DSME-LoRa: A flexible MAC for LoRa

José I. Álamos <j.alamos.aste@fu-berlin.de>,
Peter Kietzmann, Thomas C. Schmidt, Matthias Wählisch

ICNP 2021
04.11.2021
Motivation: LoRaWAN and LoRa
Motivation: Limitations of LoRaWAN

- Restricted downlink rate
Motivation: Limitations of LoRaWAN

- Restricted downlink rate
- Unbounded end to end latency
Motivation: Limitations of LoRaWAN

- Restricted downlink rate
- Unbounded end to end latency
- Lack of peer to peer communication
Motivation: Limitations of LoRaWAN

- Restricted downlink rate
- Unbounded end to end latency
- Lack of peer to peer communication
- Mandatory infrastructure backhaul
IEEE 802.15.4 DSME

- Peer to peer or Cluster-Tree topologies
IEEE 802.15.4 DSME

- Peer to peer or Cluster-Tree topologies
- Contention Access Period (CAP): CSMA-CA
IEEE 802.15.4 DSME

- Peer to peer or Cluster-Tree topologies
- Contention Access Period (CAP): CSMA-CA
- Contention Free Period (CFP): Guaranteed Time Slots (GTS)
IEEE 802.15.4 DSME

- Peer to peer or Cluster-Tree topologies
- Contention Access Period (CAP): CSMA-CA
- Contention Free Period (CFP): Guaranteed Time Slots (GTS)
- Highly configurable and flexible
 - Nº of Superframes, Superframe duration, Beacon interval
Can DSME overcome LoRaWAN limitations to enable direct communication between LoRa nodes?
DSME-LoRa: PHY mappings

- 16 channels in the EU868 band
- SF7, CR4/5, BW125 (typical LoRaWAN settings)
DSME-LoRa: PHY mappings

- 16 channels in the EU868 band
- SF7, CR4/5, BW125 (typical LoRaWAN settings)
- CAP uses only one channel
 - 10% duty cycle
DSME-LoRa: PHY mappings

- 16 channels in the EU868 band
- SF7, CR4/5, BW125 (typical LoRaWAN settings)
- CAP uses only one channel
- 10% duty cycle
- CSMA-CA uses LoRa Channel Activity Detection (CAD)
Evaluation
Simulation environment

- Omnet++ 6.0
 - with INET framework
Simulation environment

- Omnet++ 6.0
- with INET framework
- OpenDSME
Simulation environment

- Omnet++ 6.0
- with INET framework
- OpenDSME
- FLoRA
- Only the LoRa Radio model
Simulation environment

- Omnet++ 6.0
- with INET framework
- OpenDSME
- FLoRA
- Only the LoRa Radio model

- **DSME-LoRa** adaptation layer
Simulation scenario

- Single hop peer to peer network with sensors (S) and actuators (A)
Simulation scenario

- Single hop peer to peer network with sensors (S) and actuators (A)
- Each sensor transmits unconfirmed data to a subset of actuators
 - At an exponential rate
 - In a dedicated GTS
Simulation scenario

- Single hop peer-to-peer network with sensors (S) and actuators (A)
- Each sensor transmits unconfirmed data to a subset of actuators
- At an exponential rate
- In a dedicated GTS time slot
- Size of the subset of actuators is defined as ApS (Actuators per Sensor)
Simulation scenario

- 4 Superframes per Multi-superframe
- ~32 seconds Multi-superframe duration
- Slot schedule repeats every 28 slots
Simulation results

<table>
<thead>
<tr>
<th>ApS [#]</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>#A=10, #S=30</td>
<td>454</td>
<td>33</td>
<td>24</td>
<td>22</td>
<td>33</td>
<td>22</td>
<td>19</td>
<td>18</td>
<td>24</td>
<td>19</td>
<td>18</td>
<td>30</td>
<td>60</td>
<td>90</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#A=50, #S=110</td>
<td>457</td>
<td>33</td>
<td>24</td>
<td>22</td>
<td>33</td>
<td>22</td>
<td>19</td>
<td>18</td>
<td>24</td>
<td>19</td>
<td>18</td>
<td>30</td>
<td>60</td>
<td>90</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Simulation results

- Time to completion
- Only depends on TX interval and ApS, not on network size
Simulation results

- Time to completion
- Only depends on TX interval and ApS, not on network size
- Lower bounded by half of Multi-superframe duration

