

Poster: Data Collection for ML Classification of Encrypted Messaging Applications

Jason Hussey, Colorado School of Mines (presenting) Ethan Taylor, Colorado School of Mines Kerri Stone, iCR, inc. Tracy Camp , Colorado School of Mines

"Signal is regularly used by journalists and investigators to protect sources identity"

<u>Users in 2020:</u>

WhatsApp, 2 billion Telegram, 400 million Signal, 20 million

https://www.businessofapps.com/data/signal-statistics/ https://www.businessofapps.com/data/telegram-statistics/ https://www.businessofapps.com/data/whatsapp-statistics/

Signal: The Pros and Cons of a Truly Private Chat App

Signal, the encrypted messaging app, is seeing record numbers of downloads amid the pandemic and nationwide protests. It might make sense for you, too.

https://www.wsj.com/articles/signal-the-pros-and-cons-of-a-truly-private-chat-app-11592127002

	11 1.226156	192.168.0.2	192.168.0.1	TCP		[SYN] Seq=0
	12 1.227282	192.168.0.1	192.168.0.2	TCP		[SYN, ACK]
	13 1.227325	192.168.0.2	192.168.0.1	TCP		<pre>[ACK] Seq=:</pre>
	14 1.227451	192.168.0.2	192.168.0.1	HTTP		upnp/service
	15 1.229309	192.168.0.1	192.168.0.2	TCP	http > 3196	[ACK] Seq=:
	16 1.232421	192.168.0.1	192.168.0.2	TCP	TCP Window	
	17 1.248355	192.168.0.1	192.168.0.2	TCP	1025 > 5000	
	18 1.248391	192.168.0.2	192.168.0.1	TCP		[SYN, ACK]
	19 1.250171	192.168.0.1	192.168.0.2	HTTP	HTTP/1.0 20	
	20 1.250285	192.168.0.2	192.168.0.1	TCP	3196 > http	
	21 1.250810	192.168.0.1	192.168.0.2	TCP	http > 3196	
	22 1.250842	192.168.0.2	192.168.0.1	TCP	3196 > http	
	23 1.251868	192.168.0.1	192.168.0.2	TCP	1025 > 5000	[ACK] Seq=1
	24 1.252826	192.168.0.1	192.168.0.2	TCP	http > 3196	
	25 1.253323	192.168.0.2	192.168.0.1	TCP	3197 > http	
	26 1.254502	192.168.0.1	192.168.0.2	TCP	http > 3197	
	27 1.254532	192.168.0.2	192.168.0.1	TCP	3197 > http	[ACK] Seq=1
<						
•	Frame 11 (62 byt	es on wire, 62 by	tes captured)			
	Ethernet II, Src	: 192.168.0.2 (00	:0b:5d:20:cd:02), Dst:	Netgear_2d:	75:9a (00:09	5b:2d:75:9a
E I	Internet Protoco	 Src: 192.168.0 	.2 (192.168.0.2), Dst:	192.168.0.1	(192.168.0.1	.)
			c Port: 3196 (3196). Ds			

Research Summary

- Network traffic classification is used to identify the nature of traffic on a network.
- Entities capable of monitoring network traffic use classification for all manner of reasons, including identification of mobile applications being used on the network.
- It is possible that the usage of encrypted messaging applications by users on these networks can be detected, betraying elements of their privacy.

- We describe a system that:
 - leverages campus network resources to generate real-world data
 - alongside a more curated dataset captured from Android application traffic.
- We also explore the ability of machine learning (ML) models to accurately classify traffic from these encrypted messaging applications.

Methodology – Data Collection

WiFi Data Collection

- Partner with the ITS office to collect anonymous WiFi packet headers
- Leverage ntop's n2disk utility
 - Zero copy drivers
- Extract just the IP and TCP/UDP headers and pre-process with tshark
- Multiprocess the tshark output into mongodb

Android Application Collection

- Rooted Android phones (Samsung and Xiaomi)
- X-compiled strace attached to Signal messaging app process
- netstat polling for verification
- tcpdump on a Ubuntu station serving as AP
- Filter the PCAP file to only those flows identified by socket calls in trace

Methodology – Data Analysis

- Traffic object we examine is the bi-directional flow
 - Uniquely identified by the 5-tuple of source IP, source port, destination IP, destination port, and which protocol (TCP or UDP)
 - These are not features, just unique identifiers
- Direction, timing, and size are preserved as a 'feature'

- Many other statistical features can then be created to describe these flows
 - E.g., total bytes sent, momentum of the conversation, in addition to the mean, max, min, variance, etc.

CS@Mines

ML applications

- Some initial proof-of-concept multi-class classification
- Off the shelf classifiers; in our experiments Random Forests worked very well.
- Trained a classifier on MIRAGE data's Nexus 7 flows to classify apps from a different phone's flows
- In this particular case, the upstream L4 payload was of high importance.
 - This intuitively suggests that the clien side behavior is an important discriminator

Feature Importance Score

Poster: Data Collection for ML Classification of Encrypted Messaging Applications -0.6

-0.5

-0.4

-0.3

-0.2

-0.1

-0.0

Future Work

- Describe the system and considerations in greater detail to assist researchers
 - Emphasizing the partnership opportunities with host institutions
 - Allow other researchers to similarly extend the MIRAGE dataset

• ML applications

- Extending the MIRAGE dataset with our own custom applications in the same format
- Applying classifiers to 'real world' WiFi dataset from Mines
- Expanding the 'positive class' from just a single application to the genre of Encrypted Messaging Applications