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“Signal is regularly used by journalists and investigators to
protect sources identity”

Users in 2020:
WhatsApp, 2 billion
Telegram, 400 million
Signal, 20 million

https://www.independent.co.uk/life-style/gadgets-and-tech/facebook-
outage-instagram-whatsapp-signal-down-b1932505.html

ted messaging app, I1s seeing record numbers :-r ownloads amid the pandemic and nationwide protests. [t might make

https://www.wsj.com/articles/signal-the-pros-and-cons-of-a-truly-private-chat-app-11592127002
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https://www.businessofapps.com/data/signal-statistics/
https://www.businessofapps.com/data/telegram-statistics/
https://www.businessofapps.com/data/whatsapp-statistics/

Research Summary

* Network traffic classification is used * We describe a system that:
to identify the nature of traffic on a + leverages campus network

network. resources to generate real-world
* Entities capable of monitoring net- data

work traffic use classification for all » alongside a more curated dataset

manner of reasons, including captured from Android

identification of mobile applications application traffic.

being used on the network. .
e = o * We also explore the ability of

: -0 machine learning (ML) models
encrypted messaging applications by v classif i
users on these networks can be to accurately classity tratfic

detected, betraying elements of from these encrypted
their privacy. messaging applications.

* It is possible that the usage of
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Methodology — Data Collection

WiFi Data Collection Android Application Collection
* Partner with the ITS office to * Rooted Android phones (Samsung and Xiaomi)
collect anonymous WiFi packet : : :
» X-compiled strace attached to Signal messaging app process

headers
. Leverage ntop’s n2disk utility * netstat polling for verification

* Zero copy drivers e tcpdump on a Ubuntu station serving as AP
* Extract just the IP and TCP/UDP  Filter the PCAP file to only those flows identified by socket calls in
headers and pre-process with trace

tshark

H 23903 getsockopt(84, SOL_SOCKET, SO_DOMAIN, [10], [4])=0
* Multiprocess the tshark output 23903 socket{A UNIX, SOCK. STREAMISOCK_CLOEXEC, 0)-93
i nto m O n O d b 23903 connect(93, {sa_family=AF_UNIX, sun_path="/dev/socket/fwmarkd"}, 110)=0
g 23903 sendmsg(93, {msg_name=NULL, msg_namelen=0, msg_iov=[{iov_base="Y1\0\O\C\O\O\D\O\O\O\ONONONONCA D", iov_len=161}, {iov_base=NULL, iov_len=0}], msg_iovlen=2,

msg_control=[{cmsg_len=20, cmsg_level=SOL_SOCKET, cmsg_type=5CM_RIGHTS, cmsg_data=[84]}], msg_controllen=24, msg_flags=0}, 0) = 16
23903 recvfrom(93, <unfinished ...>
23904 socket(AF_INET6, SOCK_STREAM, IPPROTO_IP <unfinished ...>

n fo p 23903 <... recvfrom resumed> "\O\O\O\O", 4, 0, NULL, NULL) =4
. i 1 23904 <... socket resumed>) =98
n 2 Ci | S kTM 23903 connect(84, {sa_family=AF_INET6, sin6_port=htons(443), inet_pton{AF_INET6, "::ffff.76.223.92.165", &sin6_addr), sin6_flowinfo=htonl(0), sin6_scope_id=0}, 28) =-1
WI R Es HAR K EINPROGRESS (Operation now in progress)

23903 socket(AF_UNIX, SOCK_STREAM|SOCK_CLOEXEC, 0) =93
23903 connect(93, {sa_family=AF_UNIX, sun_path="/dev/socket/fwmarkd"}, 110)=0
23903 sendmsg(93, {msg_name=NULL, msg_namelen=0, msg_iov=[{iov_base="\6\0\O\O\O\O\O\OAO\O\ONONONONOA O, iov_len=161},
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Methodology — Data Analysis

* Traffic object we examine isthe ¢ Many other statistical features

bi-directional flow can then be created to describe
* Uniquely identified by the 5-tuple these flows
of source IP, source port, e E.g., total bytes sent, momentum
destination IP, destination port, of the conversation, in addition to
and which protocol (TCP or UDP) the mean, max, min, variance, etc.
* These are not features, just unique
identifiers

 Direction, timing, and size are
preserved as a ‘feature’
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Nexus 7 Model

I\/l I_ a p p | i Cati O n S Important Features

UF L4 payload bytes
BF duration
UF_duration

UF_IP_packet bytes

DF L4 payload bytes

B

DF duration
F L4 payload bytes

Features

Some initial proof-of-concept multi-class payldad_
.o . DF IP packet bytes
classification BF P packet bytes

DF num_packets
BF _num_packets

Off the shelf classifiers; in our experiments UF_num_packets
0.00 0.02 0.04 0.06 0.08 0.10 0.12

Random Forests worked very well. Feature Importance Score

Trained a classifier on MIRAGE data’s
Nexus 7 flows to classify apps from a
different phone’s flows

Confusion Matrix for Nexus 7 Random Forest Model

In this particular case, the upstream L4
payload was of high importance.

* This intuitively suggests that the clien
side behavior is an important __ e _
discriminator : R T T
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Future Work

e Describe the system and * ML applications
considerations in greater detail  Extending the MIRAGE dataset
to assist researchers with our own custom applications
* Emphasizing the partnership in the same format
opportunities with host * Applying classifiers to ‘real world’
institutions WiFi dataset from Mines
« Allow other researchers to * Expanding the ‘positive class’ from
similarly extend the MIRAGE just a single application to the
dataset genre of Encrypted Messaging
Applications
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