Average time to completion [s] for different simulation scenarios

<table>
<thead>
<tr>
<th>#A=10, #S=30</th>
<th>#A=50, #S=110</th>
</tr>
</thead>
<tbody>
<tr>
<td>ApS [#]</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>454 33 24 22</td>
</tr>
<tr>
<td>2</td>
<td>33 22 19 18</td>
</tr>
<tr>
<td>3</td>
<td>24 19 18 17</td>
</tr>
<tr>
<td>4</td>
<td>22 18 17 17</td>
</tr>
<tr>
<td>TX interval [s]</td>
<td>TX interval [s]</td>
</tr>
<tr>
<td>30 60 90 120</td>
<td>30 60 90 120</td>
</tr>
</tbody>
</table>

DSME-LoRa: A flexible MAC for LoRa
ICNP 2021
Simulation results

- Time to completion
- Only depends on TX interval and ApS, not on network size
- Lower bounded by half of Multi-superframe duration
- Increases with ↑ MAC queue stress (↓ TX interval and ↓ ApS)

<table>
<thead>
<tr>
<th>ApS [#]</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30</td>
<td>60</td>
<td>90</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>454</td>
<td>33</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>22</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>19</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>18</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

Average time to completion [s] for different simulation scenarios

#A=10, #S=30

#A=50, #S=110
Simulation results

- Time to completion
- Only depends on TX interval and ApS, not on network size
- Lower bounded by half of Multi-superframe duration
- Increases with ↑ MAC queue stress (↓ TX interval and ↓ ApS)
Simulation results

- Time to completion
 - Only depends on TX interval and ApS, not on network size
 - Lower bounded by half of Multi-superframe duration
 - Increases with ↑ MAC queue stress (↓ TX interval and ↓ ApS)

- No MAC queue overflow ⇒ 0% loss

<table>
<thead>
<tr>
<th>ApS [#]</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>454</td>
<td>33</td>
<td>24</td>
<td>22</td>
<td></td>
<td>457</td>
<td>33</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>22</td>
<td>19</td>
<td>18</td>
<td></td>
<td>33</td>
<td>22</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td></td>
<td>24</td>
<td>19</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>18</td>
<td>17</td>
<td>17</td>
<td></td>
<td>22</td>
<td>18</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

Average time to completion [s] for different simulation scenarios

#A=10, #S=30

| TX interval [s] | 30 | 60 | 90 | 120 |

#A=50, #S=110

| TX interval [s] | 30 | 60 | 90 | 120 |
Simulation results

- Time to completion
- Only depends on TX interval and ApS, not on network size
- Lower bounded by half of Multi-superframe duration
- Increases with ↑ MAC queue stress (↓ TX interval and ↓ ApS)
- No MAC queue overflow ⇒ 0% loss
- Compliant with duty cycle regulations

<table>
<thead>
<tr>
<th>ApS [#]</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>454</td>
<td>33</td>
<td>24</td>
<td>22</td>
<td>457</td>
<td>33</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>22</td>
<td>19</td>
<td>18</td>
<td>33</td>
<td>22</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>24</td>
<td>19</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>18</td>
<td>17</td>
<td>17</td>
<td>22</td>
<td>18</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

Average time to completion [s] for different simulation scenarios

#A=10, #S=30

- 30
- 60
- 90
- 120

#A=50, #S=110

- 30
- 60
- 90
- 120
Conclusions and outlook

- DSME-LoRa enables long range peer-to-peer communication
- Even suitable for network with > 100 nodes
Conclusions and outlook

- DSME-LoRa enables long range peer-to-peer communication
- Even suitable for network with > 100 nodes
- End to end latency is independent of network size
- Only depends on queue stress and superframe configuration
Conclusions and outlook

- DSME-LoRa enables long range peer-to-peer communication
- Even suitable for network with > 100 nodes
- End to end latency is independent of network size
- Only depends on queue stress and superframe configuration

Future work

- IPv6 over DSME-LoRa
 (adapt concepts by the IETF 6TiSCH group)
Conclusions and outlook

- DSME-LoRa enables long range peer-to-peer communication
- Even suitable for network with > 100 nodes
- End to end latency is independent of network size
- Only depends on queue stress and superframe configuration

Future work

- IPv6 over DSME-LoRa
 (adapt concepts by the IETF 6TiSCH group)
- DSME-LoRa on real hardware
 (port OpenDSME to RIOT-OS)
Thank you!

DSME-LoRa implementation: github.com/inetrg/dsme_lora

José I. Álamos <j.alamos.aste@fu-berlin.de>