violation analysis by defining alerts, events and sacrificing
certain accuracy.

VII. CONCLUSION

Detection and diagnosis are indispensable parts of fast
recovery from SLO violations. To provide enough informa-
tion needed by diagnosis and keep the overhead low, we
propose DOVE, a diagnosis-driven SLO violation detection
system. DOVE uploads alerts and events from the data plane
selectively and efficiently. The design of DOVE includes the
Coloring Algorithm, an approximate algorithm, and network
segmentation. The evaluation testifies DOVE’s effectiveness,
the high accuracy (>97%) of alerts and events, and the low
overhead. Memory utilization and required processing ability
are low to be deployable in real network topologies.

ACKNOWLEDGEMENT

We thank all the reviewers and our shepherd Marco Canini
for their valuable comments and advice. This research is
supported by the National Key R&D Program of China
(2019YFB1802504) and the National Science Foundation of
China (61625203, 61832013, and 61872426). Prof. Mingwei
Xu and Dr. Yangyang Wang are the corresponding authors.

REFERENCES
[1] J. Dean, “Designs, lessons and advice from building large distributed

systems,” LADIS.
[2] E. Katz-Bassett, H. V. Madhyastha, J. P. John, D. Wetherall, and homas

Anderson, “Studying black holes in the internet with hubble,” in 5th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 08). San Francisco, CA: USENIX Association, Apr. 2008.

[3] ThousandEyes, “Internet outages map on thousandeyes,” https://www.
thousandeyes.com/outages/.

[4] C. Guo, “Pingmesh: A large-scale system for data center network latency
measurement and analysis,” in SIGCOMM. ACM, August 2015.

[5] E. Schurman and J. Brutlag, “Performance related changes
and their user impact,” https://nanopdf.com/download/
performance-related-changes-and-their-user-impact pdf.

[6] K. Clay, “Amazon.com goes down, loses $66,240 per
minute,” https://www.forbes.com/sites/kellyclay/2013/08/19/
amazon-com-goes-down-loses-66240-per-minute/.

[7] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal,
D. Beaver, S. Jaspan, and C. Shanbhag, “Dapper, a large-scale distributed
systems tracing infrastructure,” Google, Inc., Tech. Rep., 2010.

[8] W. Zhou, S. Mapara, Y. Ren, Y. Li, A. Haeberlen, Z. Ives, B. T. Loo, and
M. Sherr, “Distributed time-aware provenance,” Proc. VLDB Endow.,
vol. 6, no. 2, p. 49–60, Dec. 2012.

[9] P. Buneman, S. Khanna, and W. C. Tan, “Why and where: A charac-
terization of data provenance,” in Proceedings of the 8th International
Conference on Database Theory, ser. ICDT ’01. Berlin, Heidelberg:
Springer-Verlag, 2001, p. 316–330.

[10] Y. Wu, A. Chen, and L. T. X. Phan, “Zeno: Diagnosing performance
problems with temporal provenance,” in 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19). Boston,
MA: USENIX Association, Feb. 2019, pp. 395–420.

[11] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières, and N. McKeown,
“I know what your packet did last hop: Using packet histories to
troubleshoot networks,” in 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14). Seattle, WA: USENIX
Association, Apr. 2014, pp. 71–85.

[12] J. Rasley, B. Stephens, C. Dixon, E. Rozner, W. Felter, K. Agarwal,
J. Carter, and R. Fonseca, “Planck: Millisecond-scale monitoring and
control for commodity networks,” SIGCOMM Comput. Commun. Rev.,
vol. 44, no. 4, p. 407–418, Aug. 2014.

[13] Y. Li, R. Miao, C. Kim, and M. Yu, “Lossradar: Fast detection of lost
packets in data center networks,” ser. CoNEXT ’16. New York, NY,
USA: Association for Computing Machinery, 2016, p. 481–495.

[14] J. Marques, K. Levchenko, and L. Gaspary, “Intsight: Diagnosing slo
violations with in-band network telemetry,” in Proceedings of the 16th
International Conference on Emerging Networking EXperiments and
Technologies, ser. CoNEXT ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 421–434.

[15] “Ieee standard for a precision clock synchronization protocol for
networked measurement and control systems,” IEEE Std 1588-2008
(Revision of IEEE Std 1588-2002), pp. 1–300, 2008.

[16] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker, “P4:
Programming protocol-independent packet processors,” vol. 44, no. 3,
p. 87–95, Jul. 2014.

[17] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and
W. Willinger, “Sonata: Query-driven streaming network telemetry,” in
Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication, ser. SIGCOMM ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 357–371.

[18] “Cisco ios netflow,” https://www.cisco.com/c/en/us/products/
ios-nx-os-software/ios-netflow/index.html, Jul 2017.

