DSME-LoRa: A flexible MAC for LoRa

<u>José I. Álamos</u> <**j.alamos.aste@fu-berlin.de**>, Peter Kietzmann, Thomas C. Schmidt, Matthias Wählisch

ICNP 2021 04.11.2021

Motivation: LoRaWAN and LoRa

Restricted downlink rate

Restricted downlink rate

Unbounded end to end latency

Restricted downlink rate

- Unbounded end to end latency
- Lack of peer to peer communication

Restricted downlink rate

- Unbounded end to end latency
- Lack of peer to peer communication

Mandatory infrastructure

backhaul

Peer to peer or Cluster-Tree topologies

Peer to peer or Cluster-Tree topologies

Contention Access Period (CAP): CSMA-CA

- Peer to peer or Cluster-Tree topologies
- Contention Access Period (CAP): CSMA-CA

Contention Free Period (CFP): Guaranteed Time Slots (GTS)

- Peer to peer or Cluster-Tree topologies
- Contention Access Period (CAP): CSMA-CA

- Contention Free Period (CFP): Guaranteed Time Slots (GTS)
- Highly configurable and flexible
 - □ Nº of Superframes, Superframe duration, Beacon interval

Can DSME overcome LoRaWAN limitations to enable direct communication between LoRa nodes?

DSME-LoRa: PHY mappings

- 16 channels in the EU868 band
 - □ SF7, CR4/5, BW125 (typical LoRaWAN settings)

DSME-LoRa: PHY mappings

- 16 channels in the EU868 band
 SF7, CR4/5, BW125 (typical LoRaWAN settings)
- □ CAP uses only one channel
 - □ 10% duty cycle

DSME-LoRa: PHY mappings

- □ 16 channels in the EU868 band
 - □ SF7, CR4/5, BW125 (typical LoRaWAN settings)
- **CAP** uses only one channel
 - 10% duty cycle
 - **CSMA-CA** uses LoRa Channel Activity Detection (CAD)

Evaluation

- Omnet++ 6.0
 - □ with INET framework

- Omnet++ 6.0
 - with INET framework
- OpenDSME

- Omnet++ 6.0
 - with INET framework
- OpenDSME
- FLoRA
 - Only the LoRa Radio model

Omnet++ 6.0

- with INET framework
- OpenDSME
- **FLoRA**
 - Only the LoRa Radio model
- DSME-LoRa adaptation layer

Single hop peer to peer network with sensors (S) and actuators (A)

- Single hop peer to peer network with sensors (S) and actuators (A)
- Each sensor transmits unconfirmed data to a subset of actuators
 - At an exponential rate
 - □ In a dedicated GTS

- Single hop peer to peer network with sensors (S) and actuators (A)
- Each sensor transmits unconfirmed data to a subset of actuators
 - At an exponential rate
 - In a dedicated GTS time slot
- Size of the subset of actuators is defined as ApS (Actuators per Sensor)

- 4 Superframes per Multi-superframe
- ~32 seconds Multi-superframe duration

Slot schedule repeats every 28 slots

Average time to completion [s] for different simulation scenarios

#A=10, #S=30 #A=50, #S=110

	TX interval [s]					TX interval [s]				
	30	60	90	120	30	60	90	120		
	I	1	1	1		1	1	1		
◄ 4 -	22	18	17	17	22	18	17	17		
сд 3 -	24	19	18	17	24	19	18	17		
≝2 -	33	22	19	18	33	22	19	18		
<u> </u>	454	33	24	22	457	33	24	22		

- Time to completion
 - Only depends on TX interval and ApS, not on network size

Average time to completion [s] for different simulation scenarios

#A=10, #S=30

d∀ -	24	19	18	17	24	19	18	17
~ 4 -	22	18	17	17	22	18	17	17
	•		•					
	30	60	90	120	30	60	90	120

- Time to completion
 - Only depends on TX interval and ApS, not on network size
 - Lower bounded by half of Multi-superframe duration

Average time to completion [s] for different simulation scenarios

#A=10, #S=30

- Time to completion
 - Only depends on TX interval and ApS, not on network size
 - Lower bounded by half of Multi-superframe duration
 - □ Increases with ↑ MAC queue stress (↓TX interval and ↓ApS)

Average time to completion [s] for different simulation scenarios

#A=10, #S=30

<u> </u>	454	33	24	22	457	33	24	22
≝ 2 -	33	22	19	18	33	22	19	18
Sd 3 -	24	19	18	17	24	19	18	17
₹ 4 -	22	18	17	17	22	18	17	17
	I	I	I.	I I	I	I	I.	L
	30	60	90	120	30	60	90	120
	TX interval [s]					X int	erval	$[\mathbf{s}]$

- Time to completion
 - Only depends on TX interval and ApS, not on network size
 - Lower bounded by half of Multi-superframe duration
 - □ Increases with ↑ MAC queue stress (↓TX interval and ↓ApS)

Average time to completion [s] for different simulation scenarios

- Time to completion
 - Only depends on TX interval and ApS, not on network size
 - Lower bounded by half of Multi-superframe duration
 - Increases with ↑ MAC queue stress (↓TX interval and ↓ApS)
- No MAC queue overflow \Rightarrow 0% loss

Average time to completion [s] for different simulation scenarios

#A=10, #S=30

	TX interval [s]						Т	X inte	erval	$[\mathbf{s}]$
			30	60	90	120	30	60	90	120
			I.	1	1	1	1	1	1	1
A	4	-	22	18	17	17	22	18	17	17
\mathbf{pS}	3	-	24	19	18	17	24	19	18	17
#]	2	-]	33	22	19	18	33	22	19	18
[-]	1	-	454	33	24	22	457	33	24	22

- Time to completion
 - Only depends on TX interval and ApS, not on network size
 - Lower bounded by half ofMulti-superframe duration
 - □ Increases with ↑ MAC queue stress
 (↓TX interval and ↓ApS)
- No MAC queue overflow \Rightarrow 0% loss
- Compliant with duty cycle regulations

Average time to completion [s] for different simulation scenarios

#A=10, #S=30

	TX interval [s]						TX interval [s]				
			30	60	90	120	30	60	90	120	
			1	1	- I	1	1	1	1	1	
A	4	-	22	18	17	17	22	18	17	17	
\mathbf{pS}	3	-	24	19	18	17	24	19	18	17	
#]	2	-	33	22	19	18	33	22	19	18	
	1	-]	454	33	24	22	457	33	24	22	

- □ DSME-LoRa enables long range peer-to-peer communication
 - Even suitable for network with > 100 nodes

- DSME-LoRa enables long range peer-to-peer communication
 Even suitable for network with > 100 nodes
- End to end latency is independent of network size
 - Only depends on queue stress and superframe configuration

- DSME-LoRa enables long range peer-to-peer communication
 - Even suitable for network with > 100 nodes
- **End to end latency is independent of network size**
 - Only depends on queue stress and superframe configuration
- **G** Future work
 - IPv6 over DSME-LoRa

(adapt concepts by the IETF 6TiSCH group)

- DSME-LoRa enables long range peer-to-peer communication
 - Even suitable for network with > 100 nodes
- **End to end latency is independent of network size**
 - Only depends on queue stress and superframe configuration
- **G** Future work
 - IPv6 over DSME-LoRa

(adapt concepts by the IETF 6TiSCH group)

DSME-LoRa on real hardware (port OpenDSME to RIOT-OS)

Thank you!

DSME-LoRa implementation: github.com/inetrg/dsme_lora

José I. Álamos <<u>j.alamos.aste@fu-berlin.de</u>>