[19] G. Fioccola, A. Capello, M. Cociglio, L. Castaldelli, M. Chen, L. Zheng,
G. Mirsky, and T. Mizrahi, “Alternate-Marking Method for Passive and
Hybrid Performance Monitoring,” RFC 8321, Jan. 2018.

[20] N. Ivkin, Z. Yu, V. Braverman, and X. Jin, “Qpipe: Quantiles sketch
fully in the data plane,” ser. CoNEXT ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 285–291.

[21] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein,
P. Maniatis, R. Ramakrishnan, T. Roscoe, and I. Stoica, “Declarative
networking,” Commun. ACM, vol. 52, no. 11, p. 87–95, Nov. 2009.

[22] X. Chen, S. L. Feibish, Y. Koral, J. Rexford, O. Rottenstreich, S. A.
Monetti, and T.-Y. Wang, “Fine-grained queue measurement in the data
plane,” in Proceedings of the 15th International Conference on Emerging

Networking Experiments And Technologies, ser. CoNEXT ’19. New
York, NY, USA: Association for Computing Machinery, 2019, p. 15–29.

[23] R. Joshi, T. Qu, M. C. Chan, B. Leong, and B. T. Loo, “Burstradar:
Practical real-time microburst monitoring for datacenter networks,” in
Proceedings of the 9th Asia-Pacific Workshop on Systems, ser. APSys
’18. New York, NY, USA: Association for Computing Machinery,
2018.

[24] Barefoot Networks, “P4-bmv2,” https://github.com/p4lang/
behavioral-model.

[25] ——, “Barefoot tofino switch,” https://barefootnetworks.com/
technology/.

[26] P. Tammana, R. Agarwal, and M. Lee, “Distributed network monitoring
and debugging with switchpointer,” ser. NSDI’18. USA: USENIX
Association, 2018, p. 453–466.

[27] S. Gay, P. Schaus, and S. Vissicchio, “Repetita: Repeatable experiments
for performance evaluation of traffic-engineering algorithms,” 2017.

[28] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic sketch: Adaptive and fast network-wide
measurements,” in Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, ser. SIGCOMM ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
561–575.

[29] S. Shalunov, B. Teitelbaum, A. Karp, J. Boote, and M. Zekauskas, “A
One-way Active Measurement Protocol (OWAMP),” IETF, RFC 4656,
9 2006.

[30] J. Case, M. Fedor, and M. Schoffstall, “A Simple Network Management
Protocol (SNMP),” IETF, RFC 1098, 4 1989.

[31] R. R. Kompella, K. Levchenko, A. C. Snoeren, and G. Varghese, “Every
microsecond counts: Tracking fine-grain latencies with a lossy difference
aggregator,” in Proceedings of the ACM SIGCOMM 2009 Conference
on Data Communication, ser. SIGCOMM ’09. New York, NY, USA:
Association for Computing Machinery, 2009, p. 255–266.

[32] M. Lee, N. Duffield, and R. R. Kompella, “Not all microseconds
are equal: Fine-grained per-flow measurements with reference latency
interpolation,” SIGCOMM Comput. Commun. Rev., vol. 40, no. 4, p.
27–38, Aug. 2010.

[33] ——, “Maple: A scalable architecture for maintaining packet latency
measurements,” in Proceedings of the 2012 Internet Measurement Con-
ference, ser. IMC ’12. New York, NY, USA: Association for Computing
Machinery, 2012, p. 101–114.

[34] Y. Zhou, C. Sun, H. H. Liu, R. Miao, S. Bai, B. Li, Z. Zheng, L. Zhu,
Z. Shen, Y. Xi, P. Zhang, D. Cai, M. Zhang, and M. Xu, “Flow event
telemetry on programmable data plane,” ser. SIGCOMM ’20. New
York, NY, USA: Association for Computing Machinery, 2020, p. 76–89.

[35] Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu, R. Mahajan, D. Maltz,
L. Yuan, M. Zhang, B. Y. Zhao, and H. Zheng, “Packet-level telemetry in
large datacenter networks,” in Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication, ser. SIGCOMM ’15.
New York, NY, USA: Association for Computing Machinery, 2015, p.
479–491.

[36] V. Jeyakumar, M. Alizadeh, Y. Geng, C. Kim, and D. Mazières,
“Millions of little minions: Using packets for low latency network pro-
gramming and visibility,” SIGCOMM Comput. Commun. Rev., vol. 44,
no. 4, p. 3–14, Aug. 2014.

[37] J. Gao, N. Yaseen, R. MacDavid, F. Vieira Frujeri, V. Liu, R. Bianchini,
R. Aditya, X. Wang, H. L. , D. Maltz, M. Y. , and B. Arzani, “Scouts:
Improving the diagnosis process through domain-customized incident
routing,” in SIGCOMM. ACM, August 2020.

